T 1 B 5

Nonlinear Dynamical Analysis in Models of
Mathematical Biology

BMRKBR KB
B 2 ®

19994 12H



Nonlinear Dynamical Analysis in Models of
Mathematical Biology

FEHER & R &

o] mXE HE HIBMN WXoE R

19994 12H

SenfiRe BB RLBMN XS W

FEERE ER
% A ER
% B ER

EINK B KB

19994 12H



Nonlinear Dynamical Analysis in Models of
Mathematical Biology

Woon-Suk Oh
(Supervised by professor Bong-Soo Ko)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

GRADUATE SCHOOL
CHEJU NATIONAL UNIVERSITY

1999. 12.



CONTENTS

Abstract(English) ........... ... i ii

I. Preliminaries ... 1
II. The Prey-Predator Model .......................... .. ...t 12
2.1 Lotka ~Volterra Systems ............ ... ittt 12

2.2 Analysis of a Prey-Pedator Model with Limit Cycle Periodic

Behaviour : Parameter Domains of Stability ................ 16

II1. Modeling of Vegetable-Prey-Predator .......................... 18
IV. Analysis of the Vegetable-Prey-Predator Models ............. 20
4.1 Analysisof Model I ... ..o i e iiiieeans 20
4.2 Analysisof Model IT ......... ... ... i i, 23
4.3 Analysis of Model III .............. ... . ... ..., 26
4.4 Analysisof Model IV ........ ... . .. . 30
V. Examples ... i e e 37
References ..... ... i e 40
Abstract(Korean) .......... ..o 42
Y s = 43



< Abstract>>

Nonlinear Dynamical Analysis In Models of

Mathematical Biology

Mathematical biology is a fast growing subject and is very exciting mod-
ern application of mathematics. Mathematical biology consists of Modeling
and Analysis. This thesis is dealing with the interactions of the vegetable,
prey, and predator population. As a first step we set the Vegetable-Prey-
Predator models, and then analyzed them. Analysis started by investigating
the stability and unstability conditions of the dynamical systems. Moreover,
through the concrete examples we discovered the critical change in dynamics
of Vegetable-Prey-Predator models such as extinction of the prey and preda-
tor population. That is to say, as vegetable grow unboundedly, prey and
predator population also grow for some times. But if predator population is
too large, then prey deduce extremely toward extinction. To prevent the ex-
tinction effectively we should regulate predator population artificially when

it is too large.
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I. Preliminaries

Definition 1.1. [14] (R4, R")
(1) R, is a set of all positive real numbers.

(2) For each positive integer n, R™ be the set of all ordered n-tuples

X = ($1,$2,"' )m’n)'}

where 1, - , T, are real numbers, called the coordinates of x . The elements

of R™ are called points, or vectors, especially whenn > 1.

Definition 1.2. [5] (Mathematical model)
A mathematical model is an equation, or a set of equations, whose solution
depends on time. The equation that defines the mathematical model can also

be called the state equation.

Definition 1.3. [5] (Linear and nonlinear models)
A mathematical model is linear if the state equation can be written in
the form Lu = f, where £ is a linear operator that satisfies the following

condition

L(uy + u2) = L(uy) + L(ua),
L) = AL(u).

A mathematical model is nonlinear if it is not linear.



A mathematical model is semilinear if the state equation can be written
as Lu + eN.u = f, where £ is a linear operator, ¢ is a parameter, and the

operator A; may depend on €.

Definition 1.4. [7] (Of class C")
Let f be defined and continuous on an open set D C R™. Then f is said
to be of class C” in D if all the partial derivatives of f of order up to and

including r exist and are continuous everywhere in D.

Definition 1.5. [12] (A dynamical system)

A dynamical system or flow is a C! map

p:RxD—-D,

where D is an open set in R" and writing ¢(¢,x) = ¢¢(x)
the map ¢; : D — D satisfies
(1) ¢o : D — D is the identity,

(2) The composition ¢¢ © ¢y = ¢14s holds for each £,s in R.

Definition 1.6. [16] ( A vector field)
A tangent vector v, to the Euclidean space R™ consists of a pair of points

v,p € R,



v is called the vector part and p is called the point of application of v, (see

A

Figure 1.1).

-

Figure 1.1.

Let p € R". The tangent space of R" at p is the set
R," = {vplv € R"}.

A vector field V on an open subset U of R™ is a function that assigns to

each p € U a tangent vector v, € R,".

Definition 1.7. [12] ( An equilibrium point)

Let ¢ : R x D — D be a dynamical system. A point x € D is called an
equilibrium point of ¢ (or a steady states, fixed point) if ¢(¢,x) = x
for all ¢.

Definition 1.8. [1] (Characteristic polynomial and eigenvalues)

Given an n X n matrix A = [a,,]. The polynomial

P()) = det(4 — AE,,)



is called a characteristic polynomial of A.(Here E, denotes the nxn iden-
tity matrix and X is a scalar). The root of P()) are called the eigenvalues
of A.

Definition 1.9. [4] For

dt | x _{aun a2
1) ay | =4 (y) A= (021 azz) ’

(1) We call the equilibrium point a node when both eigenvalues of A in
(1.1) are real and both of them simultaneously greater (unstable node,
source) or smaller (stable node, sink) than zero (see Figure 1.2(a) and
(b), respectively).

(2) We call the equilibrium point a saddle when one eigenvalue, say A;, is
smaller than zero and the other A, is larger than zero (see Figure 1.2(c)).
(3) We call the equilibrium point a focus when both eigenvalues are complex
(see Figure 1.2(d)(e)).

(4) We call the equilibrium point a Jordan node when \; = — )z (see Figure
1.2(f)).

(5) We call the equilibrium point a centre when \; = —)\y and the real part
of both eigenvalues is zero (see Figure 1.2(g)).

(6) We call the equilibrium point a singular node when A\; = 0 and \; # 0
(see Figure 1.2(h)).



(7) We call the equilibrium point a nilpotent when A is not identically zero

but has two zero eigenvalues (see Figure 1.2(7)).

(8) We call the equilibrium point a bicritical node when it has an associated

8 0

0 8/’
which occurs if aj2 = ag; = 0 and aj; = age in equation (1.1) (see Figure
1.2(7)).

normal form

AN
i

a. Stable node, sink bh. Unstable node, Source ¢. Saddle
|
@— Q—*;:. -
-—
d Stable focus e. Unstable focus f. Jordan node g. Centre
WU —=
——i
e —————-
T1Irm :
e+
e —
h. Smgular node i. Nilpotent singularity 1. Bicritical node

Figure 1.2. bi-dimensional singularities.



Definition 1.10. [4] ( An attracting set)
Let ¢ : RxD — D be a dynamical system. We call a set, A C D, an attract-

ing set if it is a closed invariant set and in addition there is a neighborhood

U(A) such that for every z € U(A)
é(t,x) € U(A),
for positive times
Jm (2, x) — A.
Definition 1.11. [4]  (Orbits, Periodic orbits)
Let ¢ : R x D — D be a dynamical system. Fixed x € D, we call the set
O(z) = {y e DCR": y = ¢(t,x)for somet € R}.

an orbit through the point x. The orbit is said to be periodic if there exist

to such that
@(t + to,x) = ¢(t,x) for all ¢ (see Figure 1.3(a)).
A periodic orbit is called the limit cycle.

Definition 1.12. [4] (Heteroclinic and Homoclinic orbits)
The orbit O(x) starting in a nonstable equilibrium point and finishing in

another equilibrium point is called a heteroclinic orbit.



Similarly, a homoclinic orbit starts and finishes in the same nonstable

equilibrium point (see Figure 1.3(b), (c)).

(a) Periodic Orbit (b) Heteroclinic Orbit

(c) Homochnic Orbit
Figure 1.3.

Definition 1.13. [5] (Bifurcation)

Let ¢ : ® x D — D be a dynamical system, and let x¢ be an equilibrium of

Do



We say that an equilibrium of ¢ bifurcates from xg if there is a continuous

curve x(\) of equilibriums of ¢, such that

All}n){o x(A) = xp.

The common value (A, Xp) is called a bifurcation point.

Definition 1.14. [4]
Let ¢ : R x D — D be a dynamical system. An equilibrium point xq of ¢ is

said to be stable if for every neighborhood

Ue(xo) = {x: |x — x0| < &},
there exists a neighborhood

Us(xo) = {x: [x —xo| < 6},

such that for every x € U.(xo) and every positive time ¢, the orbit ¢(t,x) is
in Us(x). That is, x(t) € Us(xg) forallt>0.

It is an asymptotically stable if
tl—lrlg'o ¢(t,x) = xg .

Definition 1.15.  (Linearized systems)
Let



be a nonlinear system, and let x; be an equilibrium point.

We define the linearized systems of (1.2) at x; by

x' = yxo(t,x1)x, x(0)=xo.

Example for linearized systems

du auy
s S =ull- ) - 2 = fv),
' dv

Linearizing about the steady state, (u*,v*), by writing
z(t) = u(t) —u*, y(t) =v(t)~v",

then (1.3) becomes to

dr * x x , *
_'Cit_ ::Efu(u y U )+yf'u(u » U )7
d .o
d—‘z = zgy(u”,v") + ygu(u*,v").

Theorem 1.16. [4] (Linear stability)
An equilibrium point x¢ is (asymptotically) stable if all the eigenvalues

of the linearized system at the point xo have negative real parts.

Definition 1.17. [1]



An n-th order polynomial P(A) with real coefficients is called stable if all
zeros of P(\) have negative parts. The stable polynomial is also called a
Hurwitz polynomial. It is called unstable if at least one of the zeros of

P()A) has a positive real part. It is called critical if P()) is neither stable

nor unstable.
Theorem 1.18. [1]
PA) = A"+ an 1 A" 1+ 4+ ad+ap=0.
For P()) to be Hurwitz polynomial, it is necessary that
an-1>0,--+,a1 > 0,a9 > 0.

Theorem 1.19. [8] (Maximum and minimum of two variable function)

Let f be of class C? in a neighborhood of the critical point pg, and let

A = (f12(p0))* — f11(po) fa2(po) -

Then, if A > 0, pgisa saddle point for f. If A < 0, ppis an extremal

for f, and is a maximum if

f11(po) <0,

and a minimum if

fi1(po) > 0.

_10_



Remark [2] (Logistic population growth)
Verhulst in 1836 proposed that a self-limiting process should operate when

a population becomes too large. He suggested

dN N
EzTN(]'—'R—")a

where 7 and K are positive constants. This is called logistic growth in a

population. In this model the per capita birth rate is
N
T( K) ?

that is, dependent on N. The constant K is the carrying capacity of
the environment, which is usually determined by the available sustaining

resources.

N(B)

Figure 1.4.

_11_



2. the Prey-Predator Model

First, we will consider systems involving two species, prey and predator.

Then we will expand to three species, vegetable, prey, and predator.

2.1 Lotka - Volterra Systems

Volterra in 1926 first proposed a simple model for the predation of one species
by another to explain the oscillatory levels of certain fish catches in the
Adriatic. If N(t) is the prey population and P(t) is that of predator at time

t then Volterra’s model is

dN

E=N(a—bP),
(2.1) e
E=P(CN—d),

where a, b, ¢ and d are positive constants.

The assumptions in the model are ;

(1) The prey in the absence of any predation grow unboundedly ; aN.

(2) The effect of the predation is to reduce the prey’s per capita growth rate
by a term proportional to the prey and predator populations ; —bN P,

(3) In the absence of any prey for sustenance the predator’s death rate results
in exponential decay ; —dP.

(4) The prey’s contribution to the predator’s growth rate is ; ¢NP.

_12__



Step I : Nondimensionalization

Nondimensionalization reduces the number of parameters by grouping them
in a meaningful way. It is extremely useful to write the system in nondimen-
sional form. Although there is no unique way of doing this it is often a good

idea to relate the variables to some key relevant parameter.

As a first step in analyzing the Lotka-Volterra model (2.1) we nondimension-

alize the system by writing

u(r) = eN(t) Ju(r) = bP(t) = é,
a a
and it becomes to
@" = u(l - 'v)1
dr
(2.2)
L o ao(u—1)
ar '
dv v(u—1)
3 I — g
(2:3) ~ au(l—v)’

which has singular points at u=v=0andu=v=1.

We can integrate (2.3) exactly to get the phase trajectories.

(2.4) au+v—Inuv=H,

_13_



where H > H,, is a constant.

The Theorem 1.19 implies that H,, = 1 + a is the minimum of H over all
(u,v) and it occurs at u = v = 1. For a given H > 1 + «, the trajectories in

the phase plane are closed as illustrated in Figure 2.1.

o( 2')%

—
]

p—— P u(7)

Figure 2.1. closed phase plane trajectories, from (2.4) with various H.

u(7)

7)

Figure 2.2. periodic solutions for the prey u(7) and v(7)

for the Lotka-Volterra system (2.2).

_14__



A closed trajectory in the u,v plane implies periodic solutions in 7 for u
and v in (2.2). The initial conditions, u(0) and v(0), determine the constant
H in (2.4) and hence the phase trajectory in Figure 2.1. Typical periodic
solutions u(7) and v(r) are illustrated in Figure 2.2. From (2.2), we can see
immediately that u has a turning point when v = 1 and v has one when

u=1.

A major inadequacy of the Lotka-Volterra model is clear from Figure 2.1,
the solutions are structurally stable. Suppose, for example, u(0) and v(0)
are such that u and v for 7 are on the trajectory Hp which passes close to
the u and v axes. Then any small perturbation will move the solution onto
another trajectory which does not lie everywhere close to the original one
Hjy. Thus a small perturbation can have a very marked effect, at the very

least on the amplitude of the oscillation.

One of the unrealistic assumptions in the Lotka-Volterra models, (2.1) and
(2.2), is that the prey growth is unbounded in the absence of predation.
To be more realistic the growth rate should depend on both the prey and

predator densities.

As a reasonable first step we might expect the prey to satisfy a logistic
growth, say, in the absence of any predators, or have some similar growth
dynamics which has some maximum carrying capacity. The predation term,

which is the functional response of the predator to change in the prey density,

_15._



generally shows some saturation effect. Instead of bN P, we take PN R(N)
where N R(N) saturate for large N.

That is, lim NR(N)=A < 0.

N—oo
2.2 Analysis of a Prey-Predator Model with Limit Cycle Periodic
Behaviour : Parameter Domains of Stability

Let N(t) is the prey population and P(t) is that of the predator at time ¢.

Consider another prey-predator model

dN N kP
EF_N[T(I_E)_N+D]’

£or ()

where r, K, k, D, s and h are positive constants.

(2.5)

k : the maximum number of eating by predator per capita,

k
N+D : per capita eating rates of predator,
kN the number of eati apit
: Ing pe
N+D e ating per capita,

K : carrying capacity, r : growth rates of prey,

s : growth rates of predator.

Step I : Nondimensionalization

_16_



Let us write

N(t) hP(t) _
u()_ va(T) K )T—Tt,
k s D
a = ET‘,b— ;,d— E,
then (2.5) becomes to
du auv
E:u(l-—u)« +d—f(u,'v),

(2.6) o

v
Z=tv(1-2) = g(u,v),
which has only 3 dimensional parameters a,b and d.

Step II : Steady states

The equilibrium or steady states populations u*,v* are solutions of

du * * dv * * ’
E:f(u,v)=0, 37: (u*,v*) =0.
l—a-d l—a—-d)?+4d

We are interested in the stability condition of the steady states. For the

linear analysis write

w(r) ==(r) —u*, u(r)=y(r)+0",

iz g 4
dr | = & — | du dv
G)=2() =% %)
dr du dv

_17_



. au® __au
]
b —b

For stability we require Re(A\) < 0 and so the necessary and sufficient condi-

tions for linear stability are, from the last equation,

a au™
=bu* (1 —
detA = bu ( +u*+d (u*+d)2) >0,

au*
< 2= b
trA<0 & u [(u*+d)2 1]< ,

b> |a—(I—a—dpP+4d| Ny

1+a+d—\/(1—a—d)2+4d]

3. Modeling of Vegetable-Prey-Predator
3.1 Vegetable-Prey-Predator Model I

Let V/(t) is the vegetable, Pj(t) is the prey, and Ps(t) is the predator.
Consider a Vegetable-Prey-Predator Model with the assumption that the

vegetable’s growth is unbounded in the absence of prey.

r dV
E =a-— bVPl y
dP;
(3.1) J d_tl =P1(CV—dP2),
dP»
L E = Pg(ePl —_ S),

_18_



where a,b, ¢, d, e and s are all positive constants.
a : growth rates of vegetable,
b : per capita eating rates of prey,
¢ : growth rates of prey,
d : per capita eating rates of predator,
e : growth rates of predator,

s : death rates of predator.

3.2 Vegetable-Prey-Predator Model 11

In (3.1), Model I, we did not consider the vegetable’s deduction happened

by nature’ destruction. Therefore, we can consider a Model containing that

concept.
( %:a-bVPl-ﬁ-sV,
(3.2) J % = P1 (CV - dP2) y
dF;
L d—:=P2(€P1—S),

where a, b, c,d, e and s are all positive constants having the same meaning in
(3.1) and ¢ indicates the deduction rates of vegetable happened by nature’s

destruction.

3.3 Vegetable-Prey-Predator Model III

_19_



Next, we can consider another model having some maximum carrying capac-

ity in the vegetable’s growth, a logistic growth.

(3.3)

\

du

% = au(l - u) — buv,
dv

== v(eu — dw),

dw

E = ’UJ(e’U - S) .

In (3.3), we suppose that the carrying capacity equals one, K = 1.

3.4 Vegetable-Prey-Predator Model IV

(3.4)

(

\

du

i au(l —u) — buv,
dv

== —dw—3§
% v(cu — dw — 6),
dw

Ei—=w(ev—s).

In (3.4), d indicates the deduction rates of prey happened by the diseases or

nature’s disasters.

4. Analysis of a Vegetable-Prey-Predator Model

4.1 Analysis of a Vegetable-Prey-Predator Model I :

(3.1)

,

av

-‘*i-'t— —a—bVP]_,

dP,

—_d_il = P1(CV—-dP2),
ap.
—d"ig'=P2(€P]_—'S).

_20_



Step I : Nondimensionalization

Put: ¢V =u, bP, = v, dP; = w, ac = q, % =3, s =+. (3.1) becomes to

r du
E_a—uv—f(u,v,w)a
(41) § G =m0 = gwvw),
dw
\ d_t=w(ﬂv—7)—h(“’””‘”)'

Step II : Steady States

Step III : Community matrix

1B
B ¥
fu f‘u f‘UJ Q,H’YQ,B B Z O _1
pr ) GEY) L )
0o %
Y
P = M- 4],
¥ o
,\+75 : 3
_ 7 v 1
N I ) g1’
0o -2
Y

=A3+%A2+a(ﬂ+1)+av.

_21._



Let A1, A2, A3 are solutions of P(A) = 0.

Sum of three solutions ; A\; + Ag + Az = —%.
Multiple of three solutions ; A; - A2 - A3 = —ary.

From the elementary calculus we know if they are all real values, then they

are all negative, and steady states is stable. And if they are one real and two

complex values, then

A+ A2+ A3 = /\1+2Re()\2) = —%,
__(y+BXN)
Re(\2) = g

Therefore,

Re(A2)<O<—>'y+ﬂ)\1>0<-+/\1>—%.

To show : )\ > —1.

B

(1)PeC, P(0)=ay>0.

ST a3 X
(2)P( ﬂ) A +[3A +a(f+ DA+ ay,

-(5) +3(3) +en(F) -

=-—<0.

s

_22_



From (1) and (2),

I € (—%,0) with P(Ag) = 0.

But P(A) = 0 has an unique real solution A;, and A\ = A;. Therefore, we

can conclude that steady states (9_@ i a_ﬁ) is always stable.

v By
4.2 Analysis of a Vegetable-Prey-Predator Model II :

r dV

—d—-t- =a—bVP1+EV,
(3.2) { B~ p(ev - amy,
dP,
L W =P2(€P1—3).

Step I : Nondimensionalization

Put : cV:u,bP1=v,dP2=w,ac=a,§=ﬁ,s=7.

Then, (3.2) becomes to

r du
= =a—uv+eu= f(u,v,w),
d
(4.2) { = =v(u—w) = g(u,v,w),
dw
| = = w(Bv =) = h(u,v,w).

._23_



Step II : Steady States

0 B
(_%’0’0) ’ (viﬁs’%’;—!&) '

Step III : Community Matrix

—v+e —u 0
A= v U —w —v ,
0 puw  fGu—v

81
€ E 0
a
An=A(-200)=| o _@ 4 |,
€ €
0 0 —
A—e —% 0
det(A = Agy)=1 10 =xx % 1 o |,
£
0 0 A+

=()\—s)()\+%)(,\+7).

o
Eigenvalues of Aj) are ¢, =

The Theorem 1.16 implies that steady states (—%,0,0) is unstable for all

ecR.
7 of
ﬁ+€ P 0
A __A( Clﬂ 1 aﬂ )___ 1 0 _I
PN\ -pe By -pe) 8 . Pl
af
0 0
v — Pe

_24_



det(M — Agg) = A* + A’—_ﬂﬁ,\2 + 7—‘_"7[3—5(1 + X+ ay = P()).

g af v ap ) .
If ¢ > — then, we know that the steady states A ( =) is
B Y Y~ B’ By - e

unstable by the Theorem 1.18.

When ¢ < 1, P'(\) = 0 has two solutions with negative real parts.

B
Therefore, If P(\) = 0 has three solutions, then they are all negative.

If P(\) = 0 has one negative solution, say A; < 0, and two complex solutions
A2, A3 , then
A1+ Aa + Az = A1 + 2Re(A2),

v —Pe
IB )

9Re(A2) =~%+5—Al <0,

(—)E—-—;—<}\1<0.

P(E_B) =—ay(1+08)+ay=—-afy<0.

af v op ) :
Therefore, ( 'S is stable.
v—PBe By —Pe

_25_



4.3 Analysis of a Vegetable-Prey-Predator Model IIT :

( %—=au(1—u)—buv,
d
(3.3) ¢ d—:::v(cuvdw),
dw
\ E:w(ev—s)

step I : Steady States

(1,0,0), (0,*,0), [1 _bs s e (1— b—s)] .

ae'e’ d ae

step II : Community Matrix

a — 2au — bv —bu 0
A= cv cu—dw —dv |,

0 ew ev— 8
—a =b 0

A3 = A(1,0,0) = 0 c 0 .
0 0 -—s

0 0 ev* -3

A33=A[1_b_s’f,2(1#?i)] .
ae’ e’ d ae

a—-t* 0 0
Azy = A(0,v",0) = ev* 0 —dv* |,

b
—-a (1 - —-ﬁ) —J.')E 0
ae ae
€

_26_.



Step I1I : Characteristic Polynomials

Pgl()\) = det()\I - A31) = ()\ + a)()\ - C)(A + S) ,
Psa(A) = det(A] — Azp) = A(A—a+ ™) (A —ev* + 3),

P33(A) = det(A — Ass),

b\ 2
=)\3+a(1—b—s)/\2+cs(1+é)(1—-b—s))\+ac3(1——£) )
ae e ae ae

Step IV : Eigenvalues

,P31(A) =0 = All = —a, /\12 =cq, A1!.". = -85,

Py(A)=0 = A1 =0, =a—bv* Iz =ev* —s.

Step V : Stability and Unstability of the steady states

Using Theorem 1.16 and Theorem 1.8 we can investigate the stability and

unstability.
(1) (1,0,0) : unstable.
(2) (0,v*,0) :
a e
a—bv* < 0andev* —s5 <0 = s> ev* >e—5: 5

Therefore, if s < Ebg’ then (0,v*,0) is unstable.

If s > %, then

% <v* < -g : (0,v*,0) is stable.

_27_



Otherwise : (0,v*,0) is unstable.

unstable

SN
1

- i unstable
\

Figure 4.1. stable and unstable area of (0,v%,0).
bs s ¢ bs
1-=22(1-=)]
(3) [ ae’ e’ d (1 ae)]

2
Py3()) =/\3+a(1—--b—> A2 +cs (1+9) (1— b—))\+acs(1—2§)
ae e ae ae

b
CaseI;Whenl——s<0(s>E),
ae b

[l - bs E ¢ (1 -~ b_s)] is unstable by Theorem 1.16.
"e'd ae

Case IT; When 1 — 25 =0 (s=f),
ae b

All eigenvalues are zero, and so

[1 — E (1 — b—s)}is critical .
"d ae

__28_
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4.4 Analysis of a Vegetable-Prey-Predator Model IV :

¢ du
E—au(l—u)~lnw,
dv
34 { 22 - — dw —
(3.4) o v(eu — dw - 9),
dw
\E—’U}(CU—S).

Step I : Steady States

s 0 d a é
(07030)1(]-’0,0)7 (09 E’_E) ) I:E’ E (1 - E) 70] 9
bs s ¢ bs 0
[1—;;5’3(1*&;)'3]-

Step II : Community Matrix

a—2au—bv —bu 0
A= cv cu—dw—-46 —dv |,

0 ew ev— 8§
a 0 0
Ay = A(0,0,0) = 0 -6 0 ,
0 0 -s
—a b 0
Agr = A(1,0,0) = 0 ¢c-6 0 ,
0 0 -5
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Case III;Whenl—Eg- >0 (S< ﬁ),
ae b

3 bs\ ., b bs bs\?
PysA) =X +all—— )X +es|(l+-])[1-—])A+aes{l—-—) .
ae e ae ae

Pi4(X) has two solutions with negative real parts.

If Ps3()) has one negative real, say As:1 < 0, and two complex solutions

A3z, Az3, then

A31 + Az + Aaz = As; + 2ReAss,

:—a(l—b—s).
ae

2
Pag [—a (1 - ﬁ)] = —acsé (1 - 93) < 0.
ae e ae

Therefore, there is A3; € (—a (1 - 2),0) with Ps3()) = 0.
s ¢ bs\1 .
Hence, [1 - =, (1 - —)] is stable.
e e d ae
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A43 =A (0,—,—é) = E 0 _és_
d e
ed
-= 0
A44_A[é7g(1_é)70:|1
c'b c
_a b 0
‘5N 5 e/ o
| 2659« 29|
b c c
ed
0 — 0

Step III : Characteristic Polynomials

P (A) = det(A\] — Ag) = (A= a)(A+ 0)(A+ s),

Pip()) = det(M — Agg) = (A +a)(A—c+8)(A+ ),

Pys(A) = det(A] — Asg3) = ()\ —a+ b?s) (A2 — s6),
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Pyy(X) = det(A] — Ayy),

s (o8] fre oo

P45(A) = det()\I - A45) ’

=,\3+a(1—b—s),\2+cs(1+9) (1_17_5))‘
ae € ae

Step IV : Eigenvalues

Pu(AN) =0 = A1=a, A2 = -0, A3 = —s,

Pp(A) =0 = A1 =—a,d2=c—4, A3 = ~s,

b
Pi(\) =0 = )\31=a—§,,\32=\/ﬁ, A3z = —Vs6.

Step V : Stability and Unstability of the steady states
Using theorem 1.16 and theorem 1.8 we can investigate the stability and

unstability.

(1) (u1*,m1*,w1*) = (0,0,0) : unstable.
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(2) (u2*,v2*, wo*) = (1,0,0) :

0 < ¢ : unstable, ¢ > ¢ : stable.

A

unstable stable

Figure 4.2. stable and unstable area of (1,0,0).

(3) (ug™,v3™,ws™) = (0, —Z,—g) . always unstable.

(4) (ua®, 04", w4") = [ég (1 _ 5) ,o] ;

Pis()) = [A+s—%§ (1*2)] : [)\2-}-%)\4—(15(1—%)} =0.

& 6
[A2 + 90_)\ + ad (1 — E)] = 0 has two solutions with negative real parts
Therefore,

—5+ % (1 - %) > 0: (ug™,v4*,wys™) is unstable.
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b c

—st = (1 —- é) < 0: (ug*,vs",we") is stable.

3
_ae
b

ey bs s ¢ bs o]
0 s = |15 503 (- 22) 3]

P45()\)=}\3-1"0.(1—93))\2-{-08(14'9)(
ae €

[bc(1~—éi)+ec(l—ﬁ)—66]A+as(
ae ae

CaseI;Whenl—b—S<0(s>9£),
ae b

(us*,vs*,ws*) is unstable by Theorem 1.18

bs ae
Case 11 ; When 1 — — =0 (3_7),

Pis(\) = A3 — 36,

= A(A2 — 56),

- 58
ae

1- 2 YAt
ae

) I

= AA = Vs)(X + Vs6) .
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>\41 =O, )\42 "—‘\/5, }\43 = \/:93

Case III;Whenl—b—s >0 (s< f'f),
ae b

Ifc(lﬁﬁg-)—6<0,i.es>%(1-—§),then
ae b c

Multiple of three eigenvalues ;

)\51-)\52-/\53=—~a3(1—23-) [C(l—b—s) —-5] >0.
ae ae

Therefore (us*,vs*,ws*) is unstable by Theorem 1.16.

ae? be
Ifs< m (;'FC*&) then

cs(l—l—é) (1—23-)/\+§[bc(l——@i)+ec(1—?i)—66],
€ ae € ae ae

B aez(b+1)3 s (b+1)bc \ e ’

< 0.

Therefore (us*,vs*,ws™) is unstable by Theorem 1.16.

Otherwise :

If Py5(A) = O has three real solutions, then they are negative. If not, Pys()\) =
0 has one negative real, say As; < 0, and two complex solutions, Asz, Ass,

then

As1 + As2 + Asz = As; + 2Re(A52) = —a (1 - Z—Z) )
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ae

H}\51>—a(1+—b—s).

2Re()\52) = Ag1 — —Q (1 —_ EE) <0,
ae

To show : A\5; > —a (1 — b—s>

ae

P45(—a (1 — éi)) = -—Eb—cs (1 — b—s) < 0.
. ae [ ae

Therefore, (us*,vs*, ws*) is stable.

S
_ae
b I
e b—e n
- (5=%) unstable

-
-
-

stable N\ = "o

Figure 4.4. stable and unstable area of (us*,vs*,ws").

_36_



b
¢ dl=-)
Figure 4.5. unstable area of Model IV.

Area (1) : (ug™,v2*,wy*), (uq*,v4*,ws*) is unstable.
Area (2) : (ug™,v2*,wo*), (u4™,va*, wa*), (us*,vs*, ws*) is unstable.
Area (3) : (u2*,v2*,wy*), (us*,vs™,ws™) is unstable.

Area (4) : (us*,vs*,ws™) is unstable.

5. Examples

Example 5.1 (Vegetable-Prey-Predator Model II)

( % = 05— VP, —0.189V,
dP
(32) VB _pv-py,
P,
| 22 = B1A - 001),
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a—

a. Vegetable b. Prey

c. Predator

Figure 5.1.

Remark 5.1

As vegetable population grow unboundedly, prey and predator population
also grow for some times. But if predator population is too large, then prey
deduce extremely toward extinction. And so, finally predator population
also deduce toward extinction. Therefore, to prevent extinction effectively
we need to regulate predator population artificially when it is too large. It

is a way to permit the hunting temporarily (see Figure 5.1.).
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Example 5.2 (Vegetable-Prey-Predator Model IV)

(o _ —w)—
7 0.1u(l — u) — 0.5uv,
(3.4) < % = v(0.7u — 0.5w — 0.3),
dw
| 5 = w(0.2v — 0.01).
(a). u(t): t=(80000,80510) (b). u(?): t=(89000,89510)
(e). v(8: t=(80000,80510) (d). v(BH: t=(89000,89510)

Aot A
NV MV

(e). w(?): t=(80000,80510) (F). w(): £=1(89000,89510)

Figure 5.2.
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