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1. Introduction

The subject matter of this paper is nothing else but elementary th-
eorems of Calculus, which however are presented in a way which will
probably be new to most students. That presentation, which throughout
adheres strictly to our general "geometric" outlook on Analysis, aims
at keeping as close as possible to the fundamental idea of Calculus,
namely the " local" approximation of functions by linear functions, In
the classical teaching Calculus, this idea is immediately obscured by
the accidental fact that, on a one-dimensional vector space, there is
a one-to-one correspondence between linear forms and numbers, and th-
erefore the derivative at a point is defined as a number instead of a
linear form, This slavish subservienee to the shibboleth of numerical
interpretation at any cost becomes much worse when dealing with funct-
ions of several variables,

In order to arrive at a definition of the derivative of a function
whose domain is Banach space E (or an open subset of E), let us take
another look at the familiar case E= R, and let us see how to interp-
ret the derivative in that case in a way which will naturally extend to
Banach space,

If f is a real function with domain (a,b) CR and if x<(a, b),

then f'(x) is usually defined to be the real number

lim f(x4h) — f(x)
h~o h

provided, of course, that this limit exists. Thus

(1) f(x+h) —f(x)=f'"(x)h+ r(h),



where the "remainder" r(h) is small, in the sense that

lim r(h) _
h=o h .

Note that (1) expresses the difference f(xxh)—f(x) as the sum of the
linear function that takes h to f'(x)h, plus a small remainder. We can
therefore regard the derivative of f at x, not as a real number,but as

the linear funetion on R that takes h to f'(x)h,

In section 2, we shall study derivatives of a continuous functions
and seperately continuous functions,

In section 3, we shall prove formal rules of derivation ( In partic -
ular, for composite function of differentiable functions) and inverse
functions,

In section 4, we shall study derivatives in spaces of continuous li-
near functions,

In section 5, finally, we shall work applications for local approxi-

mations of function by linear funections,



2. Derivative of a continuous function.

Definition 2-1. Let E, F be real Banach spaces and A an open su-

bset of E. Let f, g be two functions of A into F: we say that f and

g are tangent at a point Xe= A if

lim 1f(x) —g(x) Il _ 4
X7 Hx — Xqll :

Theorem 2-1. Among all functions tangent at X, to a funection f,

there is at most one function of the form x — f(x%y) + u(x—x,) where
u is linear,
Proof If two such functions x 1 — f(Xg)+ u,(x—%¢), x = (%) + u,

(x—x, ) are tangent at X0, this means, for V =1u; —u, . that

But this implies v=0, for if, given €>0, there is r >0 such that
lyll £r implies Iv(y)li<Lellyll, then this last inequality is valid for

rx . .
lIxII: as € is arbitrary, we see that

any x #0, by applying it to y=

v =0 for any x,

Definition 2-2. We say that a continuous function f of A into F

is differentiable at the point x, €A if there is a linear function u
of E into F such that x — f(%,) +u(x—x%o) is tangent to f at X,

And u is called the derivative f at the point X, and written f'(X%o),.

Theorem 2-2. If the continuous function f of A into F is diffe-

rentiable at the poirit Xy, the derivative f'(%,) is a continuous linear



function of E into F.

Proof, Let u= f'(%y). Given € > 0, there is r >0 such that 0{r¢1
and that It £r implies Hf(Xo+t)-—f(Xo)Ilé% and

(%0 + t) —f(%o) —u(t)l é%;

hence Wt £r implies llu(t) !l £€&, which proves u is continuous by lin-

earity.

Corollary, The derivative of a continuous linear function u of E

into F exists at every point xc<FE and u'(x) =u.
Proof, For by definition u(xo) + u(x-x9) = u(x).

Lemma 2-1., Let E, F, G be three normed spaces, u a bilinear fu-

netion of E x F into G, In order that u be continuous, a necessary and
sufficient condition is the existence of a number a>0 such that, for any

(x.v)eEx F,
pu(x.y W La<lixh-Nyl

Proof,
(1). Sufficiency, To prove u is continuous at any point (x.y),
we write
u(x',y'")—ulx,y)=u(x'-x,y")+ulx,y' —y),
hence
Hu(x',y') —u(x,y) I €aCix' —xl-ly' i+ Ixii-Ny'—yh).
For any 8 such that 0 ( 8 ( 1, suppose {Ix'—xI £, Hy'—yl£4,
hence Hy'll £ iyil + 1. We therefore have

Nu(x',y'")—u(x,y)il £aClixh+ llyhh + 1)

which is arbitrary small with 4.



(2). Necessity. If u is continuous at the point (0, 0), there ex-

ists a ball B: sup(llxll-liyll) £r in E x F such that the relation(x,y)

B implies llu(x,y)ll £ 1. Let(x,y) be arbitrary: suppose first x#0,

y#0; then if z,=rx/U0x1ll, z,=ry/llyll, we have liz;l=1lz,ll=r, and
therefore Nu(z,,2z,) Il £1. But u(z,,z,)=r2u(x,y) lixl-llyll, and th-

erefore Nu(x,y)li£La-lixli-liyll with a=1,/2., If x=0 or y= 0, u(x,y)

0, hence the preceding inequality still holds.

Theorem 2-3.

Let E, F, G be three Banach spaces,(x,y)|> x¥ya

continuous bilinear mapping of E x F and the derivative is the

linear
mapping
(s,t) > x X t+s 3y.
Proof. For we have
(x+s) F(y+t)—xFy—-xF t—sfy=5sF1t
and by assumption, there is a constant ¢Yo that [Is $til<Lc-lisi-|tl

( By Lemma 2-1) For any € )0, the relation sup (llsf, it )=0Cs,t}l
é% implies therefore
(x+s) ¥(y+t)—xXy—xft—s iy (s, t)ll £¢,

which proves our assertion,

Remark. Let E, F be two normed spaces; the set L(E:F) of all
continuous linear functions of E into F is a vector space.

For any u=L(E:F), letllull be the g.1.b. of all constants a)o0
which satisfy the relation fHu(x)ll £a- il x|l for all x, We can also write

lull = sup Hu(x)ll

I1xl1<£1

and we can show that [ull is a norm on the vector space L(E: F).



Theorem 2-4. Suppose E, F,, F, are three Banach spaces and f =

(f,,f;) a continuous function of an open subset A of E into F, xF,.
In order that { be differentiable at x,, a necessary and sufficient
condition that each f,(i=1,2) be differentiable at x,, and when f°'
(x9) = ({{(xg), ) (xy)) (when L(E:F, x F,) is identified with the pro-

duct of the spaces L(E:F,), L(E:F,).

Proof. Indeed, any linear function u of E tnto F, XF, can be wri-
tten 1n a unique way u= (u, ,u,), where u; is a linear function ofE
into F; (i=1,2), and we have by definition lu(x) Il= sup( flu,(x)ll, llu,
(x)1"), whence it follows that Hlull= sup(ilu, Il > jlu, i), which allows the
identification of L(E:F,xF,) with the product L(E:F,) x L(E:F,).
From the definition, it follows at once that u is -he derivative of |

at x5 if and only if u, is the derivative of f; at x, for i=1,2,

Remark. Let E, F be complex Banach spaces, and E,, F, the unde-
rlying real Banach spaces. Then if a function f of an open subset A of
E into F is differentiable at a point x,, it is also differentiable with
the same derivative, when considered as a function of A into Fq(a li-
near function of E into F being also as a function of E; into Fy ).
But the converse is not true, as the example of the function 2z + 2
( complex conjugate ) of C into itself or as a function of R? into it-
self, u: z—z(which can be written(x,y) — (x, —y )) is differentia-
ble and has at each point a derivative equal to u, by Corollary: but

u is not a complex linear function.



3. Formal rules of derivation.

Theorem 3-1. Let E, F, G be three Banach spaces. A an open nei-

ghborhood of x& E, f a continuous function of A into F, yo,= f(x,), B
an open neighborhood of y, in F, g a continuous function of B into G.
Then if f is differentiable at x, and g differentiable at y,, the func-
tion h= ge-f(which 1s defined and continuous in a neighborhood of xg)is

differentiable at x,, and we have

h'(xg) = g'lyg)e f1(xp)

Proof. By assumption, given € >0 such that 0 {¢ (1, there is an
r >0 such that, forfisll<r and It £r, we can write
flxg+5s)=f(xg)+ (' (%) (s} +0,(s)
glyo+t)  glye) +u (yo) () +0,(t)
with 10,(s)n<£eisl and 10,(t)N£L&ltll. On the other hand, by the
linearity of {'(x,) and g'(vy), there are constants a, b such that, for
any s and t,.
' (xg)(s) Il La-lisii and g (yo)(t)IN£Lbitt
hence
Ff (xg)(s)+0,(syll=(a+1)isl
for ts# £r. Therefore, for st £r/Ca+1), we have
N0, (F (xe)(s)+0, (s L (a+1)ellsi
and

Hg' (ye) (0, (sNN<Lb elisl

hence we can write
h(xg+s) = glyo+ f'({x0)(s) +0,(s))

= 8(yo) + 8" (yo)(f'(%)(s)) +0,(s)



with 103(s)II£(a+b+1)elsll, which proves the theorem.

Theorem 3-1 has innumerable applications, of which we mention

only the following one ;

Corollary. Let f, g be two continuous functions of the open subset

A of E into F. If f and g are differentiable at x,, so are f+g and «a
f(ascalar) and we have (f+ g)' (x5) = ['(%x,) +g'(x,) and (af)'"(x5)= af!

(Xn)-

Proof. The function f+g is composed of (u,v)—u+v, function of
F x F into F, and of x — ( f(x),g(x)), function F x F; both are dif-
erentiable by theorem 2-3, 2-4, and the result follow (for f+ g) from
theorem 3-1. For a f the argument 1s still simpler, using the fact th-
at the function u —au of F into itself is differentiable by Corollary

In section 2.

Remark. Lc¢t E, F be two Banach spaces, A an open subset of E, B

an open subset of F. If A and B are homeomorphic, and there exists a
differentiable homeomorphism f of A onto B, it does not follow that,

for each xy & A, f'(x,) 1s linear homeomorphism of E onto F,

Theorem 3-2. Let f be a homeomorphism of an open subset A of a

Banach space E onto an open subset B of a Banach space F, g the inv-
erse homeomorphism. Suppose f is differentiable at the point x,, and
f'(xg) is a linear homeomorphism of E onto F; then g is differentiable

at yo = 1(xq) and g'(y,) is the inverse function to f'(xg).

Proof. By assumption, the function s +— f{(xg+s) — f(xq) is a hom-

eomorphism of a neighborhood V of 0 in E onto a neighborhood W of 0 in F,



and the inverse homeomorphism is t — g(yo+t)—g(ye). By assumption,
the linear functibn f'(xo)of E onto F has an inverse u which is conti-
nuous, hence(Lemma) there is ¢>0 such that ju(t) H<ec-Ntll for any
t =F. Given any €)0 such that O(Eé—z%, there is an r >0 such that,
if we write.

f(xg+s)—f(xg)= f'(x9)s+0,(s),
the relation lIsll £ implies 110,(s)N Z£¢elisl. Let now ry be a number

such that the ball Itli<r, is contained in W and that its image by the

function t — g(ye+t)—g(y,) is contained in the ball lisil£r. Let

z=g(yo+t)—g(yo):
By definition, for It £ry, this equation implies t = f(xp+2)— f(x,)
and as llzN£r, we can write t= f'(x4)z+0,(z), with 10, (z2)01<Lelizl -
From that relation we deduce

u(t)=u( " (x)2z) +u(0,(2z))=z+ul(0,(z))

by definition of u, and moreover

Hu(0,(z) NZLcl0(z)li<celzi<luzn,
hence i|u(t)lléiizll—%!lZIl:%Hzlll thercfore llzi £2Hu(t)ll £2clith,
and finally nu(0,(z)) 1 £cellzy£2c®eliti. We have therefore proved

that the relation Il til £ r, implies lgl(y,+t)—g(yg)—ult)h<£2c?eltl,

and as € is arbitrary, this completes the proof,

Theorem 3-3. Let f be a differentiable real valued function

defined in an open subset A of a Banach space E.

(a). If at a point xp €A, f reaches a relative maximum, then f{'(x)
— 0.

(b). Suppose E is finite dimensional, A is relatively compact, f is



defined and continuous on A and equal to 0 on the boundary of A.

Then there exists a point x; €A where f'(x0)=0.

Proof. Part(a). Since f is differentiable at x, €A,
f(xg+s)= f(x0) + '(x) (s) +0,(s)
and

f(xg—s)= flxo) — f'(x3)(s)+0,(-5),

where limL(;*_) — 0 and ]ing(-s) -0

T . Since f reaches a relative
s=0 s |l <=0 |l

maximum at x,cIA,

f(xpg+s)—f(x) _ _f'(x)(s) + 0,(s) _ 0
I sl sl hsl o
and f(xp—s) — {{xq) _ — ' (xq)(s) 0,(-s) 0
s sl sl o
for all s in some neighborhood V of 0. Therefore

lim L10x0)(s) 2 g apg lim Zx)(S)

s—0 sl s—0 s il

and hence

lim ' (x)(s) _ o
s =0 il sl

By the method of proof in theorem 2-1, f'(x4)(s) =0 for all s.
Part(b). If f is a constant function, then f(x)=10 for all xE A,
and then the proof is clear. Suppose f is not constant function. By

assumption, there exists two points a, bec A such that f(a)=1inf f(x),
xEA

f(b) = sup f(x). Since f(x)=0 on the boundary of A, f reaches a
xEA
relative maximum(or minimum) on the interior of A. By part (a) of

this theorem, the part(b) holds.

_10_



4. Derivatives in Spaces of Linear Functions.

Lemma 4-1. Let u be a continuous linear function of a normed

space E into a normed space F and v a continuous linear function of F

into a normed space G. Then
lveultZiviellull,

where the symbol - denotes the composition among functions,

Proof. For if llxll £1, then from Remark 2
Nv(u(x)n Luvienu(x)NLuvie=tull,

and the result follows from llveulil=suplv(u(x))i.
lixii< 1

Theorem 4-2. Let E, F, G be three Banach spaces. Then the func-

tion{(u.v) - veu(also written vu) of L(E:F) XL(F:G) into L{(E:G)
is differentiable, and the derivative at the point (u,,v,) is the ma-

pping(s,t) —»ves+ teu,

Proof. If we observe that, by Lemma (4-1), the function(u,v)—veu

is bilinear and continuous, the result is a special case of Theorem

(2-3).

Remark. We note that the normed space L(E:F) is complete when-

ever F 1s.

Theorem 4-3. Let E be a Banach space. If Ilwill£1 in L(E:E),

the linear function 1 + ® (where 1 is identity funtion) is a homeom-
orphism, its inverse(1+®)™! is equal to the sum of the absolutely co-

nvergent series 3, (—1)® ", and we have.

) - flwlI?
2 it T AP | B | I
(14 w) l+wll_(1 o)

Proof. We have,.

-11-



1 — w1 1

n
2 llol® =

n—0 I — el - 1l—=lwl’
hence, by an absolutely convergent series is convergent in a Banach
space, Lemma (4-1), and Remark, the series }/(-1)" @™ is absolutely
n=0

convergent in L(E:E).

Moreover, we have

(l+0) (1-wte?+ --+(—1)N oV)

= (l—wt+w?+ -+ (—=1)V V) (1+w) = 1 —wN*!
and as o ¥'! tends to O, we have by Lemma (4-1),for the element

o

v= 3 (—1)"w" of L(E:E), (l14+e)v=v(l+w) =1

n=0
which proves the first two statements; the inequality follows from
the relation

(1+ ) ' —l+aw=? (l-wte+t.),

and from Lema (4-1)and i (—1)" @" 1s absolutely convergent .
n=0

Theorem 4-4, Let E, F be two Banach spaces, such that there ex-

ists at least a linear homeomorphism of E onto F. Then the functions
u—u! of H(of linear homeomorphisms of E onto F) onto H™!'(of linear
homeomorphisms of F onto E) is continuous and differentiable, and the
derivative of u—u~! at the point u, is the linear function (of L{E:F)
into L(F:E)) s— —ug'eseug!

Proof. Suppose s cL(E:F) is such that lisil-fluy ' It 1: then the

element 1+ uy,™' s, which belongs to L(E:E), has an inverse, due to

Lemma (4-]1) and Theorem (4-3); as we can write ug+s =ng(l+upy™ s),

_12_



the same is true for uys+s, the inverse being (1+u,"'s), the same is

true for ug+s, the inverse being (1+4+uy™! s)'uy, ' ; hence we have
(ug+s)™'—upg™ ' = ((14+ug ' s)™—1)uy™?t.
Applying Theorem (4-3) to w= uy~'s, we obtain, for isil ¢ T;]?'“',
0
- - - - Hupg'® iisii?
" 1 _ 1 1 1~ o
(ug+s)7" —ug™ + up™ sug =TT g sl

Thercfore, if we take IIsIIé%IIuO_‘H, we have

Nupg 2 03 (sl
n— |
n

H{ug+s) ' —uyg "+ug ! su," i 4
sl -

and this ends the proof.



5. Applications.

Remark. A Hermitian form on a real vector space E is a mapping f of E
x E into R which has the following properties ;
(1. f(x+x',y) = f(x y)+ f(x',y)
@. flx,y+y'") = f(x,y)+1(x ,y"

3. f(ax, y) = 2f(x,y)

). f(x, ay) 2f(x,y)

5). f(y, x) = f(x,y)

A pair of vectors x, y of a vector space E is orthogonal with re-
spect to a hermitian form f on E if f(x,y)=0. For any subset M of
E, the set of vectors y which are orthogonal to all vectors x &M is
a vector subspace of E, which is said to be orthogonal to M(with re-
spect to f). It may happen that there exists a vector a #0 which is
or thogonal to the whole space E, in which case we say the form { is
degenerate., And we say a hermitian form f on a vector space E is po-
sitive 1f f(x,x) >0 for any xc<E.

The function x|»,/ f(x,x) satisfies the properties of a norm if

the form f is nondegenerate, ie. when {f is a nondegenerate positive
hermitian form, /I(x,x) is a norm on E. A prehilbert space is a ve-

ctor space E with a given nondegenerate positive hermitian form on E;
when no confusion arises, that form is written (x|y) and its value is

called the scalar product of x and y; we always consider a prehilbert

space E as a normed space, with the norm Ixll=4(x|x) ; and of

_14_



course, such a space is considered as a metric space for the corresp-

onding distance lx—yll .

Application 1. Let E be a real prehilbert space. In E the mapp-

ing x —llxll of E into R is differentiable at every point x#0 and its

derivative at such a point is the linear mapping x +— (s | x)/lixl.

Solution. To find a linear function for the mapping x — lixll, we

must solve the following equation ;

L/ f(xts, xts) -/ f(x.x)=gls)]

5,58

B

as s =0 for some linear function g on E. Then 1f we solve the left

of the above statement, it becomes

s
2f(x, ———)
JEi(x, x) f(s,s) s

4 -
JIi(x+s, x+s)+/f(x,x) Jf(x+s,x+s)+ /f(s,s)+ g f(s,s))l'

Let g(t)=f(x,t) /f(x,x) ={(x|t)/lIIxli. The equation then tends

to 0 as t—0.

-15-
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