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<Abstract>

Lower bounds for the eigenvalues
of the basic Dirac operator

In this thesis, we review some basic properties of the transvese spin
structure and the basic Dirac operator D,. And we give some estimates
of the eigenvalues of the basic Dirac operator by using the transversally
conformal change of metric. Moreover, we give a sharp estimate of the
basic Dirac operator by using the new connection. We also study the
limiting cases of each estimates. In fact, at all of cases, the limiting folia-
tions are minimal and transversally Einsteinian with a constant positive

transversal scalar curvature.

i



1 Introduction

In 1963, A. Lichnerowicz([22]) showed that on a Riemannian spin

manifold the square of the Dirac operator D is given by

1
DQZV*V—FZO’,

where V*V is the positive spinor Laplacian and o the scalar curvature.
In 1980, Th. Friedrich([6]) proved that any eigenvalue A of the Dirac

operator satisfies the inequality

n
A RILINE N 1.1
_4(n—1)11\r20 (1.1)

on a compact Riemannian spin manifold (M", gps) with positive scalar
curvature o. The inequality (1.1) has been improved to many cases by
many authors([8, 9, 10, 15, 14, 11, 18, 19, 20]). In particular, in 2001, S.
D. Jung([10]) proved the lower bound for the eigenvalues A of the basic
Dirac operator D, on a foliated Riemannian manifold with a transverse
spin structure, which is introduced by J. Briining and F. W. Kamber([2]).
Namely, let (M, gy, F) be a Riemannian manifold with an isoparametric
transverse spin foliation F of codimension ¢ > 1 and a bundle-like metric
gy such that the mean curvature form s is basic harmonic. Then the

eigenvalue A of the basic Dirac operator D, satisfies the inequality

2 q - \Y 2
A > -1 1]r\14f(0 + |K|7), (1.2)

where oV is the transversal scalar curvature of F. In the limiting case, the
foliation F is minimal, transversally Einsteinian with constant transver-
sal scalar curvature oVv. In 2004, S. D. Jung et al.([15]) improved the
above inequality (1.2) by the first eigenvalue of the basic Yamabe oper-
ator Y}, which is defined by

—1
Yb:4q—2 A+ 0oV, (1.3)
q_



where Ap is a basic Laplacian acting on basic functions. In fact, any
eigenvalue A of the basic Dirac operator D, satisfies the inequality

2 S q . 2

where p; is the first eigenvalue of the basic Yamabe operator.

In this thesis, we give another estimates for the square of the eigen-
value \ of the basic Dirac operator D,

This artcle is organized as followings. In Chapter 2, we review the
known facts on the foliated Riemannian manifold. In Chapter 3, we study
some basic properties of the transverse spin structure and the basic Dirac
operator Dy. In Chapter 4, we give the new proof of the estimate (1.4)
with the conformal change of the transversal twistor operator. In Chapter
5, we give a sharper estimate than (1.2) with a modified connection.
Namely, any eigenvalue A of the basic Dirac operator D, satisfies

R VRN (02 I i |/<a|2). (1.5)
Alg—1) M q
In Chapter 6, we apply some techniques and concerning conformal change

of the Riemannian metric to get a sharper estimate than (1.4). Namely,

q q+1
/\2>—1) <M1+

e iﬁfw), (1.6)

where p is the first eigenvalue of the basic Yamabe operator.



2 The geometry of foliations

2.1 Definition

Definition 2.1 A family F = {La}aca of connected subsets of a mani-
fold MP*1 4s called a p-dimensional(or codimension q) foliation if

(1) UpLo = M,

(2) a# B = LoNLs=0,

(3) for any point p € M there exists a C"-chart(local coordinate
system) (pp, Up), such that p € U, and if U,NL, # &, then ¢,(U,NL,) =
A.Np(U,), where

A, ={(z,y) € RP x R? | y = constant}.
Here (9a,Uy) is called a distinguished(or foliated) chart.

Roughly speaking, a foliation corresponds to a decomposition of a mani-
fold into a union of connected submanifolds of dimension p called leaves.
Remark. From (3), we know that on U;NU; # @, the coordinate change
w00t 0i(U;NU;) — ¢;(U; N Uj) has the form

pj 0 p; () = (9i5(z, ), 7)), (2.1)
where 7;; : R — R is a diffeomorphism. Let pr : RP*? — R? be the
projection and N be a ¢g-dimensional manifold with a chart (V). Then
w;l oprowy : U — V C N is a submersion and the leaves of F in U are

given as the fibers of a submersion f = ¢;;" opr oy : U — V onto an

open subset V' of a model manifold N.

2.2 Riemannian foliation

Let (M, gy, F) be a Riemannian manifold with a foliation F of codi-
mension q. Let L be a tangent bundle of a foliation F and then L is the

3



integrable subbundle of T'M. i.e.,
X, Yel(UL)= [X,Y]eI'(U,L).

The normal bundle @ of F on M is the quotient bundle Q = TM/L.
Then the metric g); defines a splitting o in the exact sequence of vector
bundles

0—-L—-TM5SQ—0,

with o : Q — L* isomorphism. Thus gy = g1, @ g7+ induces a metric gg
on Q. With gg = o*gy1, the splitting map o : (Q,g9g) — (L*,gz1) is a

metric isomorphism.

Definition 2.2 A key fact to study of transversal geometry is the exis-
tence of the Bott connection V in () defined by

Vxs=mn[X,Y;] for X eT'L, seTQ, (2.2)
where Yy € T'T'M is any vector field projecting to s under m: TM — Q.

The right hand side in (2.2) is independent of the choice of Y;. Trivially
R(X,Y)=0for X, Y e T'L.

Definition 2.3 A foliation is Riemannian if there exists a metric gg

on Q satisfying Vxgo =0 (or 0(X)gg = 0) for any X € I'L. i.e.,
Xgo(s,t) = go(Vxs,t)+9o(s,Vxt) for X e 'L, s,t € I'Q.

Definition 2.4 A Riemannian metric gy on M is bundle-like with
respect to F if the fiber metric go induced on Q) turns the foliation into

a Riemannian foliation.



A Riemannian foliation admits a bundle-like metric. In fact, we choose
any fiber metric g, on L, a splitting o : Q — L+ and set gj; equal to the
orthogonal sum g, +gg on TM = L @ 0(Q).

For a distinguished coordinate system (x,,v,) in Uy, {0/0z;}(j =
1,---,p) is a basis of L and {w; = dx; + Aldy.}(a = 1,--- ,q) forms a
basis of L*. So {wy,- -+ ,wp,dyi, - ,dy,} forms a basis of the cotangent

bundle T*M. Then g); has local expression

gm = Z 9ij (@, y)wi @ wj + Z 9ab(T, Y)dya © dys. (2.3)

In particular, if gy, is a bundle-like metric, then g, is of the form

am = Z gij<x> y)wi ® wj; + Z gab(y)dya ® dyp. (2-4)

Definition 2.5 In each distinguished coordinate chart (Uy, (To,Ya)), @
frame field {X1,- -+, X, Xpi1, -+, Xpiq) s an adapted frame field to
the foliation F if { Xy, -, X} and {n(Xp41), -+, m(X,4q)} are basis of
'L and T'Q), respectively.

Theorem 2.6 ([27]) The followings are equivalent.

(1) The metric gy is a bundle-like metric

(2) There ezists an orthonormal adapted frame {X;, X,} such that
%XW(XQ) =0 for any X € I'L.

(3) There exists an orthonormal adapted frame {X;, X,} such that

g (Vx, Xi, Xp) + 9u(Vx, Xi, Xo) = 0.

(4) All geodesics orthogonal to a leaf at one point are orthogonal to

each leaf at every point.



Definition 2.7 The transverse Levi-Civita connection on Q = TM/L

15 defined by

%Xs =nlX,Y;] for X €L,
V)(S = (25)
(VYY) for X e TL*,

where s € T'Q and Yy € T'L* corresponding to s under the canonical

isomorphism L+ = Q.

The transverse Levi-Civita connection V is metrical and torsion free.

That is, Vxgo = 0 for all X € I'I'M and for all Y, Z € I'T'M
Ty(Y,Z)=Vyn(Z) = Vzn(Y) —nlY, Z] = 0.

Definition 2.8 The transversal sectional curvature KV, Ricci cur-

vature pV and scalar curvature oV are defined by
go(RY (s, t)t, s)

gQ(S7 S)gQ(t7 t) - gQ(87 t>2’

p¥(s) = D R (5, B Eay 0% = galp” (Ba), Eu):

KY(s,t) = Vs, t e TQ

where {E,} is a local orthonormal basic frame of Q and RY is the cur-

vature tensor for V, which is defined by
RY(X,Y)=VxVy —VyVx — Vixy] for X,Y € TM.

Definition 2.9 F is said to be transversally Einsteinian if the model

\Y

space N is Einsteinian, i.e., p¥ = %JVI , where ¥ 1s constant.

2.3 Transversal divergence theorem

The second fundamental form o : 'L x 'L — I'Q) of F is given by
a(X,Y)=a(VYY) for X,Y €T'L. (2.6)

It is trivial that « is ()-valued, bilinear and symmetric.

6



Definition 2.10 The mean curvature vector field 7 of F is then

defined by
T =Y a(E, B) =Y w(ViE), 2.7)

where {E;}iz1... p is an orthonormal basis of L. The dual form k, the

mean curvature form of F, is then given by
K(X) =ggo(r,X) for X el'Q (2.8)

The foliation F is said to be minimal (or harmonic) if K = 0. The

foliation F is totally geodesic if and only if o = 0.

Theorem 2.11 (Tautness theorem [1,23]) Let (M, gy, F) be a closed,
oriented Riemannian manifold with a Riemannian foliation F of codi-
mension q¢ > 2 and a bundle-like metric gy;. If the transversal Ricci
operator pV is positive definite, then F is taut, i.e., there exists a bundle-

like metric gy for which all leaves are minimal submanifolds.

Let V(F) be the space of all vector fields Y on M satisfying [V, Z] € I'L
for all Z € I'L. An element of V(F) is called an infinitesimal automor-
phism of F. Let

V(F)={Y =a(Y)|Y € V(F)}. (2.9)

It is trivial that an element s of V(F) satisfies Vxs = 0 for all X €
I"L(]28]). Hence we have [25]

V(F) = Qp(F). (2.10)

Theorem 2.12 (Transversal divergence theorem [30]) Let (M, gy, F)
be a closed, oriented, connected Riemannian manifold with a transver-

sally orientable foliation F and a bundle-like metric gy with respect to

7



F. Then for any vector field X € V(F)

/deV(X):/MgQ(X,T), (2.11)

where divy (X) denotes the transverse divergence of X with respect to the

transverse Levi-Civita connection.

Corollary 2.13 If F is minimal, then we have that for any X € V(F),

/ divy (X) = 0. (2.12)

2.4 Basic De-Rham Cohomology

Definition 2.14 A differential form w € Q" (M) is basic, if
i(X)w=0, 6(X)w=0 for X € I'L. (2.13)

In a distinguished chart (z1,...,2,;91,...,y,) of F, a basic form w is

expressed by
w = Z Way-an@Yay A -+ N dYa,,

a1 <--<ar

where the functions wy,..,, are independent of z, i.e. %wal...ar =0.

Let Q% (F) be the set of all basic r-forms on M. The exterior deriva-
tive d preserves basic forms, since 6(X)dw = df(X)w = 0, (X)dw =
O(X)w — di(X)w = 0 for a basic form w. Hence Q% (F) constitutes a
subcomplex

d:QF(F) — le(]:)

of the De Rham complex Q*(M) and the restriction dp = d|Q5(F) is
well defined. Its cohomology

Hp(F) = H(Qp(F), dp)



is the basic cohomology of F. 1t plays the role of the De Rham cohomology
of the leaf space M/F of the foliation. Let dp be the formal adjoint

operator of dg. Then we have the following proposition ([1, 10]).

Proposition 2.15 On a Riemannian foliation F, we have

dg =Y 0,AVp, O0p=-)Y i(E,)Vg,+i(kp), (2.14)

a

where kg is the basic component of k, {E,} is a local orthonormal basic

frame in Q) and {60,} its go-dual basic 1-form.

The foliation F is said to be isoparametric if k € QL (F). We already

know that « is closed, i.e., dx = 0 if F is isoparametric ([28]).
Definition 2.16 The basic Laplacian acting on Q5(F) is defined by
AB :d353+53d3. (215)

The following theorem is proved in the same way as the corresponding

usual result in De Rham-Hodge Theory.

Theorem 2.17 ([28]) Let F be a transversally oriented Riemannian fo-
liation on a closed oriented manifold (M, gyrr). Assume gy to be bundle-
like metric with k € QL(F). Then there is a decomposition into mutually

orthogonal subspaces
Q(F) =imdp @ imdop & H(F)
with finite dimensional Hy(F) = {w € Qp(F)|Apw = 0}. Moreover,
Hp(F) = Hp(F).

If F is the foliation by points of M, the basic Laplacian is the ordinary
Laplacian. In the more general case, the basic Laplacian and its spectrum

provide information about the transverse geometry of (M, F)(]26]).

9



2.5 Curvatures of transversally conformal metrics

Let (M, gpr, F) be a compact Riemannian manifold with a transverse spin
foliation F of codimension ¢ and a bundle-like metric g,; with respect to
F. Now, we consider, for any real basic function v on M, the transversally
conformal metric gg = e*gg. Let V be the metric and torsion free

connection corresponding to gg. Then we have the following proposition.

Proposition 2.18 ([15]) On a Riemannian foliation, we have that for

X,Y eTTM,

Vxm(Y)=Vxa(Y) + X(u)n(Y) + Y (u)r(X) — go(n(X),n(Y))dpu,
(2.16)

where dgu := grady(u) =), E,(u)E, is a transversal gradient of .

Proof. Since V is the metric and torsion free connection with respect

to go on (), we have
2_@@(?){8,?&) :XgQ(S>t) N Yng(ﬂ-(X)vt) - Zth(ﬂ-(X)’ S)
+ QQ(W[Xv }/;]at) + gQ(”[Ztvx]v‘S) i gQ(W[Y;v Zt}?”(X»?

where 7(Y;) = s and 7(Z;) = t. From this formula, the proof is com-

pleted. O

Proposition 2.19 On a Riemannian foliation, the curvature tensor as-
sociated with gg s given by
RY(X,Y)s =RY(X,Y)s — go(n(Y), s)Vxdgu + go(x(X), s)Vydpu
+{Y (u)s(u) — go(n(Y), s)ldpul* — go(Vydpu, s)}r(X)
—{X(w)s(u) = go(m(X), s)|dpul* = go(Vxdpu, s)}m(Y)
+{X(W)gqo(r(Y),s) = Y(u)go(r(X),s)}dpu

for any X, Y € TM and s € I'Q).

10



Proof. By a direct calculation, from (2.16), we have
VxVys

= VxVys+ X(u)Vys + Y (u)Vxs + s(u)Vxn(Y) — go(n(Y), s)Vxdpu
+{90(Vys,dpu) + Y (u)s(u) + s(w)Y (u) — go(r(Y), s)|dpul*}m(X)
+{90(Vxs, dpu) + gols, Vxdgu) + X (u)s(u) }r(Y)
+{90(Vx7(Y),dpu) + go(n(Y), Vxdpu) + X (u)Y (u)}s
+ {=90(7(X), Vys) = Y(u)go(m(X),s) — s(u)gq(r(X),7(Y))
— 9o(Vxm(Y),5) = go(n(Y), Vxs)}dpu.

Hence the proof is completed. O

Lemma 2.20 On a Riemannian foliation, the mean curvature form kg

associated with gg = e*gq satisfies kg = e 2“r. Moreover, v; = e%v,

for volume element vy of gg.

Proof. From (2.7), (2.8), we have

au(r, X) = gu()_VHE, X), VX eTrQ,

where {E;};—1,... , is an orthonormal basis of L. Let gy = g1 + gg be
a transversally conformal metric of gy;. Then E; = E; (i = 1,---,p).

Hence we have that, for any X € @,

(3, X) =g (Y _VEE, X) = gu (Y VY E;, X)

1
=3 Z{EigM(Eh X)+ Eigu(Ei, X) — Xgu(Ei, E;)

+ gu ([Es, Ei], X) + gu([X, B, i) — gu([Ei, X, E)}

=g (D VHE, X) = gu(r, X).

11



In the last equality of the above equation, we used the fact that gy (X,Y) =
Ofor X e 'L, Y € I'Q and g;, = gr.. Hence we have that, for any X € @,

€2qu(T§7X) = gM(T.@?X) = gM(T7X) = gQ(T7X)7

which implies 7; = e 2“7 and so k; = e *k. On the other hand, the

volume form vj; of gg is given by

Since 6, = "0, the last statement follows. O

Lemma 2.21 On a Riemannian foliation, the basic Laplacian Ap asso-

ciated with go = e*gq satisfies
Apf=e*{Apf —(q¢—2)go(dsf,dpu)} (2.17)
for any basic function f.

Proof. From (2.14) and (2.15), we have

ABf ZngdBf
- _ ZZ(Ea)an(éb AV f)+ Z(“g)jBf
a,b
S EPa(Ba VB ~ 3 BuEalf) + a(F),
a,b @

where {E,} is an orthonormal basic frame associated to gg and {f,} its

go-dual 1-form. Note that from (2.16)
?EQE_’b = Eb(u)Ea — G_udadeU. (218)
Hence we have

Apf==2 EB(H)Ex(u)+ ) Bo(f)darFa(u)
+ Y Bw)Bo(f) =7 ) EuEu(f) + ¢ w(f)
ZG_QU{ABf - (q - Q)Ea(u)Ea(f> }a

12



which proves (2.17). O

From (2.17), we have the following corollary.

Corollary 2.22 For any transversally conformal change go = €*'gq =

hQ%QQ (g > 3) on F, we have
e Ag(h™'f) = h ' Apf — fh2Agh. (2.19)
Proof. From (2.17), we have
e Ap(h'f) = Ap(h™'f) — (¢~ 2)go(dpu, dp(h™"' f)).
On the other hand, a direct calculation gives
Ap(h™f) = —fh2Aph +h ' Agf — 2fh3|dph|* + 2h % go(dgh, dg f).
Since u = qE—Q In h, we have
daldats o)) = ——= fh~*dahf* + — I gq(dsh.daf).

Hence we completed the proof. O

The transversal Ricci curvature pv of go = €*"go and the transversal
scalar curvature oV of go are related to the transversal Ricci curvature
p¥ of gg and the transversal scalar curvature oV of gg by the following

lemma.

Lemma 2.23 ([15]) On a Riemannian foliation F, we have that for any
X eq,

e p¥(X) =p¥(X) + (2 — ) Vxdpu + (2 - q)ldpul’X (2.20)

+ (¢ — 2) X (u)dgu + {Apu — k(u)} X,

e?oY =0V + (¢ —1)(2 — q)|dpul* + 2(¢ — D{Apu — x(u)}. (2.21)

13



Corollary 2.24 On a Riemannian foliation F, the scalar curvature o

4
associated with go = e*gg = hi-2gq is simplied as
q+2

i 1
hirzgV = 4q—2 {Agh — k(R)} + o h. (2.22)
q p—

Proof. Since u = qT22 In h for ¢ > 3, we have dgu = qTQQ h='dgh. Hence

we have

2 2
Apu = —— h™%ldgh|* + —— h™'Aph. 2.2
BU 7—2 |dph +q—2 B (2.23)

From (2.21), we have

o7 = hiseY 44 L B A 1T L gy
A q=2

which implies (2.22). O
Now we define the generalized basic Yamabe operator Y, by

| 74 S I Wil N vy T A (2.24)

Lemma 2.25 On a Riemannian foliation F of codimension q > 3, the
generalized basic Yamabe operator of the transversally conformal metric

satisfies the following equation: For gg = hqugQ,
YVi(h7'f) = B Yif. (2.25)
Proof. From (2.19), (2.22) and (2.24), we have
T ) =t 1= (Bl 1) = Tl )+ 0T

—q—

-1 2 =q=2
:42_—2 W {Apf = w(f)} +he= o f,

which implies (2.25). O

14



Definition 2.26 For any vectors X, Y € TM and s € I'Q), the transver-

sal Weyl conformal curvature tensor WV is defined by

WY(X,Y)s

=RY(X,Y)s

+ 507 (X)), 97(Y) ~ 50T (V). IT(X) (2
+ go(m(X), ) (w(Y) — gg(m(¥ ), 5)p (x(X))}

- m{gQ(W(X)a $)m(Y) = go(m(Y), s)m(X)}.

By a direct calculation, the transversal Weyl conformal curvature tensor
WV vanishes identically for ¢ = 3, where ¢ = codimF. Moreover, we

have the following theorem ([13]).

Theorem 2.27 Let (M, gy, F) be a Riemannian manifold with a folia-
tion F and a bundle-like metric gy with respect to F. Then the transver-
sal Weyl conformal curvature tensor is invariant under any transversally

conformal change of gas.

Proof. By a long calculation with Proposition 2.19 and Lemma 2.23, we

have that WYV = WV. O

15



3 Transversal Dirac operators

3.1 Clifford algebras

Definition 3.1 Let V' be a vector space over a field K = {R,C} of
dimension n and g a non-degenerate bilinear form on V. The Clifford
algebra CI(V,g) associated to g on V is the algebra over K generated
by V' with the relation

vow+w-v=—2¢(v,w) (3.1)
forv, w e V. The product “-” is called the Clifford multiplication.
Remark. (1) If (Ey, Ey, -, E,) is a g-orthonormal basis of V, then

{Ey By E|l<ii<ig<:-+<ipz<n, 0<k<n}

11

is a basis of CI(V, g), and so dim Cl(V, g) = 2".
(2) There is a canonical isomorphism of vector spaces between the

exterior algebra and the Clifford algebra of (V, g) which is given by :
AV 5 ClL(V,g) 8s| By . NEj w5 By~ .. F;.

This isomorphism does not depend on the choice of the basis. Let us

denote Cl,, = CI(R", <,>). Then we have the following proposition.

Proposition 3.2 ([21]) For all v € R™ and all p € Cl,,, we have
vep=vAp—i(v)e and v (=1)"(vAp+i(v)p),

where A denotes the exterior, i(v) the interior product and ¢ € NPR"™ C

NR,, ~ Cl,.

16



Definition 3.3 The Pin group Pin(V') is defined by
Pin(V)={a € Cl(V)|la=ay---ag,|la;|| = 1}. (3.2)
The Spin group is defined by
Spin(V) = {a € Pin(V)|aa" = 1}, (3.3)

where a' = ay,---ay for any a = ay---ag. FEquivalently, Spin(V) =

{e1 - exlle;] =1},

Let V' be a real vector space. Then Spin(V') is a compact and connected
Lie group, and for dimV > 3, it is also simply connected. Thus, for

dim V' > 3, Spin(V) is the universal cover of SO(V')(for detail, see [21]).

3.2 Basic Dirac operator

Let (M, gar, F) be a Riamannian manifold with a transversally oriented
Riemannian foliation F of codimension ¢ and a bundle-like metric gy,
with respect to F. Let SO(q) — Pso — M be the principal bundle
of (oriented) transverse orthonormal framings. Then a transverse spin
structure is a principal Spin(q)-bundle Ps,;, together with two sheeted
covering & : Psyi, — Pso such that £(p - q) = &(p)&o(g) for all p € Pgpip,
g € Spin(q), where & : Spin(q) — SO(q) is a covering. In this case,
the foliation F is called a transverse spin foliation. We then define the

foliated spinor bundle S(F) associated to Pgpin by
S(F) = Pspin X spin(a) ¢

where S, is the irreducible spinor space associated to (). The Hermitian

metric < -,- > on S(F) induced from gq satisfies the following relation:
<, >=<v-pv-p > (3.4)

17



for every v € @, gg(v,v) = 1 and ¢, ¢ € 5,. And the Riemannian
connection V on Pso defined by (2.5) can be lifted to one on Py, in
particular, to one on S(F), which will be denoted by the same letter.
Let (M, gy, F) be a compact Riemannian manifold with a transverse
spin foliation F of codimension ¢ and a bundle-like metric gj; such that
Apk = 0. The existence of such a metric is assured from [23, 24]. Let
S(F) be a foliated spinor bundle on a transverse spin foliation F and
< -,- > a Hermitian metric on S(F). By the Clifford multiplication “ -
” in the fibers of S(F) for any vector field X € @ and any spinor field
U € S(F), the Clifford multiplication X - ¥ € S(F) is well-defined. Then

we have

Proposition 3.4 For any X, Y € T'Q and ® € T'S(F), the following
properties hold:
(X-Y+Y -X)®=—2¢9(X,Y)?, (3.5)
<X U, 0>+<U X & >=0. (3.6)

Proposition 3.5 ([8,21]) The spinorial covariant derivative on S(F) is
given locally by:

1
V=1 06(VEs E)E, By Y, (37)

a,b

where U, is an orthonormal basis of S,. And the curvature transform

RS on S(F) is given as

1
R¥(X,Y)® = 1 > 9o(RY(X,Y)E, E,)E, - E, - ® (3.8)
a,b

for X, Y € TM, where {E,} is an orthonormal basis of the normal bundle
Q.

18



Proposition 3.6 ([21]) For any X € I'T'M, Y € I'Q, and ¥V, €
['S(F), we have
Vx(Y - U)=(VxY) U +Y . (VxV¥), (3.9)
X<U,d>=<Vx¥, &>+ <V Vxd >. (3.10)
We now define a canonical section RY of Hom(S(F),S(F)) by the for-

mula

RY(¥) =Y E,-E,- R%(E,, E,)V. (3.11)

a<b

Theorem 3.7 ([10]) On the foliated spinor bundle S(F), we have the

following equation
1
> E, R%(X,E,)¥ = S5 pV(X) -0 (3.12)

forall X € T'Q.

v

Corollary 3.8 ([10]) On S(F), we have RY =

1
4
Definition 3.9 The transversal Dirac operator D;, s locally defined

by
1
D,V =Y E, VpVU-— Sr W for W €TS(F), (3.13)

where {E,} is a local orthonormal basic frame of Q.
We can easily prove that Dy, is formally self-adjoint. i.e.,

/ <DV, ® >,,= / <V, Dup® >y, (3.14)
M M

for all ¥, & € I'S(F). We define the subspace I'g(S(F)) of basic or

holonomy invariant sections of S(F) by

T5(S(F)) ={¥ eTS(F) | Vx¥ =0 for X e TL}.
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Trivially, we see that Dy, leaves I'g(S(F)) invariant if and only if the
foliation F is isoparametric, i.e., k € Qp(F). Let Dy = Dylrysor) -
Lp(S(F)) — I'p(S(F)). This operator D, is called the basic Dirac op-

erator on (smooth) basic sections.

Theorem 3.10 ([7,10]) On an isoparametric transverse spin foliation F

with gk = 0, the Lichnerowicz type formula is given by

1
D}V =V;V,V+ ZKCY v, (3.15)

where KY = oV + |k|* and
ViVel¥ ==Y Vi 5 U4V, (3.16)

with Vi y = VxVy — Vyyy for all X, Y € TTM.

The operator V;, V,, is non-negative and formally self-adjoint([10]) such

that
/ < v;fkrvtrq)) v >gQ: / < vtT@; vtrlll >9Q (317)
M M

for all &, ¥ € I'S(F).

3.3 The transversal Dirac operator of transversally

conformal metrics

Now, we consider, for any real basic function u on M, the transversally
conformal metric gg = €*“gg. Let Pso(F) and Pso(F) be the princi-
pal bundles of go- and gg-orthogonal frames, respectively. Locally, the
section 5 of Pgo(F) corresponding a section s = (Ey, -+ , E,) of Pso(F)
is 5 = (B, ,F,), where £, = e “E,(a = 1,--- ,q). This isometry

will be denoted by I,. Thanks to the isomorphism I,, one can define a
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transverse spin structure pspm(]: ) on F in such a way that the diagram

commutes.
Let S(F) be the foliated spinor bundles associated with P, (F). For

any section W of S(F), we write W = I,U. If <, >, and < , >3, denote

9Q

respectively the natural Hermitian metrics on S(F) and S(F), then for

any ¢, U e I'S(F)

<P U >, =< D,V >, (3.18)
and the Clifford multiplication in S(F) is given by
X70=X-U forXelQ. (3.19)

Proposition 3.11 ([15]) The connections V and V acting respectively
on the sections of S(F) and S(F), are related, for any vector field X and

any spinor field W by

- - 1 1 =
VxVU =VxVU - > m(X) - dpu-W¥ — 5 go(dpu, m(X))W. (3.20)

Let D,, be the transversal Dirac operator associated with the metric
go = €*go and acting on the sections of the foliated spinor bundles
S(F). Let {E,} be a local frame of Pso(F) and {E,} a local frame of
Pso(F). Locally, D,, is expressed by

Dy, ¥ :;Eafv,;a\p— % kg~ 0, (3.21)
where r; is the mean curvature form associated with gg. Using (3.19),
we have that for any ¥

_ _ -1
DW= e (Dtrq/ + ‘-’T dpu - \I/) (3.22)
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Now, for any function f, we have
Dy.(fV) =dpf -V + fD,;, V. (3.23)

Hence we have

Dy (f9) = e “dpf -V + fD, V. (3.24)

From (3.22) and (3.24), we have the following proposition.

Proposition 3.12 ([15]) Let F be the transverse spin foliation of codi-

mension q. Then the transverse Dirac operators D,, and D,, satisfy

Dy(e™ T ¥) = e 4D, ¥ (3.25)
for any spinor field ¥ € S(F).

_ q—1

From Proposition 3.12, if D,, ¥ = 0, then Dy, ® = 0, where ® = ¢~z “U,
and conversely. So, on the transverse spin foliation F, the dimesion of
the space of the foliated harmonic spinors is a transversally conformal

mvariant.

Theorem 3.13 On the transverse spin foliation with the basic harmonic

mean curvature form k, we have that on S(F)

(3.26)

where
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Proof. Fix z € M and choose a local orthonormal basic frame {E,}

satisfying (VE,), = 0 at x € M. Then by definition,

a,b a,b
1 L _
—§ZE,, Vg V=5 By kg Vi
b b
1 P T
—5 /fg a VEE\II—‘—ZK@ /‘fg U

S By V5B Vg Y = - (qVa¥ + > B dput Vg, T),

and



Hence we have
thr\il =— Z?E ?E ] +WZG@E Ea\i’ —i—v,{g\i’

1 - 1
+ D Bat By R (Ea, By) ¥+ 5 (g = 2)rg(w) ¥ + -

_12.F

v,
; A
a<b

From (3.11) and Corollary 3.8, the proof is completed. O

Lemma 3.14 Let (M, gn, F) be a compact Riemannian manifold with

a foliation F and a bundle-like metric gy with respect to F. Then
/ < v:r?ﬂ’@a (i) >§Q: / < ?trq}’ vtr&) >§Q (329)
M M
Jor all®, ¥ € S(F), where < Vi, ¥,V ® >;0=> <V VU, Vg &>, .

Proof. Fix x € M and choose an orthonormal basic frame {E,} such

that (VE,), = 0 for all a. Then, from (3.27), we have
< ViV, ® >

:—Z<VEVE\II O >5, + < Vs, v, 5,08 >5 + < Ve, U3 >,

— - DB < VaBhby, 4 < a0 Vs>
+ (1 - q)efz’“ < vdBu\I/, o ol V.. U, o >3

=—divg(V)+ ) _ < VU, V5d>;, + <V, ¥ 0>

where V € TQ ® C are defined by go(V,Z) =< VU, >5, for all
Z € I'Q). The last line is proved as follows: At x € M,

divg(V) =Y 30(V5,V, E.)

=" Ego(V. E.) — go(V. Vg, E)



By the transversal divergence theorem on F([30]), we have

/ divg (V)vy :/ Go(kg, V)vg :/ < vﬁg@,@ >0 Vgs
M M M

where v; is the volume form associated to the metric gy = g1 + go. By

integrating, we obtain our result. O

Proposition 3.15 Let (M, gy, F) be a compact Riemannian manifold
with a transverse spin foliation F of codimension q and a bundle-like

metric gy. Then for any spinor fields W, ® € S(F)

/ < DtT\I[, (i) >§Q Ug = / < \I/7 Dt’l‘(i) >§Q Ug. (330)
M M

Proof. For a transversally conformal change go = e*gg, we know that

v = e?v,. Hence we have, from (3.14), (3.18), and (3.22),

/ < Dthl, i) >§Q Vg
M

—1
= /M < Dy, eld=1vp >g0 Vgt qT /Me(q_l)“ <dgu-V,® > 90 Vg

=N
= / < U, Dy (47D D) >0 v, — qT T < W dpu - @ >y, v,
M M

q—1

dBU o q)) >§Q Vg

/ < ‘i/,e_u(Dth) +
M

/ < ‘I’, Dtri) >§Q Ug. O
M
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4 Eigenvalue estimate with a transversal

twistor operator

4.1 Eigenvalue estimate

Let (M, g, F,S(F)) be a Riemannian manifold with a transverse spin
foliation F of codimension ¢ and a bundle-like metric gy, such that  is
basic-harmonic. The existence of the bundle-like metric gy, for (M, F)

such that x is basic-harmonic is assured from ([21,22]).

Definition 4.1 For any real number s # 0, we put P,V = ZEa ®
Py W, where '
1
Pyl =Vx¥ + - n(X) - D,V (4.1)
s

for any X € T'M. This operator P, is called the transversal twistor
operator of type s on S(F) and the spinor field in KerPf. is called the

transversal twistor of type s.

By a direct calculation, we have the following([12]).

Lemma 4.2 For any spinor field ¥, we have

1 1
[apsur = [ (repeep - 5 w3P) -5 [ Py a2
M M 4 S JM
2
where f(s):%———i—l and F(V) =Re < k- VU, D, ¥V >.
s s

Since f(s) has a minimum at s = ¢, we have the following theorem.

Theorem 4.3 ([10,12]) Let (M, g, F) be a compact Riemannian man-
ifold with a transverse spin foliation F and a bundle-like metric gp;.

Assume that KY > 0. Then any eigenvalue \ of Dy, satisfies

2 4 : \Y
A > -1 1]1\1/[f K. (4.3)
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Now, we estimate the eigenvalues of the basic Dirac operator with the
transversally conformal change gg = e?“gg. On S(F), we define the
transversal twistor operator P¢. : TM ® S(F) — S(F) of type s by

_ _ 1 _
Pyl =VxU+ = 7(X)* Dy, V. (4.4)
S

Proposition 4.4 For any spinor field ¥V, we have

_ —s5—1 1 _
Pyl =Ty + % m(X)-dgu-¥ — 5 go(dpu, (X)T. (45)

Proof. From (3.20), (3.22), and (4.1), we have that, for any spinor ¥,

_ _ 1 -
PV =VxVU+ - 7n(X) - D,V
S
1 1 &
IVX\I’ — 5 W(X) 'dBU' U — 5 gQ(dBu,W(X))‘IJ
1 R A T ! T
+-7n(X)~e “{DtT\P+T dpu -V}
S

1
=Vx¥ + - 7(X) - Dy ¥

- % 1 _
+ I 700 - dpu- ¥ = 5 goldpu, 7(X))T

— s W 1 4
=P;VU + % m(X)-dpu- ¥ — 5 go(dpu, m(X))V. O
s

Theorem 4.5 For any spinor field V, we have

Pl(e2W) =e 2 PLU. (4.6)

Hence the dimension of the transversal twistor spinor space of type q is

invariant under the conformal change.
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Proof. From (4.5), we have

Lemma 4.6 For any spinor field ¥, we have

_ Ny, > = 2S5~y '8
BLU = [V TP +-25= D~ — F(D),

(4.7)

where F(U) = Re < kg = U, D0 >4

Proof. By direct calculation, we have, from (4.4) and (3.21),
PP =) < P 0, Py U >,
N <V VT g+ S < B Dy, Byt Dy >
s
1 BN i DY A
- Y {<E;i V5%, DpVU >4, + < Dp¥, B Vi, U >4}
o - Y i
=V U2 + 5| Dy = =| Dy b = S F(¥)
_ q 2 _  _ 9 1 - _
=V, U)* + (5 = 5)|Dp¥)* — =F(¥). O
VB + (4 = 2D up LR (D)
Corollary 4.7 For any spinor field ¥V, we have

Japeae = [ (sNDev - KS9P) -5 [ P, @)
2

where f(s) = % ——+1.
s?2 s
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Let Dy® = A®(P # 0) and U = e~ *2 “®. By Proposition 3.12, we get

DyU = \e "W, (4.9)

Since < X - U, ¥ > is pure imaginary for any X € I'Q), we have
F(U)=Re < kg - ¥, DV >5,=Xe ™Re < k- U, ¥ >, = 0.
From (4.8), we get
PO = [ (o= g k)P
M M

< /M & (f(s))\2 - %iﬁf(e2“l(§)> |W|?. (4.10)

Since f(s) has a minimum

at s = ¢, we have that for any basic

function w,

¥ > L fear ome 2o,
> 3G TS

Hence we have the following theorem.

Theorem 4.8 (cf. [15]) Let (M, g, F) be a compact Riemannian man-
ifold with a transverse spin foliation F of codimension q¢ > 2 and bundle-
like metric gy such that k€ Q4(F) and 6k = 0. Assume that KY > 0

for some transversally conformal metric g = e*gg. Then we have

A2 >

: 2u 7~V
-1 Sli_p 111&[f(e K., (4.11)

where KY = oV + &[] + 2(q — 2)rz(u).

Lemma 4.9 Let K, = {u € Q%(F)|x(u) = 0}. Assume that we choose

u € K, and the positive function h by u =

Inh for q > 3, then we
q—2

have

_ KY +2(q—1DApu+ (¢ —1)(2 — q)|dpul?,
T (¢ = D)Apu+(¢—1)(2 - q)ldpul (4.12)
h™Yoh + |7 (¢ > 3).
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Proof. From the equation (2.21), we have
e KY = oV + |52+ 2(g— 1) Agu+ (g—1)(2 = q)|dpul* — 2k(u). (4.13)

From (2.23), we have

2
Apu = —— (h—2yd3h|2 + h-lABh>. (4.14)
, 2 2
Since u = 2 In h for ¢ > 3, we have dgu = q——2h dph and hence
ldpul? = (L)Qhﬂd h? (4.15)
B p BN|". :
Hence, from (4.13), we have
Ag—1 4
&7 2 2 2> W Aph— — h7'k(h),

KY = - | g (4.16)
W Yoh + [k]* — —= h7lk(h) (¢ > 3),
q 1
where Y}, = 43{%AB + 0V, which is called a basic Yamabe operator of F,
and it is trivial that e?*KY = hi KY. Since u € Ky, x(u) =0 = k(h),

which proves (4.12). O

Corollary 4.10 (cf. [15]) Let (M, gur, F) be a compact Riemannian man-
ifold with a transverse spin foliation F and bundle-like metric gy such

that k € QL(F) and 6k = 0. Assume that KY > 0. Then

sup inf{KY +2(q — 1)Apu + (¢ — 1)(2 — q)|dpul*},
4(q_1)u€}aM{ (¢ —1Apu+ (g —1)(2 - q)ldpul’}

q . -1 2
sup inf{h=Y,h + |k > 3).
T S i Yk R (g2 9

Assume that the transversal scalar curvature o

A2 >

V' is non-negative. Then

the eigenvalue hy associated to the first eigenvalue p1 of Y, can be chosen

to be positive and then p; is non-negative. Thus
Since supinf{h~'Y,h} > p1, we have the following corollary.
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Corollary 4.11 (cf. [15]) Let (M, gy, F) be a compact Riemannian man-
ifold with a transverse spin foliation F of codimension q¢ > 3 and bundle-
like metric gy with k € QL(F) and dx = 0. If the transversal scalar
curvature satisfies o¥ > 0, then any eigenvalue \ of the Dirac operator

corresponding to the eigenspinor VU satisfies

2> 4 inf [x|2 4.1
> gy i ), (4.18)

where y 1s the first eigenvalue of the basic Yamabe operator Y, of F.

4.2 The limiting case

In this section, we study the limiting case of (4.18).

Proposition 4.12 If M admits a non-zero transversal twistor spinor
field U of type s with the transversally conformal metric o = e*gq, i.e.,
P{U =0, then, for any X € TM,

1 1
VxU =—- 7(X)- D,V + 7(X) - dpu- VU + §X(u)\11 (4.19)
s

Proof. Let U € KerP:. From (4.4), we have

1 _A_
Vx¥ + =m(X)* D, ¥ = 0.
S

Hence from (3.20) and (3.22), we have

_ 1 1 =]l
VX\I,_& (X)) -dpu -V — X (u)¥ + - 7(X) - D, ¥ =0,
S

2s 2

which yields (4.19). O

Theorem 4.13 If (M, grr, F) admits a non-vanishing trnsversal twistor

spinor field of type q, then the foliation F is minimal.
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Proof. From Theorem 4.5, the space of transversal twistor spinor space
of type ¢ is invariant under the transversally conformal metric change.
Let ® € KerPL. Then U = e2® € KerP. be the corresponding

transversal twistor spinor field. Hence from (4.4), we have

s
Ve, U+ = E,~ DU =0. (4.20)
q
Hence we get
. 1 e
> E. VgV¥=--) E,~E,+ D,V
a q a

or

Therefore we have

and then x = 0, i.e., F is minimal. O

Lemma 4.14 Let ¥ € KerPl. Then we have

P V'R q
D2V =
T 4(g-1)

Proof. From (2.18) and (4.20), we have

oV, (4.21)

0= ZvaEqJ+ ZVE {E, = D, ¥}
—ZVEQVEQ‘I’+ Z “ Dy W+ = ZE Vi, DV
_Zananqur Z e {E,(w)E, — dgu} ~ Dt,xlf+1D 0,

which implies

_ . R
~Y V5, Vg,V = e "dgu - Dy V¥ + -D; 0. (4.22)
o q
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On the other hand, from Theorem 4.13, the foliation is minimal, i.e.,

k = 0. Hence from (2.18), (3.26) and (4.22), we have

—_

I R
D2V = - D20 +
q q

@ evdpu= DyU + (1 — q)e 2V, T + 0 (D).

T

W

From (3.20) and (3.19), we have

_ _ 1 1 =
ViguV =Viaz,V — 5 dpu - dgu - ¥ — 5 go(dpu, dgu)V¥

1— — g—1 _
= Cdpu - De¥ 4+ L P
q 2q

1o CONM-AL2 -1, -
=——d “{e*DyV — —— d Ul ——|d U
" BU {6 t 9 BU } 2 |BU’

1 _-. 0 v
= 2 eudBU B Dtr‘ll.
q

Hence we have

which means (4.21). O

Hence we have the following theorem.

Theorem 4.15 Let (M, gy, F) be a compact Riemannian manifold with
a transverse spin foliation F of codimension q¢ > 3 and bundle-like met-
ric gy such that k € QL(F) and §k = 0. Assume that Ky > 0. If
there exists an eigenspinor field ®1 of the basic Dirac operator D, for the

eigenvalue A1 satisfying

A= (p1 + inf |x]?), (4.23)

7
Ag—1)
then F is minimal and transversally Einsteinian with a positive constant

transversal scalar curvature oV .

Proof. Let Dy®; = A\ ®; with \? = 1o (b + inf |[*). From (4.8), we

know that U, € Kerptqr with ¥, = e*%“(bl. Since Dy¥y = A\je Uy,
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we have
Dg\ifl = —)\16_2ud3’u : ‘I’l + )\%e—Zu\Ijl‘

From (4.21), we have

Ny = - (qq_ 7 €0 W+ g
Hence we get
N2, 2 :4((](’_ 5 2oV T, 2 and dpu- ¥, =0, (4.24)
which means  is constant and e2“cV is positive and constant. So Propo-
sition 4.12 implies that for ¥, € KerPl, U, = e~ T,
Vx®, = —% X - Dy (4.25)

By direct calculation with (4.25), we have

)
VxVg, @ :vx{—?1 E,-®;}

A A

=—j (vXEa)-qn—an-vxcbl
A A

—— = (VxE,) &1+ 5 B, X - &
q >

for any X € I'QQ. Hence we have

2\2 2\2
RY(X,E,) - 1 =21 B, - X - &+ =L go(X, E,)®y
q q
and so we have
s 2\
> E,-RS(X,E,) @ = -7 (g—1)X - . (4.26)

On the other hand, from (2.21) and (4.24), we have

N=—91 5V (4.27)



Therefore we have, from (3.12), (4.26), and (4.27),

pY (X) = X. (4.28)

This means that F is transversally Einsteinian with a positive constant

transversal scalar curvature oV. O

5 Eigenvalue estimate with a modified con-

nection

5.1 Eigenvalue estimate

Let (M, gar, F,S(F)) be a Riemannian manifold with a transverse spin
foliation F of codimension ¢ and a bundle-like metric g,; such that  is
basic-harmonic.

f:9
Now, we introduce a new connection V on S(F) as the following:

Definition 5.1 Let f and g be real-valued basic functions on M. For

any tangent vector field X and any spinor field V, we define the modified
f7

connection ¥ on S(F) by

f’u
Vx U =VxU+ fr(X) U +gr 7(X) T, (5.1)
where w: TM — Q.

Lemma 5.2 Let (M, gy, F) be a Riemannian manifold with a trans-
verse spin foliation F and a bundle-like metric gy;. Then, for any basic-

harmonic 1-form w € QL(F),

Dy(w - 0) = —w- Dy U — 2V, 0. (5.2)
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Proof. For any spinor field ¥, a simple calculation gives
1
Dpp(w - W) :za:Ea-(Van)~\IJ+Za:Ea~w'VEa\II—5 Kew- W
= {Be AVpw —i(E)VEw}¥ =Y w-E,-Vg,U
1
~2) 9g(Ba,w)VE, ¥ — 5 {—we s ¥ —2g0(k, W)V}

=(dpw + 6pw — i(kp)w)¥ = Y w- B, -V, -2V, ¥

a

1
+§ w-k- ¥+ go(k,w)¥
=—w- DV -2V, V¥ + (dpw + dpw) V.

Since w € QL(F) is a basic-harmonic 1-form, we have dpw = 0 = dpw.

Hence the proof is complete. O

Proposition 5.3 For any real-valued basic functions f and g on M, and

for any spinor field U € S(F), we have
19
| Vi U = [V OF + ¢ |01 + qg°|6[*|T[* + g]w|*| ] (5.3)
—2fRe < D, ¥, ¥ > +2gRe < D, ¥,k - ¥ >
—4gRe < V, U, VU > .

Proof. Fix x € M and choose an orthonormal basic frame {FE,} such

that (VE,), = 0 for all a. Then we have at the point x that for any U,
f:9 1.9 1.9
| Vir V) = Z <Vg, ¥, Vg, ¥ >
= |V O + ¢f*[ 0 + qg°|K[*[P]* + g|s]*| T
— A< DU, U >+ <V, D,V >}

+9{< DV, k- U >+<k-U D,V >}

— fRe< VU, k- U > —4gRe < VU, U >,
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which means (5.3) together with the fact that < X - U, ¥ > is pure
imaginary. O

We now that for an appropriate choice of the real-valued basic func-
tions f and g, one gets a sharp estimate of the first eigenvalue of the

basic Dirac operator on compact foliated Riemannian manifolds.

Theorem 5.4 Let (M, gur, F) be a Riemannian manifold with an isopara-
metric transverse spin foliation of codimension q > 1 and bundle-like
metric gy with respect to F. Assume that the mean curvature k of F
satisfies dpk = 0 and KY > 0. Any eigenvalue \ of the transverse Dirac
operator Dy, satisfies

PO SV (Kf + 1]m|2>. (5.4)

4(q—1) M q
Proof. Since < X -W, ¥ > is purely imagnary, we have from (3.6), (3.14)
and (5.2),
Re < V.U, U >
M

:/ Re<Dtr(/1-\IJ),\I/>+/ Re < k- D,V ¥ >
M M

—/ Re</~i-\I/,Dtr\Il>+/ Re < k- Dy ¥, ¥ >
M

M

0.

Hence from Proposition 5.3, we have

1
J R0 = [ (8= KT+ ar =2+ agt ol + gl O

A
If we put f = — and g = ——, we have
q 2q

VT\I/2:/—</\2—— K + -k )lll, 2.5
/M| o ¥ M 94 4(q—1){ q||}|| (5:5)
which proves (5.4). O
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Corollary 5.5 In addition to assumptions in Theorem 5.4, if the trans-

verse scalar curvature is zero, then we get

+1
A2 > inf ||,
> (-
5.2 The limiting case
We define Ric@g T'Q®S — S by
Ricl!(X @ ¥) = Y " E, - RM(X,E,)Y, (5.6)

1.9
where R/ is the curvature tensor with respect to V. Then we have the

following lemma.

Lemma 5.6 For any vector field X € I'Q and spinor field V € T'S(F),

Rick/(X @ V) (5.7)

pV (X)W — gX(f)V +2(q—1)f*X -0 —dpf-X -V

DN | —

+(q=2)X(g9)k- ¥+ (¢ —2)9Vxh- ¥ +2¢fg9(X,x)¥ 4 2fgr - X - ¥
+2(q—2)@*|kPX -V —2(q — 2)g%90(X, k) -V —dpg - k- X - U

+glk’PX - 0.

Proof. A direct calculation gives

fig fig 1.9
VxVe, V=Vx{VeV+fE, - V+gr-E, -V}

— VYUt X(f)Ey -Vt [VxEy -V fE, VU
+X(9)k-Ey-V+gVxk-E, V4 gk-VxE, V¥
gk By VU4 fX Ve U+ f2X-E, U

Y FgX k- By Utgh-X-Vp U+ fgr-X-E,-U

+¢*k- X -k-E,- V.
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With the similar calculation, we have

RM(X,E,)¥ = RS(X,E)V + X(f)E, -V — X(9)E, - -V
—2X(9)g90(k, E,)¥ — gE, - Vxk -V —2990(Vxk, E,)V
—2f°E,- X -V —2f%g,(X, E,)V
—2f990(X,k)Ey - ¥ 4 2fg9q(Eq, k)X - ¥
+ @k {X kB, —E, k- X} U —E, ()X -V

—E.(9)k- X ¥ —gVpg,r- X V.
Note that

X k- E,—E, k- X=2k-E, - X +290(X,E.)k —2g90(X,r)E,

+ 299(E,, k) X.
Hence we have

RM(X,E,)¥ = R%(X,E,)¥ + X(f)E, ¥V — X(9)E, - K-V
— 2X(9)9q(r, Ea)¥ — gEq - Vxr - ¥ = 2990(VxK, Eq)¥
= 2f*Eq,- X - ¥ = 2f%go(X, Ba)¥ — 2fggq(X, k) Eq - ¥
+2f990(Eq, k)X -V — 2¢°|k[PE, X - ¥
—26°90(X, E,)|6|*Y + 2¢°90(X, k) E, - k- U
+49%90(X, k)gg(Ea, K)¥ + 2¢%go(Ea, k)k - X - U
—E ()X -V —E,(9)k- X -V —gVgkr - X V.

From (3.12) and (5.6), the proof is completed. O

. q . \v 1 2
Let Dy, = \ U, with A2 = f(K - )F 5.5),
et DpWy 1 Wy with Af =1 iny U+q|/§| rom (5.5)
f1,.91

1
we see V 4 Ui = 0, where f; = 2 and g =g Hence from (5.1),
q q

we have

A 1
Vil =2 X0+ — k- X -0y (5.8)
q 2q
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Note that
1
ZEQ : an\Ijl :)\1\111 + 5 K - \Ifl.
On the other hand, from (5.8)

Eaan,-an%=—%;EQ-EG-Wﬁ%;Ea-mEG-%

-2
:)\1\111 + g

H'\Ifl.

Hence we have - ¥y = 0 which implies that x = 0, i.e., F is minimal. If

[
VgX U =0 for any X € I'Q, then Ric@g = 0. From (5.7), we get

—% PV (X)U — X ()T +2(q— 12X -V —dpf -X-U=0. (5.9)

If we put X = dgf, then we have
L V) 4 20— 1)2X) -, 0 = (g = 1)|dsf PO 1
<(=5 " (X)+2(¢-1)f°X) - ¥, ¥ >= (¢ — D]dpfI|¥]".  (5.10)

Since for all X € T'Q and ¥ € I'S, < X - ¥, ¥ > is pure imaginary,
the left-hand side of (5.10) is pure imaginary. But the right-hand side
of (5.10) is real. Therefore, both sides are zero. Hence, if ¢ > 2, then
we have dpf = 0. That is, X(f) = 0 for any X € I'Q. Since f is basic

function, f is constant. So from (5.9), we have

PV (X)W = Alg-1) AZX -0, (5.11)

e
This means that F is transversally Einsteinian with a constant transver-

4(q—1
sal scalar curvature oV = M)\% Hence we have the following the-

orern.

Theorem 5.7 Let (M, gy, F) be a compact Riemannian manifold with

a transverse spin foliation F of codimension q > 1 and a bundle-like
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metric gyr. Assume that KY > 0. If there exists an eigenspinor field U,
of the basic Dirac operator D, for the eigenvalue Ay satisfying

|
Ny (KV+— M), 5.12
1 4(q_1) Vi o q| | ( )

then F is minimal and transversally Einsteinian with a positive constant

transversal scalar curvature oV .

6 Eigenvalue estimate with the conformal

change

6.1 Eigenvalue estimate

Let (M, gar, F, S(F)) be a Riemannian manifold with a transverse spin
foliation F of codimension ¢ and a bundle-like metric gy, such that s
is basic-harmonic. In this section, we estimate the eigenvalues of the
basic Dirac operator by a transversally conformal change of the metric.
Now, we consider, for any real basic function u on M, the transversally
conformal metric go = e*gg. Let S(F) be its corresponding spinor
bundle. For any tangent vector field X and any spinor field ¥, we define

fr9 _
the modified connection V on S(F) by

fg  _ _ - -
Vx U =VxU+ fr(X) ¥+ gr; - 7(X) -V, (6.1)

where f and g are real-valued basic functions on M.

Lemma 6.1 Let (M, gy, F) be a Riemannian manifold with a trans-

verse spin foliation F and a bundle-like metric gyy. Then for any basic-
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harmonic 1-form w € Q5(F),

Dy(fw =) =— fw~ DV —2fV, V¥ — (¢ + 2) fw(u)¥
—2fw-dpu -V +df -w-¥
where f is any basic function.
Proof. Note that we have, from (3.23),
Dy (fw V) =dpf -w-V+ fDy.(w- V)
=— fw-DuV —2fV, ¥V +dpf w- V.
From (3.20), (3.22) and (3.24), we have
Dtr(fw i) \Tj)
=Dy (e“fw - W) = e “dpev - fw -V + "Dy, (fw- )
iU 18
:deu~w'\If—|—DtT(fw~\I/)+qT dpu - fo U
=— fo~ Dy¥ - 2fV U +dpf -w: \I/+—deu w- v

:—fwf(e“DtT\I/—TdBu-\Il>

2 (Vo4 3 G dpu W+ ()T
+W_&fm (g + 1) f(u)b
=— fw~ D,V +—fm—2quf

— fw-dpu-V — fo(w)¥ +dpf -w- ¥

L W (g4 1) el

= — fw  DyU —2fV, T

—2fw-dpu-V — (¢+2w(w)¥ +dpf -w- U,
which implies (6.2). O
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Let K, = {u € Q%(F) | k(u) = 0}. Then we have the following

corollary.
Corollary 6.2 Assume that u € KC,. Then we have
D25 ) — _e—Qu(F; Dy + m@). (6.3)

Proposition 6.3 For any real-valued basic functions f and g on M, and

for any spinor field V, we have

L9 _ _ i _ _
| Vi O =V, W2+ af* 1012, + qg®|mgl2, 1V [2, + glwgl5, [P]5,  (6.4)

32 QfR,e = DtT\Ily \I/ >§Q —fRe < Rg > \I/, \Il >5
+2gRe < D, ¥, Kg * U >4, —4gRe < 7@@, U >

9Q -

Proof. This is a simple calculation. O
Let Dy® = A\ (® # 0) and ¥ = e~ u®. Since < X - W, U > is pure

imaginary, we have from (4.9)
Re < /fg B \Ij, \I] >§Q: 0 and Re< Dtr\ily /ﬁg B ‘I/ >§Q: 0.
Hence the equation (6.4) gives
La 1 N\
/ | Vi U2 = / 6—2"<A2 — D e\ e 62“K§> w2 (6.5)
M M 4
[ (ar  adinaly, + alealt, ) 9,

_49/ Re <V, 0,7 >, .
M
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From (6.3) and (3.30), if u € Iy, then

- / Re < Dy (e = 1), % >, + / e Re < k7 Dy, T >y,
M M
= / Re < e 2k~ W, D, U >0 +/ e ?Re < k- D, U, U >0
M M
= )\/ e ?"Re < k-U, U > 00 —i—)\/ e ?"Re < k-U, U >00
M M
= 0.
Therefore (6.5) yields
19 4 1 A%
/ | Vi U2 :/ 6_2“()\2 —2fe"\ — = 62“K0V>|\11]§Q
M M 4

[ (gl + olial, ) 19,

A 1
If we put f = — e and g = ——, we have
q 2q
g
| Vi O (6.6)
M
q—1 72u<2 & 2 7V 12)‘2
— e e etK)Y +- |k vz .
. -1 g )W

Hence we have the following theorem.

Theorem 6.4 Let (M, gy, F) be a compact manifold with a transverse
spin foliation F of codimension q > 2 and bundle-like metric gy such
that s € QL(F) and ok = 0. Assume that KY > 0 for some transversally

conformal metric gg = e*“gg. Then we have

A2 >

s 1
sup inf (ezuKoV + - |k 2), 6.7
a1 b 7 o0
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From (4.16), we have the following corollary.

Corollary 6.5 Under the same condition as in Corollary 4.10, we have

.

sup inf{KY +2(qg — 1)Apu
1 )
A > +(g—1)(2 _Q)’dBuP"‘g K[*} ifg>2
1
sup inf{h"'Y,h + |k|* + = |k|? if ¢ > 3,
| T(q— 1) nup R+ IS+ Il fa

where KY = oV + |k|*.

Corollary 6.6 Let (M, gy, F) be a compact Riemannian manifold with
a transverse spin foliation F of codimension g > 3 and bundle-like metric
gu with k € QL(F) and 6k = 0. If the transversal scalar curvature sat-
isfies o > 0, then any eigenvalue X of the Dirac operator corresponding

to the eigenspinor ¥ satisfies

22

q GEILY | 9
f .
T o3y (m+ 1P, (6.8)

where iy 1s the first eigenvalue of the basic Yamabe operator Y, of F.

6.2 The limiting case

We define Ricé’g :TQ ® S(F) — S(F) by

Ricl/(X ® ) = Y E, - R"(X, E,)

a

K
—
R
©
N~—
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_ 19
where R/ is the curvature tensor with respect to V. For X € I'Q and

U e I'S(F) we have the following by the direct calculation;

f9 [ 1.9

ViV, U=V (Ve U+ fE U +gry = B, )
:?X@EQ\I/+fX7?Ea\TJ+g/-§g7X7?Ea\IJ
+ X(f)Ea ™V + fVxE, U + fE, - VxV
+ X B, "V + fgr; - X" E,~ ¥
+X(g)/<;gTE_’aT\I/+gﬁxng7E_’a7\Il+gﬁg7?XEa7@
+ kg  Eo " VxVU+ fgX k- E, 70

+92ﬁg7X7ﬁnga7\Il.

With the similar calculation, we have

RM(X, E,)W
=R(X,E)0 + X(f)E, -V —2fE, - X ~ ¥ — 2f2g,(X, E,)¥
— 2fg§Q(fig,X)Ea oA X(g)Ea g 7

—2X(9)90 (kg E)V — gk, ~ ?Xfﬁg Ty — 2ggQ(?X/<;g, E,)U — Ea(f)X T

+ ¢Pkg - (XTHQTEQ—EQT%TX> U+ 2fg00(kg, Ey) X ~ W
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Hence we have

RM(X,E,)¥
=RY(X,E)V + X(f)E, -V —2f%E, - X -V — 2f2g,(X, E,)¥
- 2fggQ(/{§7X)E_‘a - \I[ - X(Q)Ea - ’fg - \I/ - Ea(f>X - \Ij

- 2X(9>§Q(’€§7 Ea>\i[ - gEa - vX’fg BRVAES 2g§Q(vX’f§7 Ea)‘ij
— 292\/1g|2£7?a TX U — 2g2]/<;g]2§Q(X, Ea)\fl + QgZQQ(X, Kvg)Ea Y Kg - U
+ 492gQ(X7 H@)gQ(K’gv Ea)\II + 292§Q(H§a Ea)'%g S X \I]

+ 2fggQ<I€§v Ea)X 3 \IJ == Ea(g)/fg L 2 \Ij ¥ nga/ﬁg X T,
By a simple calculation, we have, from (3.12) and (6.9),
RicL!(X @ 1) (6.10)

= 2 P70 T~ gX ()T +2(g ~ 1/?X 7 ¥ + 20f90(ny, X)¥

+(q—2)X(9)kg = ¥+ (¢ —2)gVxky - ¥
—dpf X U +2(q—2)¢|rg)*X ~ ¥ —2(q — 2)9°Go (X, kg)kg = ¥
—2fgfig7X7\Ij—@7f€giXi\I/+g|/€g|2Xi\Il

On the other hand, we have the following.

19 _
Proposition 6.7 If a non-zero spinor field ¥ satisfies Vi, ¥ =0, then

VxVU=—fe'n(X) ¥ —gk -n(X) ¥ (6.11)
+ % go(dpu, m(X))V + % 7(X)-dpu- V.

Proof. From (6.1), we have

VU + fr(X) "0+ gk - m(X) ¥ =0.

Hence from (3.20), we have

. | 1 _
VxV — 5 7(X) - -dpu- ¥ — éX(u)\IJ + fe'm(X) U+ gr-m(X) ¥ =0.
Since I, is an isometry, the proof is completed. O
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Theorem 6.8 Let (M, gy, F) be a compact Riemannian manifold with
a transverse spin foliation F of codimension q > 3 and bundle-like metric
gur such that k € Q5(F) and ok = 0. Assume that c¥ > 0. If there exists

an eigenspinor field Wy of the basic Dirac operator Dy for the eigenvalue

1
A = g <,u1 + &inf|/ﬁ|2>, then F is minimal, transversally
A(q—1) q
Einsteinian with a positive constant transversal scalar curvature o .
1
Proof. Let Dy® = A ® with X} = ! 5 (i + L inf f?) and
q— q

fL,91

q—1 T >‘
U = ¢ "7 “d. From (6.6), we see that V ,, ¥ = 0, where f; = = ¢™*
q

1
and g = ——. Hence we have that from (6.1)
2q

an\Tf—i-fEaT\I/—l—gfigTEaf\I/:O.

Note that we have

S B Ve U= fS BB, U —gY Bk Byt U

=qf¥ + gz (Ea " E, 7 kg + 2g0o(kg, Ea)Ea> U

=qfV — (¢ —2)grg - ¥,

and hence

_ - - . d
DtT\I/+§ kg - U =qfV —(q—2)gk; - V.
Since DyU = e U, we have

) B
=%, 7 .
2q

_ 1 _ _
e U 4 3 Kg - VU = e "W+

Hence we have k- U = 0 which implies that xk = 0, i.e., F is minimal. If
e
Vx ¥ =0 for any X € I'Q), then Ricég = 0. Let X = dgf. Then from

(6.10), we get

< (=3 M)+ 2a = DPX) T E = (= DldsfFIEE. (5,12
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Hence the left hand side in the equation (6.12) is pure imaginary but the
right hand side in the equation (6.12) is real, and so both sides are all

zero. That is, dgf = 0. So w is constnat. Also, we have from (6.10)

pV(X)=4(q—-1)f’X for X €TQ. (6.13)

Since u is constant, we have from (2.20)

4(qg—1)

v —

A X. (6.14)

Hence F is transversally Einsteinian with a constant transversal scalar

4(g — 1
curvature o = —(q——))\f a
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