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<Abstract>

Liouville type theorem for p-harmonic

maps and p—harmonic morphisms

The classical Liouville theorem for harmonic maps is that any
bounded harmonic functions on the whole plane must be constant.
This Liouville theorem has been studied by many authors. In this
thesis, we study Liouville type theorems for p—harmonic maps and
p~harmonic morphisms with finite p-energy. Any p-harmonic
maps from a complete Riemannian manifold M of a Ricca
curvature bounded from the below by negative constant depending
on p to a complete Riemannian manifold N of non-positive
sectional curvature is shown to be constant if it has finite p
—energy. Moreover, we prove any p-harmonic morphisms from a
complete Riemannian manifold of the Ricci curvature bounded
below by a p-dependent negative constant to a complete
Riemannian manifold of non—positive scalar curvature is constant if

it has finite p-energy.



1 Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let ¢ : M —
N be a smooth map. For a compact domain 2 C M, the p-energy E of
¢ over () is defined by

E,(6:Q) = % /Q AP uar, (L1)

where the differential d¢ is a section of the bundle 7*M ® ¢~ 'TN — M
and ¢~ !TN denotes the pull-back bundle via the map ¢ at the point
x € M, pp is the volume element on M and the p-energy density |do|?
on M is defined by

o
2

|dgl? = (Z<d¢<ei>,d¢<ei>>)

i=1
Then the bundle T*M ® ¢~'T'N — M carries the connection V induced
by the Levi-Civita connections on M and N. A map ¢ : (M,g) — (N, h)
is called p-harmonic if ¢ is a critical point of the energy functional defined
by (1.1) on any compact domain @ C M.

Equivalently, p-harmonic maps are solutions of the following systems

( harmonicity equation ) of PDEs:

7p(9) : = [dgI"*12(9) + (p — 2)|dg|"*d(grad,|do)) (1.2)

=0,

where tr, denotes the trace with respect to the metric g. Note that when

|do| # 0, we can write

7p(¢) = |do|"*{12(¢) + (p — 2)dd(grad,(In|de|))}. (1.3)



In particular, m5(¢) is called the tension field of ¢, i.e. To(¢) is the trace
of the second fundamental form of ¢.

Note that 2-harmonic maps are well-known to be harmonic maps.
Several studies are given for harmonic maps (see [7]). For these harmonic
maps, there are Liouville type theorems, which states that a harmonic
map ¢ is constant under some conditions.

The classical Liouville theorem says that any bounded harmonic func-
tion defined on the whole plane must be constant. In 1975, S. T. Yau
([17]) generalized the Liouville theorem to harmonic function on Rieman-
nian manifolds of non-negative Ricci curvature. After that, the Liouville
theorem was extended to several cases of manifolds. First, we consider
the following conditions on M and N:

(C1) M is a complete Riemannian manifold of non-negative Ricci
curvature.

(C2) The sectional curvature of a complete Riemannian manifold N

18 mon-positive.
In 1976, R. M. Schoen and S. T. Yau ([14]) proved the following theorem.

Theorem 1.1 Under the above assumptions (C1) and (C2), any har-

monic map ¢ : M — N of Ey(¢p) < oo is constant.
In 1998, N. Nakauchi ([12]) showed the following theorem.

Theorem 1.2 Under the above assumptions (C1) and (C2), any p-harmonic

map ¢ : M — N of E,(¢) < oo (p > 2) is constant.

Let 119 be the least eigenvalue of the Laplacian acting on L?-function on

M. Then we assume the following weaker condition than (C'1) on M.

2



(WC1) M is a complete Riemannian manifold such that Ric™ > —pq
at all point x € M and either Ric™ > —pq at some point g or Vol (M)

18 infinite.

In 1997, S. D. Jung ([8]) improved Theorem 1.1 to harmonic maps on a
complete Riemannian manifold M which satisfies the condition (WC1).

Namely

Theorem 1.3 Under the above assumptions (WC1) and (C2), any har-

monic map ¢ : M — N of Ey(¢p) < oo is constant.

Now, we consider the generalized weak condition:

(GWC1) M is a complete Riemannian manifold such that Ric™ >

_4(1;3;1)1% for all point x € M and Ric™ > —%Mo at some point xy.

In Chapter 3, we study the Liouville type theorem for p-harmonic maps

under the generalized weak condition. Namely,

Theorem 1.4 Under the above assumptions (GWC1) and (C2), any p-

harmonic map ¢ : M — N of E,(¢) < oo is constant.

A map ¢ : (M,g) — (N, h) is a p-harmonic morphism if it pulls back
(local) p-harmonic function on N to (local) p-harmonic function on M,
i.e., for any function f:V C N — R if 7,(f) = 0, then 7,(f o ¢) = 0. It
is well known ([12]) that a non-constant map is a p-harmonic morphism
if and only if it is a horizontal weakely conformal p-harmonic map. Now

we consider the following weaker condition than (C2) on N.

(WC2) The scalar curvature of a complete Riemannian manifold N

1§ non-positive.



In 2001, G. D. Choi and G. J. Yun ([3]) proved the following theorem.

Theorem 1.5 Under the assumptions (C1) and (WC2), any 2-harmonic

morphism ¢ : M — N of Es(¢) < oo is constant.

In Chapter 4, we extend Theorem 1.5 under the weak condition of M.

That is, we have the following theorem.

Theorem 1.6 Under the assumptions (WC1) and (WC2), any har-

monic morphism ¢ : M — N of Ey(¢p) < oo is constant.

In 2003, G. D. Choi and G. J. Yun([4]) extended Theorem 1.5 to any

arbitrary p-harmonic morphism. Namely, we have

Theorem 1.7 Under the assumptions (C1) and (W C2), any p-harmonic

morphism ¢ : M — N of E,(¢) < 0o is constant.

Moreover we also improve Theorem 1.7 to p-harmonic morphism on a
complete Riemannian manifold M which satisfies the condition (GWC1).

Namely, we have

Theorem 1.8 Under the assumptions (GWC1) and (W C2), any p-harmonic

morphism ¢ : M — N of E,(¢) < oo is constant.



2  Weitzenbock formulas and cut off func-

tions

2.1 Weitzenbock formulas

In this section, we review the Weitzenbock formula ([9,12,16]). Let
(M™,g) and (N, h) be Riemannian manifolds and let V¥™and V¥ be
their Levi-Civita connections respectively. Let ¢ : M — N be a smooth
map and £ = ¢ 'T'N be the induced bundle over M. Then E has a
naturally induced metric connection V = ¢~V Trivially d¢ is a cross
section of Hom(TM,E) over M. Since Hom(TM,E) is canonically identi-
fied with T"M ® E, d¢ is regarded as an E-valued 1-form on M. Let
dy : A"(E) — A" (FE) be an anti derivation and dy the formal adjoint of
dy, where A"(FE) is the space of E-valued r-forms with an inner product
(-,-) on M. Let {e;}i=1.. m and {vs}a=1..n be local orthonomal frame
fields on M and N respectively, and let {w'},_; .., and {6*}4—1... , be
their dual coframe fields on M and N respectively. Locally, the operators

dy and 0y are expressed by

m

dy = Xm:wi A Ve, and Oy = — Zi(ej)vej

i1 j=1
respectively, where ¢(X) denotes the interior product, i.e. if nis a r-
form, then i(X)n is the (r — 1)-form defined by {i(X)n}(Y;---Y,—1) =
n(X,Y;---Y,_1). The Laplacian A on A*(E) is defined by

A = dydy + dvdy. (2.1)

We now give the computation of the Weitzenbock formula.



Theorem 2.1 (Weitzenb6ck formula) On an oriented Riemannian

manifold M of dimension m, we have
D== Vi + Y whAi(e)R(e en), (2.2)
i k,j

where Vi = VxVy — Vyuy and R(X,Y) = [Vx, Vy] = V(xy] for any
X,Y € TM.

Proof. Since the right side of the formula for A is independent of the
choice of {e;}, it suffices to check this formula at a point x € M with

{e;} chosen to be normal at z. Then we have at © € M

m

oydy = — Z i(ej)Ve, (w' AV,

ij=1

== i(e)Ve,w' AV, — Y i(ej) (w' AV, Ve,)
i,j=1 4,j=1

= — Z i(ej)w' AV, Ve, + Z w' Ni(e;)Ve, Ve,
i,j=1 4,j=1

==Y VeV + > w Ni(e)Ve, Ve,
i=1 ij=1

To compute dydy, we note that at x, the identity
i(ej)vek = Veki(ej) (2'3)

is valid on forms for all j, k. Thus a direct calulation with (2.3) gives

dydy = w' AV, (— i(eﬂ(%))
i=1 j=1
== w AV, (i(e)Ve,)
ij=1
= — Z w' A i(e;)Ve, Ve,
ij=1



So the Laplacian A is given by

A==V .+ wNi(e)Ve,Ve, = Ve, Ve
=1

i,j=1

= — Z V2. + Z w' Niej)R(e;, e;). O
i=1

ij=1

Corollary 2.2 On functions, as well as on forms of degree n, we have
A== V. (2.4)

Proof. Since R(e;, e;) is a derivation on forms, R(e;, e;)1 = 0. Moreover

since R is a tensor field, we have
R(ei, e;)f = fR(e;,e;)1 =0.
Thus the assertion is clear for functions. For a form v of degree n,
W' Nie)h = 0.
Since R(e;,e;)1 is also of degree n, we have
Zwi Ni(ej)R(e;, ej) = Z R(e;,e;) = 0.
0] i

Hence the proof is completed. O

From Theorem 2.1, we have the following scalar Weitzenbock formula.

Proposition 2.3 For any ® € A"(FE), we have

—%AM|<I>|2 — VO — (A, @) + 3 (wF Ai(e;)Rle, 1)@, D). (2.5)

k.j

For applications, if we put ® = |d¢[P~2d¢, then we have



Proposition 2.4 Let ¢ : (M™,g) — (N™ h) be an arbitrary smooth

map. Then we have

—%AMldcblzp_2 = |V(|dp["~2de)[* — (|dp|P2de, A(|dp|P~*de)) + F(9),
(2.6)

where

F(¢) = [dg|*** > (Ric™ (dg(ex)), d(ex))

— [do[P=* Y (RN (dg(e)), dg(ex))dd(ex), di(e;)).

k,j=1

Proof. Let R? be the curvature tensor of V on E. Then R¥ is related
to the curvature tensor RY of V¥ in the following way: Let X,Y € T, M
and s € I'E, then

RE(X,Y)s = RN (d¢.(X),dp,(Y))s. (2.7)
When a function f is given on N, we shall identify it throughout this

paper with the function f o ¢ induced on M. Let f* = ¢*0*. Then d¢ is

expressed by
dp =) [*® v, (2.8)

a=1

Since a direct calculation gives
R(ej, ex)dp = Z RM(ej,en) f* @ vq + Z f*® R(ej,ex)va,  (2.9)
we have

> (W Ni(ej)Res, ex)de, do)

k.j

= 3wk A i) RV (e, ) @ v £ D )

k.j,a,b

+ 3 glw® Niley) £ f1IR(R (e, ex)va, vs).

k7j7a7b



Since dg(es) = >, f*(er)va, we have

Y gt Nie) R (egoen) [ 1) = D h(dd(Ric (er)), do(ew)).

k7j7a k

(2.10)

From (2.7) and (2.10), we have

> (wh Aiey)R(ej, ex)de, dg) = h(dg(Ric™ (er)), do(er))

k,j

+ Y h(RY(d(e;), d(er))do(e;). dd(ey)).

k?j

which prove (2.6). O

2.2 Cut off functions

Let xg be a point of M and fix it. For each point y € M, we denote by
p(y) the geodesic distance from g to y. Let B(¢) = {y € M|p(y) < ¢}
for £ > 0. Then there exists a Lipschitz continuous function w, on M

satisfying the following properties:

0<w(y) <1  for any ye M,
suppwy C B(2/0),

wly)=1  for any ye B(),
elggowf =1

|dw,| < almost everywhere on M,

’

Where C(> 0) is a constant independent of ¢([1]). Then we have



Lemma 2.5 ([1]) For any ® € A"(E), there exists a positive constant A

independent of € such that

|

ldwe A @[50 < 1@l B0,

N

A
[dwe A P[5 < E—QH‘I)HQB(zep
where || ®]|? = ®, P) and *x is the Hodge-star operator.
B(20) B(2¢0)

Now, we remark that, for & € L5(FE)N A" (E), w,® has compact support
and w,® — ®(¢ — o00) in the strong sense. From dy(S,n*) = V.S, An*+
S.(dn®) for S, € E and dy® = (—1)"0+D+ x dy + ® for any & € A"(E),

we have

dy(wi®) = widy® + 2wedw, A @,

Sy (Wi®) = wioy® — *(2wedwy A *P).

By using the inequality |(a,b)| < }|a|?+t|b|? for any positive real number

t, we have

1
| < wedy @, *(dwe A\ +P) >par) | < ZHWMV(DHQB(%) + 4] (dwe A *‘I))HzB(ze)-
From Lemma 2.5, we have

1 4A
| < wedy @, *(dwe A *P) >par) | < 1||W€5V@||23(24) + €_2||(I)||2B(2€)'
(2.11)

Similarly we have

1 4A
| K wedy®, dwy A P >>pap | < ZHwedv@HQB(%) + €_2||(D||2B(26)' (2.12)

10



3 Harmonic maps

3.1 Harmonic functions on Euclidean spaces

Definition 3.1 Harmonic functions on an open domain 2 of R™ are

solutions of the Laplace equation

Af =0, (3.1)
where A = —(ai—j)Q — = % and (x1, - ,x,) € Q. The operator

A is called the Laplace operator or Laplacian.

Theorem 3.2 The harmonic functions are critical points of the Dirich-

let functional

Balfi) = 5 [ P (3.2

Proof. For any smooth function g with compact support in €, the first

variation gives

d

—E(f1;9)

7 = limy—o{ Ea(f1; Q) — Ex(f;Q)}/1

t=0
B "L Of Og
N /Q; oz, 8xadx

- [ (&hgs

where f; = f + tg. Hence if we choose ¢ = Af, then the proof is

completed. O

11



3.2 Harmonic maps between Riemannian manifolds

In this section, we review the harmonic maps. See [2] for details. Let
(M, g) and (N, h) be smooth Riemannian manifolds and let ¢ : (M, g) —
(N, h) be a smooth map.

Definition 3.3 Let ¢ : (M, g) — (NN, h) be a smooth map. Let Q be a

domain of M. The energy or Dirichlet integral of ¢ over €2 is defined by

Palos) = 5 [ aoPan, 3.3)

where |d¢,|? = >, h(dg.(e;), dg.(e;)) and {e;} is an orthonomal basis
for T,M. A smooth map ¢ is called harmonic if it is a critical point of

the energy integral (3.3).

Let {¢:} be all smooth one-parameter of ¢ and v the variation vector
field of ¢; defined by v = % o~ The tension field T(¢) of ¢ is defined
by

m

7(¢) = tryVde = div(dg) = > (Ve do)(e:). (3.4)

=1

Then we have the following.

Theorem 3.4 (First variation of the energy) Let ¢ : M — N be

a smooth map and let {¢;} be a smooth variation of ¢ supported in €.

Then
d
GE0a0) == [ (o), v 3.5)
dt 0 Q

where v = % .o denotes the variation vector field of {¢:}.

Proof. Let Q2 be a compact domain of M and let {¢;} be a variation of ¢

supported in  with variation vector field v € T'(¢7'T'N). Let {e;} be a

12



local orthonormal frame on M. Define ® : M x (—¢,¢) — N by ®(x,t) =
di(z)((w,t) € M x (—¢,¢)) and set E = ®'TN — M x (—¢,¢). Let V?
denote the pull-back connection on E. Note that, for any vector field X

on M considered as a vector field on M x (—¢,¢), we have [2, X] = 0.

If we use V% (do(Y)) — V& (dp(X)) = de([X,Y]) (X,Y € TTM), then

d /Z (V% dP(e;), d(e;)

_EQ (btv
/Z v‘l’d@ ), dP(e;)

dt
= [ Yo (wtease)

where the last equality holds because d®(2) = v and d®(e;) = do(e;)
when ¢ = 0. Define a 1-form ¢ on M by ¢(—) = (v,d¢(—)). Then

t=0

t=0

=D _UVEv,dolen) + (v, Vi, (do(en) — do(Vien)}

By the divergence theorem, the left hand side is zero. Hence from (3.4),

the proof is completed. O

Corollary 3.5 Let ¢ : M — N be a smooth map. Then ¢ is harmonic
if and only if
7(¢) = 0. (3.6)
Remark 1 Let f : M — R be a smooth function. Then the Laplace-
Beltrami operator AM is given by
AMf = §df = —tx(Vdf) = —7(f), (3.7)

13



Hence f : M — R is a harmonic function if AM f = 0.

Examples. We list some well-known examples of harmonic maps. (For
details, See [2])

(1) Constant maps: ¢ : (M,g) — (N,h) and identity maps I, :
(M, g) — (M, g) are clearly always harmonic.

(2) Isometries are harmonic maps. Further, composing a harmonic
map with an isometry on its domain or codomain preserves harmonicity.
(3) Harmonic maps between Euclidean spaces: A smooth map
¢ : A — R” from an open subset A of R™ is harmonic if and only if
A¢ = 0; here A is the usual (vector-valued) Laplacian on R™, thus ¢
is harmonic if and only if ", 8827(1’; =0 for all @ € {1,2,--- €}, at all
points (1, ,Zm,) € A.

(4) Harmonic maps to a Euclidean spaces: A smooth map ¢ :
(M,g) — R™ is harmonic if and only if each of its components is a
harmonic function on (M, g), i.e.,.AM¢* = 0 (a = 1,---,n). Note
that, in the last two examples, the harmonic equation is linear. However,
when the domain is not flat, this is no longer the case as sown by our
next few examples.

(5) Harmonic maps to the circle: S' are given by integrating har-
monic 1-form with integral periods. Hence, when the domain M is com-
pact, there are non-constant harmonic maps to the circle if and only if
the first Betti number of M is non zero. In fact, there is a harmonic map
in every homotopyclass.

(6) Geodesics: For a smooth map (curve) ¢ : A — N from an open

subset A of R or from the circle S*, the tension field is just the acceler-

14



ation vector of the curve; Hence ¢ is harmonic if and only if it defined a
geodesic parametrized linearly (i.e., parametrized by a constant multiful
of arc length). More generally, amap ¢ : M — N is called totally geodesic
if it maps linearly parametrized geodesic of M to linearly parametrized
geodesic of N, such maps are chracterized by the vanishing of their second
fundmental form.

(7) Holomorphic maps: Holomorphic maps ¢ : (M, g, JM) — (N, h, JV)
between Kéhler manifolds are harmonic. Indeed, when M is compact,

the energy integral decomposes into

where

E'(¢) = / 06*w, and E'(¢) = / 10| w,

M M

Here O¢ (resp. 0¢) denotes the (1,0) (resp. (0,1) part of d¢; this vanishes
precisely when ¢ is antiholomorphic (reps. holomorphic).
(8) Isometric immersions: Let ¢ : (N,h) — (P, k) be an isometric
immersion. Then its second fundamental form ((¢) of ¢ has values in
the normal space and coincides with the usual second fundamental form
AeT(S?’T*N @ NN) of N as an (immersed) submanifolds of P defined
on vector fields X, Y on M by A(X,Y) = —normal component of VxY
(Here, by S*T*N we denotes the symmetrized tensor product of T*N
with itself and NN is the normal bundle of N in P) In particular, the
tension field 7(¢) is m times the mean curvature of M in N so that ¢ is
harmonic if and only if M is a minimal submanifold of V.
(9) Compositions: The composition of two harmonic maps is not, in

integral, harmonic. In fact, the tension field of the composition of two

15



smooth maps ¢ : (M,g) — (N,h) and f: (N,h) — (P, k) is given by

7(f 0 ¢) =df (7(¢)) + B(f)(d¢, do)

m

=df (7(¢)) + Y _ B(f)(de(e:), do(e;)), (38)

i=1

where {e;} is an orthonomal frame on N. From this we see that if ¢ is

harmonic and f totally geodesic, then f o ¢ is harmonic.

3.3 Liouville type theorem for harmonic maps

Let (M™, g) and (N™, h) be Riemannian manifolds with dimM = m >
n = dimN. Let {e;}i=1...m be a local orthonomal frame field and
{w'}i=1.... m the dual coframe field of {e;}. Let ¢ : M — N be a harmonic

map. It is trivial from (3.4) that
dv(do) = 0. (3.9)
From Proposition 2.4, we have the following proposition.

Proposition 3.6 Let ¢ : (M, g) — (N, h) be a harmonic map. Then

—%AM|d¢|2 = |V|dg|[*~ < d¢,dvdy(dd) >+ h(dd(Ric™ (ex)), do(ex))
k=1

= W(RN(de(e;), d(ex))dd(er), do(e;)).

k,j=1
(3.10)

From Proposition 3.6, we can prove the following theorem.

Theorem 3.7 ([3]) Let M be a complete Riemannian manifold non-
negative Ricci cuvature and N be a complete Riemannian manifold of
non-positive sectional curvature. Then any harmonic map ¢ : M — N

of Ex(¢) < oo is constant.

16



Let j1o is the infimum of the spectrum of the Laplacian AM on L?-function

on M.

Theorem 3.8 ([8]) Let ¢ : M — N be a harmonic map from a complete
Riemannian manifold M to a Riemannian manifold N with non-positive
sectional curvature. Assume RicM > —po at all x € M and either
Ric™ > —puqy at some point xg € M. Then any harmonic map ¢ : M —

N of Es(¢) < 00 is constant.

3.4 Liouville type theorem for p-harmonic maps

Let (M™,g) and (N", h) be Riemannian manifolds with dimM = m >
n = dimN. Let {€;}i=1.. m be a local orthonomal frames on M. Let

¢:(M,g) — (N, h) be a p-harmonic map. Then we have from (3.6)
S (|dglP—?de) = 0. (3.11)
From Proposition 2.4, we have the following lemma.

Lemma 3.9 Let ¢ : (M™,g) — (N™, h) be a p-harmonic map. Then the

Weitzenbock formula is given by

— S AM 9P = |V (|dgl2d0)— (dofr2do, e (|dofr~2d9)) + F (9),

(3.12)
where
F(¢) = |dg[*** >~ h(dg(Ric™ (er)), do(ex)) (3.13)
— |dg| Z h(RN (dé(e;), do(ex))dd(er), dd(e;)).

From Lemma 3.9 we have the following proposition.

17



Proposition 3.10 Let M be a complete Riemannian manifold such that
for some constant C > 0, Ric™ > —C at all v € M and let N be a
Riemannian manifold of non-positive sectional curvature. If ¢ : (M, g) —
(N, h) is a p-harmonic map, then
|do|AMdg|P™ — (do, dvdy (|dglP~?dg)) (3.14)
< —|dgP~? Y " h(dg(Ric" (e,)), do(es))
i=1

< C|do|.

Proof. Since $AM[dg|?#~2 = |dg[PtAM|dg[P~! — [VM|dg|P~!|?, from
(3.12) and (3.11) we have

[P AM|dglPt = VM do P P — |dy (|dglP2dg)|” — F(¢)  (3.15)

+ (|do[P~2de, dvdy (|dp|P~*dg)).

By the first Kato’s inequality([1]), i.e.,|do(|dp|P~2dp)|* > }VM\dgb\P—lf,

the equation (3.15) implies
[ do[P~t AM |dg|P~t — (|do[P~*de, dydy (|de|P~2de)) + F(¢) <0 (3.16)

On the other hand, under the conditions that the sectional curvature of

N is non-positive and Ric™ > —C, (3.13) implies
F(¢) 2 [dp[ ™ Y h (dg(Ric™ (e)), do(e;)) = ~Clde[* = (3.17)
i=1
Hence (3.14) is obtained from (3.16) and (3.17). O

Theorem 3.11 ([9]) Let M be a complete Riemannian manifold such

that Ric™ > —4(1;—;1)#0 for all x € M and Ric™ > —%uo at some
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point xo. Let N be a complete Riemannian manifold with a non-positive
sectional curvature. Then any p-harmonic map with E,(¢) < 0o is con-

stant.

Proof. Let zy be a point of M and fix it. We choose a Lipschitz con-
tinuous function wy on M such that 0 < wy(y) < 1 for any y € M.

Multiplying (3.14) by w? and integrating by parts, we get
| whlasl, 8 jaor )~ [ (wtdosodelldor2ds)  318)
M M
<=3 [ ol Ric (e), dote)
i=1 /M
<c [ uHasp.
M
Since the inequality [(V,W)| < |[V||W], By a direct calculation we have
| tlacl. a¥aop ) = [ (aetlaol).daep ) 1)
M M
= Ay [ (dftderwrdldf)
M

A p
+ 20 [ wp|dldgl?
P Jm

2
)

>~y [ wildoft|dur |dldol?
M

A
—i——l/w?
P Jm

where A = 221 Since |(|dg|% dwy, wed|d@|3)| < L]|de|P|dw,|*+alw.d|ds|% |

2
)

d|dg|*

for any real number a > 0, the equation (3.19) implies

[ teitdol, oMoy 2 =2 [ ol
M a Ju

+ (% - a) A /M ’wgd|dgb|%

19
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It is well-known ([9]) that for a function f on M and for some constant
b>0,
|do (fd¢)| < bldf||de|. (3.21)

Hence we have
| / 2. 5odsy (do P 2d0))|
‘ / o (w2do), dy (|dé] 2d¢>>'
< / |y (w2do)| |do (|dolP~2de)|
M
< o / widwy |dj g2 |dof?
M
A dw,||do|?
< Q/Mwe\ wil|do|

p|2 A
SozAg/ w; 2 +—2/ |\dw,|?|do|?
M @ Jm

for any real number a > 0, where Ay = 4(”’%2)192. From (3.20) and (3.21),

we have

/ (W2do|, AV Py — / (W20, budo(|doP2d0))  (3.22)
M M

Al/’
P Jm

From (3.18) and the Fauto’s inequality, it is trivial that d|d¢|? € L.
Hence by the Holder inequality

) ) 3 2 3
[ cldalidol® |aldo?| < ( / |dwe!2|d¢|p) ( | it |aiaor: )
M M M

If we let ¢ — oo, then [,, wy|dw||dg|? |d|dp|2| — 0. From (3.18) and

— (Al +A2)/ wg|dw£||d¢|§
M

(3 22), we have

_Z/M |dp|P~2h (dgb(RiCM(Q)),dgzﬁ(ei)) < O/M |do|P.
(3.23)
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On the other hand, by the Rayleigh theorem, i.e., [, (df,df)/ [,, f* = 1o
for any smooth function f such that supp(f) C €, a compact domain,

and the Holder inequality, if we put f = wy|d$|2, then we have

2
do|P d|dp|?| . 24
o [ 1dor < [ faido (321
From (3.23) and (3.24), we have
A ’" ) , ,
o [ iy < > | 1o h (do(Ric" (). do(e) < C [ Jaop.
(3.25)
Since C = 4(’;;1)u0, (3.25) implies that
> [ ldorh @((Ric" + C)e) dote)) =0. (320
=1

So if Ric™ 4+ C > 0 at some point x, then d¢ = 0. This implies that ¢ is

constant. O

For any ¢ with 2 < ¢ < p, it is trial that —4(];;1) > —4(221). So we

have the following corollary.

Corollary 3.12 Let M be a complete Riemannian manifold such that

RicM > —%uo at allz € M and Ric™ > —%yg at some point xg.
Let N be a complete Riemannian manifold with a non-positive sectional
curvature. Then any q-harmonic map ¢ : M — N with 2 < q < p of

E,(¢) < 0o is constant.
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4 Harmonic morphisms

4.1 Horizontally weakly conformal maps

Definition 4.1 A smooth map ¢ : (M™,g) — (N™, h) is called hori-
zontally (weakly) conformal if for each x € M at which d¢, # 0, the
restriction do, |, : Hy — Tym N is conformal and surjective, where

H, = Ker(d¢,)*, the horizontal space of ¢ at .

If we put V, = Ker(dg,), then T,M = H, ®V,. Let C, = {z €
M | dp, = 0}. Then we have the following.

Theorem 4.2 ([3]) A smooth map ¢ : (M,g) — (N, h) is horizontally
weakly conformal if and only if there exists a function X\ : M — Cy — R*

such that
h(do(X),dp(Y)) = N2g(X,Y) VX,Y € H,. (4.1)

Note that at the point z € Cy we can let A(z) = 0 and obtain a continuous
function A : M — R* U {0}, which is called the dilation of a horizontally
weakly conformal the map ¢. Let {e;};=1..,,» be a local orthonomal
frames on M such that {e;} € H,(i = 1,--- ,n) and {e,;} € V,(i =
1,---,m —n). On taking the trace in (4.1) at a regular or critical point

xr, we obtain

2 _ l 2
X = ||, (4.2)

Proposition 4.3 ([2]) Let ¢ : M — N be a horizontally weakly confor-

mal map. if dimM < dimN, then ¢ is constant.
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When gradA is vertical, a horizontally weakly conformal map is called a
horizontally homothetic map. For example, a Riemannian submersion is

horizontally homothetic.

4.2 Harmonic morphisms

Definition 4.4 A continuous map ¢ : (M, g) — (N, h) is called a har-
monic morphism if for any harmonic function f : U — R on an open sub-
set U C N with ¢~!(U) non-empty, the composition fo¢: ¢~ (U) — R
is also a harmonic function on ¢~'(U). Namely, if 7(f) = 0 for any f,

then 7(¢o f) = 0.

Theorem 4.5 ([7]) A smooth map ¢ : M — N is a harmonic morphism

if and only if it is harmonic and horizontally weakly conformal.

Proposition 4.6 ([2]) ¢ : M™ — N™ be horizontally weakly conformal

with dilation A. Then, at a reqular point,
7(¢) = do(—(n — 2)grad(in))"" — (m — n)dp(u") = 0, (4.3)
where p” denotes the mean curvature of the fibers.

Thus ¢ is harmonic, and so a harmonic morphism, if and only if, at

regular points,
(n — 2)grad(In\)? + (m —n)p” =0, (4.4)

where grad(In)\)¥ denotes the orthogonal projection of the gradient of

the function In\ onto the horizontal distribution H.
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Corollary 4.7 Ifn = 2 or grad\ is vertical at reqular points, a horizon-

tally weakly conformal map is harmonic, and so is a harmonic morphism,

if and only if its fibers are minimal at reqular points.

Corollary 4.8 A Riemannian submersion is a horizontally conformal

map with dilation 1. So a Riemannian submersion is a harmonic mor-

phism if and only if its fibers are minimal.

Examples. For more examples, see ([2]).

t

4.3

. Constants and identity maps : are clearly harmonic morphisms.

. Harmonic morphisms between surfaces : A smooth map be-

tween oriented surfaces is a harmonic morphism if and only if it is

holomorphic or anti-holomorphic.

Compositions : the composition of two harmonic morphism is a

harmonic morphism.

. A Riemannian submersion :is harmonic, and so a harmonic

morphism, if and only if its fibers are minimal. The Hopf fiberations
have minimal(in fact, totally geodesic)fibers, and so are harmonic

morphism,

. Warped product :The natural projection of a warped product

F x» N — N onto its second factor is a horizontal distribution.

In particular, it is a harmonic morphism.

Liouville type theorem for harmonic morphisms

From Proposition 3.6 and (4.2) we have the following lemma.
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Lemma 4.9 ([6]) If ¢ : M — N is a harmonic morphism, then

n .
—EAMV = |Vdo|> + NtrRic™ |, — X'ry o ¢, (4.5)

where \ denotes the dilation, trRic™ |y the trace of the Ricci tensor of

M on the horizontal distribution H, and ry the scalar curvature of N.

Let 119 be the least eigenvalue of AM acting on L2-function on M. Then

we have the following proposition.

Proposition 4.10 Let M be a complete Riemannian manifold such that
Ric™ > —pg at all v € M and let N be a Riemannian manifold of
nonpositive scalar curvature. If ¢ : M — N s a harmonic morphism,
then

nAM) < —)\trRicM|H < npigA. (4.6)

Proof. Since AMX\? = 20AM)\ — 2|VM)\|?, we have from (4.5),
nAAMN = n|VMAP — [Vdo|* — NtrRic™ |, + Xy o ¢. (4.7)
Since |d¢|? = nA%, we have |dp|VM|dg| = nAVM X and
(VM |dg||* = n|VMAR (4.8)
By the first Kato’s inequality([1]), i.e.,!VM|d¢| ‘2 < n|Vdg|?, (4.8) yields
n|VMA2 < |Vdo|?. (4.9)

Since the scalar curvature vy of N is nonpositive, the first inequality of
(4.6) follows from (4.7) and (4.9). The second inequality of (4.6) is trivial

from Ric™ > —py. O
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Theorem 4.11 Let M be a complete Riemannian manifolds such that
Ric™ > —pg at all point x € M and either Ric™ > —puy at some point
xo or Vol(M) is infinite. Let N be a complete Riemannian manifolds
with the non-positive scalar curvature. Then any harmonic morphism

¢: M — N with Ey(¢) < oo is constant.

Proof. Let xq be a point of M and fix it. We choose a Lipschitz con-
tinuous function w, on M such that 0 < wy(y) < 1 for any y € M.

Multiplying (4.6) by w?\ and integrating by parts, we obtain
n/ (d\, d(wiN)) < —/ w; )\QtrRicM|H < n,uo/ (weA)?. (4.10)
M M M
By a direct calculation, we have
(dX, d(wWiN)) = 2weA(dN, dw) + [wed|* = |d(weA)|? — N2|dw|?.  (4.11)
From (4.10) and (4.11), we have
/ |d(we)|? < ——/ 7 )\ZtrRicM}H—i-/ N2 dw,|? (4.12)
M

§,u0/ (wg/\)Q—i-/ N2 dwy|?.
M M

Since pig is the infimum of the spectrum of the Laplacian AM acting on

L?-functions on M, the Rayleigh theorem implies

/M|d(wﬁ)\)|2 2 Ho /M(we)\)Q. (4.13)

If we let £ — +o00 in (4.12) with (4.13),then we have

1
,uo/ A2 < ——/ )\2trRicM|H Suo/ A2 (4.14)
M nJm M

This means that

|
e

/M (npo + trRicM‘H) A (4.15)
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(i) First case: If Ric™ > —pq at all x and Ric™ > —pq at some g, then
npo + trRicM|g > 0 for all z and nyg + trRic™|y > 0 at some point
xp, respectively. The unique continuation property for section implies

|dg| = 0, i.e., ¢ is constant.

(ii) Second case: Now we study Theorem 4.11 under the assumption
RicM > —pg and Vol(M) = oo. We first note that for any real number

0>0

1
'2/ weA{dA, dwy) g(s?/ w§|d)\\2+§/ N2 dwy|?. (4.16)
M M M

From (4.10) , (4.11) and (4.16), we have

1 1
(1—52)/ng|dx|2—§/MA2|dW|2§—ﬁ [t uRict], @

<o | (wed).
M

If we choose § = \/LZ and let { — +o00, then

1
/ |dA]? < ——/ NtrRicM| guo/ 22, (4.18)
M nJm M

On the other hand, from (4.11) and (4.17) we similarly obtain

1
(1—1—(52)/Mw§|d/\|22/M|d(wg/\)|2— <1+§)/M)\2|dwg|2. (4.19)

If we put 6 = = and let £ — +o0, then we have from (4.13)

Vi
/ |dA|? zm/ M2, (4.20)
M M

From (4.18) and (4.20), we have [, (AMX — poA)A = 0. Hence (4.6) im-
plies that AMX = pg\. This means that ) is nonnegative L2-subharmonic
function. By the maximum principle ([16,18]), A is constant. Since

Vol(M) = oo, it is trivial that A = 0, which yields that ¢ is constant.
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4.4 Liouville type theorem for p-harmonic morphisms

Let ¢ : (M™,g9) — (N™ h)(m > n) be a p-harmonic morphism with
dilation A. Let {e;}i—1.. m be a local orthonomal frame field on M such
that {e;}i=1..» € Hy and {€;}izpnt1....m € Vi. Then it is trial from (4.1)
that

|do|? = nA?. (4.21)

Moreover, it is easy to see that
Z h (d¢(Ric (€:)),do( eZ Z g ch (€;), ez)
i=1
= X trRic™| (4.22)

and

> b (RN (de(es), do(e;))de(e;), d(e:))

= Mscaly o ¢ (4.23)
From (4.21), (4.22) and (4.23), we have the following lemma.

Lemma 4.12 Let ¢ : (M,g) — (N, h) be a p-harmonic morphism with

dilation . Then we have the following.

—%n AMNZ2 = | (AP2d) | — (\2dg, bydy(\72dg))  (4.24)

+ APy (RicM|H) — APscaly o ¢.

From Lemma 3.10 and (4.21), we have the following lemma.
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Lemma 4.13 Let M be a complete Riemannian manifolds such that
Ric™ > —C (C > 0) at allz € M and let N be a Riemannian manifolds
of non-positive scalar curvature. If ¢ : (M, g) — (N, h) is a p-harmonic

morphism, then
nA AM NPT — (dg, bgdy (A 2dg)) < —Mtr (RicY|,) < nCP. (4.25)

Theorem 4.14 Let M is a complete Riemannian manifold such that
Ric™ > —él(i—gl),uo for all x and Ric™ > —%uo at some point xq. Let

N be a complete Riemannian manifold with non-positive scalar curvature.

Then any p-harmonic morphism ¢ : M — N of E,(¢) < oo is constant.

Proof. Let us put C' = 4(1;);1)u0 in Lemma 4.13. By the same process as

in the proof of Theorem 4.11, we have that
/ N (trRic™ + C)|,, = 0. (4.26)
M

So RicM™ > —(C at some point z, implies that A = 0. Hence ¢ is constant.

O

Corollary 4.15 Let M be a complete Riemannian manifold such that

Ric™ > —%uo at all v € M and Ric™ > —%uo at some point
xo. Let N be a complete Riemannian manifold with a non-positive scalar
curvature. Then any q-harmonic map ¢ : M — N with 2 < q < p of

E,(¢) < 0o is constant.
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