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<Abstract>

L iouv ille  ty pe  theorem  for  p -harmonic 

m aps  and  p -harmonic  m orphisms

 The classical Liouville theorem for harmonic maps is that any 

bounded harmonic functions on the whole plane must be constant. 

This Liouville theorem has been studied by many authors. In this 

thesis, we study Liouville type theorems for p -harmonic maps and 

p -harmonic morphisms with finite p -energy. Any p -harmonic 

maps from a complete Riemannian manifold M of a Ricci 

curvature bounded from the below by negative constant depending 

on p to a complete Riemannian manifold N of non-positive 

sectional curvature is shown to be constant if it has finite p 

-energy. Moreover, we prove any p -harmonic morphisms from a 

complete Riemannian manifold of the Ricci curvature bounded 

below by a p -dependent negative constant to a complete 

Riemannian manifold of non-positive scalar curvature is constant if 

it has finite p -energy.



1 Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let φ : M →
N be a smooth map. For a compact domain Ω ⊂ M , the p-energy E of

φ over Ω is defined by

Ep(φ; Ω) =
1

p

∫

Ω

|dφ|pµM , (1.1)

where the differential dφ is a section of the bundle T ∗M ⊗ φ−1TN → M

and φ−1TN denotes the pull-back bundle via the map φ at the point

x ∈ M , µM is the volume element on M and the p-energy density |dφ|p

on M is defined by

|dφ|p =

(
m∑

i=1

〈dφ(ei), dφ(ei)〉
) p

2

.

Then the bundle T ∗M ⊗ φ−1TN → M carries the connection ∇ induced

by the Levi-Civita connections on M and N . A map φ : (M, g) → (N, h)

is called p-harmonic if φ is a critical point of the energy functional defined

by (1.1) on any compact domain Ω ⊂ M .

Equivalently, p-harmonic maps are solutions of the following systems

( harmonicity equation ) of PDEs:

τp(φ) : = |dφ|p−2τ2(φ) + (p− 2)|dφ|p−3dφ(gradg|dφ|) (1.2)

= 0,

where trg denotes the trace with respect to the metric g. Note that when

|dφ| 6= 0, we can write

τp(φ) = |dφ|p−2{τ2(φ) + (p− 2)dφ(gradg(ln|dφ|))}. (1.3)
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In particular, τ2(φ) is called the tension field of φ, i.e. τ2(φ) is the trace

of the second fundamental form of φ.

Note that 2-harmonic maps are well-known to be harmonic maps.

Several studies are given for harmonic maps (see [7]). For these harmonic

maps, there are Liouville type theorems, which states that a harmonic

map φ is constant under some conditions.

The classical Liouville theorem says that any bounded harmonic func-

tion defined on the whole plane must be constant. In 1975, S. T. Yau

([17]) generalized the Liouville theorem to harmonic function on Rieman-

nian manifolds of non-negative Ricci curvature. After that, the Liouville

theorem was extended to several cases of manifolds. First, we consider

the following conditions on M and N :

(C1) M is a complete Riemannian manifold of non-negative Ricci

curvature.

(C2) The sectional curvature of a complete Riemannian manifold N

is non-positive.

In 1976, R. M. Schoen and S. T. Yau ([14]) proved the following theorem.

Theorem 1.1 Under the above assumptions (C1) and (C2), any har-

monic map φ : M → N of E2(φ) < ∞ is constant.

In 1998, N. Nakauchi ([12]) showed the following theorem.

Theorem 1.2 Under the above assumptions (C1) and (C2), any p-harmonic

map φ : M → N of Ep(φ) < ∞ (p > 2) is constant.

Let µ0 be the least eigenvalue of the Laplacian acting on L2-function on

M . Then we assume the following weaker condition than (C1) on M .
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(WC1) M is a complete Riemannian manifold such that RicM ≥ −µ0

at all point x ∈ M and either RicM > −µ0 at some point x0 or V ol(M)

is infinite.

In 1997, S. D. Jung ([8]) improved Theorem 1.1 to harmonic maps on a

complete Riemannian manifold M which satisfies the condition (WC1).

Namely

Theorem 1.3 Under the above assumptions (WC1) and (C2), any har-

monic map φ : M → N of E2(φ) < ∞ is constant.

Now, we consider the generalized weak condition:

(GWC1) M is a complete Riemannian manifold such that RicM ≥
−4(p−1)

p2 µ0 for all point x ∈ M and RicM > −4(p−1)
p2 µ0 at some point x0.

In Chapter 3, we study the Liouville type theorem for p-harmonic maps

under the generalized weak condition. Namely,

Theorem 1.4 Under the above assumptions (GWC1) and (C2), any p-

harmonic map φ : M → N of Ep(φ) < ∞ is constant.

A map φ : (M, g) → (N, h) is a p-harmonic morphism if it pulls back

(local) p-harmonic function on N to (local) p-harmonic function on M ,

i.e., for any function f : V ⊂ N → R if τp(f) = 0, then τp(f ◦ φ) = 0. It

is well known ([12]) that a non-constant map is a p-harmonic morphism

if and only if it is a horizontal weakely conformal p-harmonic map. Now

we consider the following weaker condition than (C2) on N .

(WC2) The scalar curvature of a complete Riemannian manifold N

is non-positive.
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In 2001, G. D. Choi and G. J. Yun ([3]) proved the following theorem.

Theorem 1.5 Under the assumptions (C1) and (WC2), any 2-harmonic

morphism φ : M → N of E2(φ) < ∞ is constant.

In Chapter 4, we extend Theorem 1.5 under the weak condition of M .

That is, we have the following theorem.

Theorem 1.6 Under the assumptions (WC1) and (WC2), any har-

monic morphism φ : M → N of E2(φ) < ∞ is constant.

In 2003, G. D. Choi and G. J. Yun([4]) extended Theorem 1.5 to any

arbitrary p-harmonic morphism. Namely, we have

Theorem 1.7 Under the assumptions (C1) and (WC2), any p-harmonic

morphism φ : M → N of Ep(φ) < ∞ is constant.

Moreover we also improve Theorem 1.7 to p-harmonic morphism on a

complete Riemannian manifold M which satisfies the condition (GWC1).

Namely, we have

Theorem 1.8 Under the assumptions (GWC1) and (WC2), any p-harmonic

morphism φ : M → N of Ep(φ) < ∞ is constant.
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2 Weitzenböck formulas and cut off func-

tions

2.1 Weitzenböck formulas

In this section, we review the Weitzenböck formula ([9,12,16]). Let

(Mm, g) and (Nn, h) be Riemannian manifolds and let ∇Mand ∇N be

their Levi-Civita connections respectively. Let φ : M → N be a smooth

map and E = φ−1TN be the induced bundle over M. Then E has a

naturally induced metric connection ∇ ≡ φ−1∇N . Trivially dφ is a cross

section of Hom(TM,E) over M. Since Hom(TM,E) is canonically identi-

fied with T ∗M ⊗ E, dφ is regarded as an E-valued 1-form on M . Let

d∇ : Ar(E) → Ar+1(E) be an anti derivation and δ∇ the formal adjoint of

d∇, where Ar(E) is the space of E-valued r-forms with an inner product

〈·, ·〉 on M. Let {ei}i=1,··· ,m and {va}a=1,··· ,n be local orthonomal frame

fields on M and N respectively, and let {wi}i=1,··· ,m and {θa}a=1,··· ,n be

their dual coframe fields on M and N respectively. Locally, the operators

d∇ and δ∇ are expressed by

d∇ =
m∑

i=1

wi ∧∇ei
and δ∇ = −

m∑
j=1

i(ej)∇ej

respectively, where i(X) denotes the interior product, i.e. if η is a r-

form, then i(X)η is the (r − 1)-form defined by {i(X)η}(Y1 · · ·Yr−1) =

η(X,Y1 · · ·Yr−1). The Laplacian 4 on A∗(E) is defined by

4 = d∇δ∇ + δ∇d∇. (2.1)

We now give the computation of the Weitzenböck formula.
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Theorem 2.1 (Weitzenböck formula) On an oriented Riemannian

manifold M of dimension m, we have

4 = −
m∑
i

∇2
eiei

+
m∑

k,j

wk ∧ i(ej)R(ej, ek), (2.2)

where ∇2
XY = ∇X∇Y −∇∇M

X Y and R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] for any

X, Y ∈ TM .

Proof. Since the right side of the formula for 4 is independent of the

choice of {ei}, it suffices to check this formula at a point x ∈ M with

{ei} chosen to be normal at x. Then we have at x ∈ M

δ∇d∇ = −
m∑

i,j=1

i(ej)∇ej

(
wi ∧∇ei

)

= −
m∑

i,j=1

i(ej)∇ej
wi ∧∇ei

−
n∑

i,j=1

i(ej)
(
wi ∧∇ej

∇ei

)

= −
n∑

i,j=1

i(ej)w
i ∧∇ej

∇ei
+

m∑
i,j=1

wi ∧ i(ej)∇ej
∇ei

= −
n∑

i=1

∇ei
∇ei

+
m∑

i,j=1

wi ∧ i(ej)∇ej
∇ei

.

To compute d∇δ∇, we note that at x, the identity

i(ej)∇ek
= ∇ek

i(ej) (2.3)

is valid on forms for all j, k. Thus a direct calulation with (2.3) gives

d∇δ∇ =
m∑

i=1

wi ∧∇ei

(
−

m∑
j=1

i(ej)(∇ej
)

)

= −
m∑

i,j=1

wi ∧∇ei

(
i(ej)∇ej

)

= −
m∑

i,j=1

wi ∧ i(ej)∇ei
∇ej

.
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So the Laplacian 4 is given by

4 = −
n∑

i=1

∇2
eiei

+
∑
i,j=1

wi ∧ i(ej)[∇ej
∇ei

−∇ei
∇ej

]

= −
n∑

i=1

∇2
eiei

+
∑
i,j=1

wi ∧ i(ej)R(ej, ei). 2

Corollary 2.2 On functions, as well as on forms of degree n, we have

4 = −
∑

i

∇2
eiei

. (2.4)

Proof. Since R(ei, ej) is a derivation on forms, R(ei, ej)1 = 0. Moreover

since R is a tensor field, we have

R(ei, ej)f = fR(ei, ej)1 = 0.

Thus the assertion is clear for functions. For a form ψ of degree n,

ωi ∧ i(ej)ψ = δi
jψ.

Since R(ei, ej)ψ is also of degree n, we have

∑
i,j

ωi ∧ i(ej)R(ei, ej)ψ =
∑

i

R(ei, ei)ψ = 0.

Hence the proof is completed. 2

From Theorem 2.1, we have the following scalar Weitzenböck formula.

Proposition 2.3 For any Φ ∈ Ar(E), we have

−1

2
4M |Φ|2 = |∇Φ|2 − 〈4Φ, Φ〉+

∑

k,j

〈ωk ∧ i(ej)R(ej, ek)Φ, Φ〉. (2.5)

For applications, if we put Φ = |dφ|p−2dφ, then we have
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Proposition 2.4 Let φ : (Mm, g) → (Nn, h) be an arbitrary smooth

map. Then we have

−1

2
4M |dφ|2p−2 = |∇(|dφ|p−2dφ)|2 − 〈|dφ|p−2dφ,4(|dφ|p−2dφ)〉+ F (φ),

(2.6)

where

F (φ) = |dφ|2p−4

m∑

k=1

〈RicM(dφ(ek)), dφ(ek)〉

− |dφ|2p−4

m∑

k,j=1

〈RN(dφ(ej), dφ(ek))dφ(ek), dφ(ej)〉.

Proof. Let RE be the curvature tensor of ∇ on E. Then RE is related

to the curvature tensor RN of ∇N in the following way: Let X, Y ∈ TxM

and s ∈ ΓE, then

RE(X, Y )s = RN(dφx(X), dφx(Y ))s. (2.7)

When a function f is given on N, we shall identify it throughout this

paper with the function f ◦ φ induced on M. Let fa ≡ φ∗θa. Then dφ is

expressed by

dφ =
n∑

a=1

fa ⊗ va. (2.8)

Since a direct calculation gives

R(ej, ek)dφ =
∑

a

RM(ej, ek)f
a ⊗ va +

∑
a

fa ⊗RE(ej, ek)va, (2.9)

we have

∑

k,j

〈wk ∧ i(ej)R(ej, ek)dφ, dφ〉

=
∑

k,j,a,b

〈wk ∧ i(ej)R
M(ej, ek)f

a ⊗ va, f
b ⊗ vb〉

+
∑

k,j,a,b

g(wk ∧ i(ej)f
a, f b)h(RE(ej, ek)va, vb).

8



Since dφ(e`) =
∑

a fa(e`)va, we have

∑

k,j,a

g(wk ∧ i(ej)R
M(ej, ek)f

a, fa) =
∑

k

h(dφ(RicM(ek)), dφ(ek)).

(2.10)

From (2.7) and (2.10), we have

∑

k,j

〈wk ∧ i(ej)R(ej, ek)dφ, dφ〉 =
∑

k

h(dφ(RicM(ek)), dφ(ek))

+
∑

k,j

h(RN(dφ(ej), dφ(ek))dφ(ej), dφ(ek)),

which prove (2.6). 2

2.2 Cut off functions

Let x0 be a point of M and fix it. For each point y ∈ M , we denote by

ρ(y) the geodesic distance from x0 to y. Let B(`) = {y ∈ M |ρ(y) < `}
for ` > 0. Then there exists a Lipschitz continuous function ω` on M

satisfying the following properties:

0 ≤ ω`(y) ≤ 1 for any y ∈ M,

suppω` ⊂ B(2`),

ω`(y) = 1 for any y ∈ B(`),

lim
`→∞

ω` = 1,

|dω`| ≤ C

`
almost everywhere on M,

Where C(> 0) is a constant independent of `([1]). Then we have
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Lemma 2.5 ([1]) For any Φ ∈ Ar(E), there exists a positive constant A

independent of ` such that

‖dω` ∧ Φ‖2
B(2`) ≤

A

`2
‖Φ‖2

B(2`),

‖dω` ∧ ∗Φ‖2
B(2`) ≤

A

`2
‖Φ‖2

B(2`),

where ‖Φ‖2
B(2`) =

∫
B(2`)

〈Φ, Φ〉 and ∗ is the Hodge-star operator.

Now, we remark that, for Φ ∈ Lr
2(E)∩Ar(E), ω`Φ has compact support

and ω`Φ → Φ(` →∞) in the strong sense. From d∇(Saη
a) = ∇Sa∧ ηa +

Sa(dηa) for Sa ∈ E and δ∇Φ = (−1)n(r+1)+1 ∗ d∇ ∗ Φ for any Φ ∈ Ar(E),

we have

d∇(ω2
` Φ) = ω2

` d∇Φ + 2ω`dω` ∧ Φ,

δ∇(ω2
` Φ) = ω2

` δ∇Φ− ∗(2ω`dω` ∧ ∗Φ).

By using the inequality |〈a, b〉| ≤ 1
t
|a|2+t|b|2 for any positive real number

t, we have

| ¿ ω`δ∇Φ, ∗(dω` ∧ ∗Φ) ÀB(2`) | ≤ 1

4
‖ω`δ∇Φ‖2

B(2`) + 4‖ ∗ (dω` ∧ ∗Φ)‖2
B(2`).

From Lemma 2.5, we have

| ¿ ω`δ∇Φ, ∗(dω` ∧ ∗Φ) ÀB(2`) | ≤ 1

4
‖ω`δ∇Φ‖2

B(2`) +
4A

`2
‖Φ‖2

B(2`).

(2.11)

Similarly we have

| ¿ ω`d∇Φ, dω` ∧ Φ ÀB(2`) | ≤ 1

4
‖ω`d∇Φ‖2

B(2`) +
4A

`2
‖Φ‖2

B(2`). (2.12)
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3 Harmonic maps

3.1 Harmonic functions on Euclidean spaces

Definition 3.1 Harmonic functions on an open domain Ω of Rm are

solutions of the Laplace equation

4f = 0, (3.1)

where 4 := − ∂2

(∂x1)2
− · · · − ∂2

(∂xm)2
and (x1, · · · , xm) ∈ Ω. The operator

4 is called the Laplace operator or Laplacian.

Theorem 3.2 The harmonic functions are critical points of the Dirich-

let functional

E2(f ; Ω) =
1

2

∫

Ω

|df |2dx. (3.2)

Proof. For any smooth function g with compact support in Ω, the first

variation gives

d

dt
E2(ft; Ω)

∣∣∣∣
t=0

: = limt→0{E2(ft; Ω)− E2(f ; Ω)}/t

=

∫

Ω

m∑
a

∂f

∂xa

∂g

∂xa

dx

=

∫

Ω

(4f)gdx,

where ft = f + tg. Hence if we choose g = 4f , then the proof is

completed. 2
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3.2 Harmonic maps between Riemannian manifolds

In this section, we review the harmonic maps. See [2] for details. Let

(M, g) and (N, h) be smooth Riemannian manifolds and let φ : (M, g) →
(N, h) be a smooth map.

Definition 3.3 Let φ : (M, g) → (N, h) be a smooth map. Let Ω be a

domain of M . The energy or Dirichlet integral of φ over Ω is defined by

E2(φ; Ω) =
1

2

∫

Ω

|dφ|2dM, (3.3)

where |dφx|2 =
∑m

i=1 h(dφx(ei), dφx(ei)) and {ei} is an orthonomal basis

for TxM . A smooth map φ is called harmonic if it is a critical point of

the energy integral (3.3).

Let {φt} be all smooth one-parameter of φ and v the variation vector

field of φt defined by v = dφt

dt

∣∣
t=0

. The tension field τ(φ) of φ is defined

by

τ(φ) := trg∇dφ = div(dφ) =
m∑

i=1

(∇ei
dφ)(ei). (3.4)

Then we have the following.

Theorem 3.4 (First variation of the energy) Let φ : M → N be

a smooth map and let {φt} be a smooth variation of φ supported in Ω.

Then

d

dt
E2(φt; Ω)

∣∣∣∣
t=0

= −
∫

Ω

〈τ(φ), v〉dM. (3.5)

where v = dφt

dt

∣∣
t=0

denotes the variation vector field of {φt}.

Proof. Let Ω be a compact domain of M and let {φt} be a variation of φ

supported in Ω with variation vector field v ∈ Γ(φ−1TN). Let {ei} be a

12



local orthonormal frame on M . Define Φ : M×(−ε, ε) → N by Φ(x, t) =

φt(x)((x, t) ∈ M × (−ε, ε)) and set E = Φ−1TN → M × (−ε, ε). Let ∇Φ

denote the pull-back connection on E. Note that, for any vector field X

on M considered as a vector field on M × (−ε, ε), we have
[

∂
∂t

, X
]

= 0.

If we use ∇φ
X(dφ(Y ))−∇φ

Y (dφ(X)) = dφ([X, Y ]) (X, Y ∈ ΓTM), then

d

dt
E2(φt; Ω)

∣∣∣∣
t=0

=

∫

Ω

m∑
i=1

〈∇Φ
∂
∂t

dΦ(ei), dΦ(ei)〉
∣∣∣
t=0

=

∫

Ω

m∑
i=1

〈∇Φ
ei
dΦ(

∂

∂t
), dΦ(ei)〉

∣∣∣∣
t=0

=

∫

Ω

m∑
i=1

〈∇φ
ei
v, dφ(ei)〉,

where the last equality holds because dΦ( ∂
∂t

) = v and dΦ(ei) = dφ(ei)

when t = 0. Define a 1-form ψ on M by ψ(−) = 〈v, dφ(−)〉. Then

divψ =
m∑

i=1

{ei(ψ(ei))− ψ(∇M
ei

ei)}

=
m∑

i=1

{ei(〈v, dφ(ei)〉)− 〈v, dφ(∇M
ei

ei)〉}

=
m∑

i=1

{〈∇φ
ei
v, dφ(ei)〉+ 〈v,∇φ

ei
(dφ(ei))− dφ(∇M

ei
ei)〉}

By the divergence theorem, the left hand side is zero. Hence from (3.4),

the proof is completed. 2

Corollary 3.5 Let φ : M → N be a smooth map. Then φ is harmonic

if and only if

τ(φ) = 0. (3.6)

Remark 1 Let f : M → R be a smooth function. Then the Laplace-

Beltrami operator 4M is given by

4Mf = δdf = −tr(∇df) = −τ(f), (3.7)

13



Hence f : M → R is a harmonic function if 4Mf = 0.

Examples. We list some well-known examples of harmonic maps. (For

details, See [2])

(1) Constant maps: φ : (M, g) → (N, h) and identity maps Id :

(M, g) → (M, g) are clearly always harmonic.

(2) Isometries are harmonic maps. Further, composing a harmonic

map with an isometry on its domain or codomain preserves harmonicity.

(3) Harmonic maps between Euclidean spaces: A smooth map

φ : A → Rn from an open subset A of Rm is harmonic if and only if

4φ = 0; here 4 is the usual (vector-valued) Laplacian on Rm, thus φ

is harmonic if and only if
∑m

i=1
∂2φα

∂x2
i

= 0 for all α ∈ {1, 2, · · · ∈}, at all

points (x1, · · · , xm) ∈ A.

(4) Harmonic maps to a Euclidean spaces: A smooth map φ :

(M, g) → Rn is harmonic if and only if each of its components is a

harmonic function on (M, g), i.e.,.4Mφα = 0 (α = 1, · · · , n). Note

that, in the last two examples, the harmonic equation is linear. However,

when the domain is not flat, this is no longer the case as sown by our

next few examples.

(5) Harmonic maps to the circle: S1 are given by integrating har-

monic 1-form with integral periods. Hence, when the domain M is com-

pact, there are non-constant harmonic maps to the circle if and only if

the first Betti number of M is non zero. In fact, there is a harmonic map

in every homotopyclass.

(6) Geodesics: For a smooth map (curve) φ : A → N from an open

subset A of R or from the circle S1, the tension field is just the acceler-
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ation vector of the curve; Hence φ is harmonic if and only if it defined a

geodesic parametrized linearly (i.e., parametrized by a constant multiful

of arc length). More generally, a map φ : M → N is called totally geodesic

if it maps linearly parametrized geodesic of M to linearly parametrized

geodesic of N , such maps are chracterized by the vanishing of their second

fundmental form.

(7) Holomorphic maps: Holomorphic maps φ : (M, g, JM) → (N, h, JN)

between Kähler manifolds are harmonic. Indeed, when M is compact,

the energy integral decomposes into

E(φ) = E
′
(φ) + E

′′
(φ)

where

E
′
(φ) =

∫

M

|∂φ|2ωg and E
′′
(φ) =

∫

M

|∂φ|2ωg

Here ∂φ (resp. ∂φ) denotes the (1,0) (resp. (0,1) part of dφ; this vanishes

precisely when φ is antiholomorphic (reps. holomorphic).

(8) Isometric immersions: Let φ : (N, h) → (P, k) be an isometric

immersion. Then its second fundamental form β(φ) of φ has values in

the normal space and coincides with the usual second fundamental form

A ∈ Γ(S2T ∗N ⊗NN) of N as an (immersed) submanifolds of P defined

on vector fields X, Y on M by A(X, Y ) = −normal component of ∇XY

(Here, by S2T ∗N we denotes the symmetrized tensor product of T ∗N

with itself and NN is the normal bundle of N in P ) In particular, the

tension field τ(φ) is m times the mean curvature of M in N so that φ is

harmonic if and only if M is a minimal submanifold of N .

(9) Compositions: The composition of two harmonic maps is not, in

integral, harmonic. In fact, the tension field of the composition of two
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smooth maps φ : (M, g) → (N, h) and f : (N, h) → (P, k) is given by

τ(f ◦ φ) =df(τ(φ)) + β(f)(dφ, dφ)

=df(τ(φ)) +
m∑

i=1

β(f)(dφ(ei), dφ(ei)), (3.8)

where {ei} is an orthonomal frame on N . From this we see that if φ is

harmonic and f totally geodesic, then f ◦ φ is harmonic.

3.3 Liouville type theorem for harmonic maps

Let (Mm, g) and (Nn, h) be Riemannian manifolds with dimM = m ≥
n = dimN . Let {ei}i=1,··· ,m be a local orthonomal frame field and

{wi}i=1,··· ,m the dual coframe field of {ei}. Let φ : M → N be a harmonic

map. It is trivial from (3.4) that

δ∇(dφ) = 0. (3.9)

From Proposition 2.4, we have the following proposition.

Proposition 3.6 Let φ : (M, g) → (N, h) be a harmonic map. Then

−1

2
4M |dφ|2 = |∇|dφ||2− < dφ, δ∇d∇(dφ) > +

m∑

k=1

h(dφ(RicM(ek)), dφ(ek))

−
m∑

k,j=1

h(RN(dφ(ej), dφ(ek))dφ(ek), dφ(ej)).

(3.10)

From Proposition 3.6, we can prove the following theorem.

Theorem 3.7 ([3]) Let M be a complete Riemannian manifold non-

negative Ricci cuvature and N be a complete Riemannian manifold of

non-positive sectional curvature. Then any harmonic map φ : M → N

of E2(φ) < ∞ is constant.
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Let µ0 is the infimum of the spectrum of the Laplacian4M on L2-function

on M .

Theorem 3.8 ([8]) Let φ : M → N be a harmonic map from a complete

Riemannian manifold M to a Riemannian manifold N with non-positive

sectional curvature. Assume RicM ≥ −µ0 at all x ∈ M and either

RicM > −µ0 at some point x0 ∈ M . Then any harmonic map φ : M →
N of E2(φ) < ∞ is constant.

3.4 Liouville type theorem for p-harmonic maps

Let (Mm, g) and (Nn, h) be Riemannian manifolds with dimM = m ≥
n = dimN . Let {ei}i=1,··· ,m be a local orthonomal frames on M . Let

φ : (M, g) → (N, h) be a p-harmonic map. Then we have from (3.6)

δ∇(|dφ|p−2dφ) = 0. (3.11)

From Proposition 2.4, we have the following lemma.

Lemma 3.9 Let φ : (Mm, g) → (Nn, h) be a p-harmonic map. Then the

Weitzenboc̈k formula is given by

−1

2
∆M |dφ|2p−2 = |∇(|dφ|p−2dφ)|2−〈|dφ|p−2dφ, δ∇d∇(|dφ|p−2dφ)〉+F (φ),

(3.12)

where

F (φ) = |dφ|2p−4

m∑

k=1

h(dφ(RicM(ek)), dφ(ek)) (3.13)

− |dφ|2p−4

m∑

k,j=1

h(RN(dφ(ej), dφ(ek))dφ(ek), dφ(ej)).

From Lemma 3.9 we have the following proposition.
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Proposition 3.10 Let M be a complete Riemannian manifold such that

for some constant C ≥ 0, RicM ≥ −C at all x ∈ M and let N be a

Riemannian manifold of non-positive sectional curvature. If φ : (M, g) →
(N, h) is a p-harmonic map, then

|dφ|4M |dφ|p−1 − 〈dφ, δ∇d∇(|dφ|p−2dφ)〉 (3.14)

≤ −|dφ|p−2

m∑
i=1

h(dφ(RicM(ei)), dφ(ei))

≤ C|dφ|p.

Proof. Since 1
2
∆M |dφ|2p−2 = |dφ|p−1∆M |dφ|p−1 − |∇M |dφ|p−1|2, from

(3.12) and (3.11) we have

|dφ|p−14M |dφ|p−1 =
∣∣∇M |dφ|p−1

∣∣2 −
∣∣d∇(|dφ|p−2dφ)

∣∣2 − F (φ) (3.15)

+ 〈|dφ|p−2dφ, δ∇d∇(|dφ|p−2dφ)〉.

By the first Kato’s inequality([1]), i.e.,|d5(|dφ|p−2dφ)|2 ≥
∣∣5M |dφ|p−1

∣∣2,
the equation (3.15) implies

|dφ|p−1 4M |dφ|p−1 − 〈|dφ|p−2dφ, δOdO(|dφ|p−2dφ)〉+ F (φ) ≤ 0 (3.16)

On the other hand, under the conditions that the sectional curvature of

N is non-positive and RicM ≥ −C, (3.13) implies

F (φ) ≥ |dφ|2p−4

m∑
i=1

h
(
dφ(RicM(ei)), dφ(ei)

) ≥ −C|dφ|2p−2 (3.17)

Hence (3.14) is obtained from (3.16) and (3.17). 2

Theorem 3.11 ([9]) Let M be a complete Riemannian manifold such

that RicM ≥ −4(p−1)
p2 µ0 for all x ∈ M and RicM > −4(p−1)

p2 µ0 at some

18



point x0. Let N be a complete Riemannian manifold with a non-positive

sectional curvature. Then any p-harmonic map with Ep(φ) < ∞ is con-

stant.

Proof. Let x0 be a point of M and fix it. We choose a Lipschitz con-

tinuous function ω` on M such that 0 ≤ ω`(y) ≤ 1 for any y ∈ M .

Multiplying (3.14) by ω2
` and integrating by parts, we get

∫

M

〈ω2
` |dφ|,4M |dφ|p−1〉 −

∫

M

〈ω2
` dφ, δOdO(|dφ|p−2dφ)〉 (3.18)

≤ −
m∑

i=1

∫

M

ω2
` |dφ|p−2h(dφ(RicM(ei)), dφ(ei))

≤ C

∫

M

ω2
` |dφ|p.

Since the inequality |〈V, W 〉| ≤ |V ||W |, By a direct calculation we have

∫

M

〈ω2
` |dφ|,4M |dφ|p−1〉 =

∫

M

〈d(ω2
` |dφ|), d|dφ|p−1〉 (3.19)

= A1

∫

M

〈|dφ| p2 dω`, ω`d|dφ| p2 〉

+
A1

p

∫

M

ω2
`

∣∣∣d|dφ| p2
∣∣∣
2

,

≥ −A1

∫

M

ω`|dφ| p2 |dω`|
∣∣∣d|dφ| p2

∣∣∣

+
A1

p

∫

M

ω2
`

∣∣∣d|dφ| p2
∣∣∣
2

,

where A1 = 4(p−1)
p

. Since
∣∣〈|dφ| p2 dω`, ω`d|dφ| p2 〉

∣∣ ≤ 1
a
|dφ|p|dω`|2+a|ω`d|dφ| p2 |2

for any real number a > 0, the equation (3.19) implies

∫

M

〈ω2
` |dφ|,4M |dφ|p−1〉 ≥ −A1

a

∫

M

|dφ|p|dω`|2

+

(
1

p
− a

)
A1

∫

M

∣∣∣ω`d|dφ| p2
∣∣∣
2

. (3.20)
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It is well-known ([9]) that for a function f on M and for some constant

b > 0,

|d5(fdφ)| ≤ b|df ||dφ|. (3.21)

Hence we have

|
∫

M

〈w2
`dφ,δOdO(|dφ|p−2dφ)〉|

=

∣∣∣∣
∫

M

〈dO(w2
`dφ), dO(|dφ|p−2dφ)〉

∣∣∣∣

≤
∫

M

∣∣dO(w2
`dφ)

∣∣ ∣∣dO(|dφ|p−2dφ)
∣∣

≤ 2b2

∫

M

w`dw`

∣∣d|dφ|p−2
∣∣ |dφ|2

≤ A2

∫

M

w`|dw`||dφ| p2
∣∣∣d|dφ| p2

∣∣∣

≤ αA2

∫

M

w2
`

∣∣∣d|dφ| p2
∣∣∣
2

+
A2

α

∫

M

|dw`|2|dφ|p

for any real number α > 0, where A2 = 4(p−2)
p

b2. From (3.20) and (3.21),

we have
∫

M

〈ω2
` |dφ|,4M |dφ|p−1〉 −

∫

M

〈ω2
` dφ, δOdO(|dφ|p−2dφ)〉 (3.22)

≥ − (A1 + A2)

∫

M

ω`|dω`||dφ| p2
∣∣∣d|dφ| p2

∣∣∣ +
A1

p

∫

M

∣∣∣ω`d|dφ| p2
∣∣∣
2

.

From (3.18) and the Fauto’s inequality, it is trivial that d|dφ| p2 ∈ L2.

Hence by the Hölder inequality

∫

M

ω`|dω`||dφ| p2
∣∣∣d|dφ| p2

∣∣∣ ≤
(∫

M

|dω`|2|dφ|p
) 1

2
(∫

M

ω2
`

∣∣∣d|dφ| 12
∣∣∣
2
) 1

2

.

If we let ` → ∞, then
∫

M
ω`|dω`||dφ| p2

∣∣d|dφ| p2
∣∣ → 0. From (3.18) and

(3.22), we have

A1

p

∫

M

∣∣∣d|dφ| p2
∣∣∣
2

≤ −
m∑

i=1

∫

M

|dφ|p−2h
(
dφ(RicM(ei)), dφ(ei)

) ≤ C

∫

M

|dφ|p.

(3.23)
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On the other hand, by the Rayleigh theorem, i.e.,
∫

M
〈df, df〉/ ∫

M
f 2 ≥ µ0

for any smooth function f such that supp(f) ⊂ Ω, a compact domain,

and the Hölder inequality, if we put f = ω`|dφ| p2 , then we have

µ0

∫

M

|dφ|p ≤
∫

M

∣∣∣d|dφ| p2
∣∣∣
2

. (3.24)

From (3.23) and (3.24), we have

A1

p
µ0

∫

M

|dφ|p ≤ −
m∑

i=1

∫

M

|dφ|p−2h
(
dφ(RicM(ei)), dφ(ei)

) ≤ C

∫

M

|dφ|p.

(3.25)

Since C = 4(p−1)
p2 µ0, (3.25) implies that

m∑
i=1

∫

M

|dφ|p−2h
(
dφ((RicM + C)(ei)), dφ(ei)

)
= 0. (3.26)

So if RicM + C > 0 at some point x, then dφ = 0. This implies that φ is

constant. 2

For any q with 2 ≤ q ≤ p, it is trial that −4(p−1)
p2 ≥ −4(q−1)

q2 . So we

have the following corollary.

Corollary 3.12 Let M be a complete Riemannian manifold such that

RicM ≥ −4(p−1)
p2 µ0 at all x ∈ M and RicM > −4(p−1)

p2 µ0 at some point x0.

Let N be a complete Riemannian manifold with a non-positive sectional

curvature. Then any q-harmonic map φ : M → N with 2 ≤ q ≤ p of

Eq(φ) < ∞ is constant.
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4 Harmonic morphisms

4.1 Horizontally weakly conformal maps

Definition 4.1 A smooth map φ : (Mm, g) → (Nn, h) is called hori-

zontally (weakly) conformal if for each x ∈ M at which dφx 6= 0, the

restriction dφx|Hx : Hx → Tφ(x)N is conformal and surjective, where

Hx = Ker(dφx)
⊥, the horizontal space of φ at x.

If we put Vx = Ker(dφx), then TxM = Hx ⊕ Vx. Let Cφ = {x ∈
M | dφx = 0}. Then we have the following.

Theorem 4.2 ([3]) A smooth map φ : (M, g) → (N, h) is horizontally

weakly conformal if and only if there exists a function λ : M −Cφ → R+

such that

h(dφ(X), dφ(Y )) = λ2g(X, Y ) ∀X, Y ∈ Hx. (4.1)

Note that at the point x ∈ Cφ we can let λ(x) = 0 and obtain a continuous

function λ : M → R+ ∪{0}, which is called the dilation of a horizontally

weakly conformal the map φ. Let {ei}i=1,··· ,m be a local orthonomal

frames on M such that {ei} ∈ Hx(i = 1, · · · , n) and {en+i} ∈ Vx(i =

1, · · · ,m− n). On taking the trace in (4.1) at a regular or critical point

x, we obtain

λ2 =
1

n
|dφ|2. (4.2)

Proposition 4.3 ([2]) Let φ : M → N be a horizontally weakly confor-

mal map. if dimM < dimN , then φ is constant.
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When gradλ is vertical, a horizontally weakly conformal map is called a

horizontally homothetic map. For example, a Riemannian submersion is

horizontally homothetic.

4.2 Harmonic morphisms

Definition 4.4 A continuous map φ : (M, g) → (N, h) is called a har-

monic morphism if for any harmonic function f : U → R on an open sub-

set U ⊂ N with φ−1(U) non-empty, the composition f ◦ φ : φ−1(U) → R

is also a harmonic function on φ−1(U). Namely, if τ(f) = 0 for any f,

then τ(φ ◦ f) = 0.

Theorem 4.5 ([7]) A smooth map φ : M → N is a harmonic morphism

if and only if it is harmonic and horizontally weakly conformal.

Proposition 4.6 ([2]) φ : Mm → Nn be horizontally weakly conformal

with dilation λ. Then, at a regular point,

τ(φ) = dφ(−(n− 2)grad(lnλ)H − (m− n)dφ(µν) = 0, (4.3)

where µν denotes the mean curvature of the fibers.

Thus φ is harmonic, and so a harmonic morphism, if and only if, at

regular points,

(n− 2)grad(lnλ)H + (m− n)µν = 0, (4.4)

where grad(lnλ)H denotes the orthogonal projection of the gradient of

the function lnλ onto the horizontal distribution H.
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Corollary 4.7 If n = 2 or gradλ is vertical at regular points, a horizon-

tally weakly conformal map is harmonic, and so is a harmonic morphism,

if and only if its fibers are minimal at regular points.

Corollary 4.8 A Riemannian submersion is a horizontally conformal

map with dilation 1. So a Riemannian submersion is a harmonic mor-

phism if and only if its fibers are minimal.

Examples. For more examples, see ([2]).

1. Constants and identity maps : are clearly harmonic morphisms.

2. Harmonic morphisms between surfaces : A smooth map be-

tween oriented surfaces is a harmonic morphism if and only if it is

holomorphic or anti-holomorphic.

3. Compositions : the composition of two harmonic morphism is a

harmonic morphism.

4. A Riemannian submersion :is harmonic, and so a harmonic

morphism, if and only if its fibers are minimal. The Hopf fiberations

have minimal(in fact, totally geodesic)fibers, and so are harmonic

morphism,

5. Warped product :The natural projection of a warped product

F ×f2 N → N onto its second factor is a horizontal distribution.

In particular, it is a harmonic morphism.

4.3 Liouville type theorem for harmonic morphisms

From Proposition 3.6 and (4.2) we have the following lemma.
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Lemma 4.9 ([6]) If φ : M → N is a harmonic morphism, then

−n

2
4Mλ2 = |∇dφ|2 + λ2trRicM

∣∣
H
− λ4rN ◦ φ, (4.5)

where λ denotes the dilation, trRicM |H the trace of the Ricci tensor of

M on the horizontal distribution H, and rN the scalar curvature of N .

Let µ0 be the least eigenvalue of 4M acting on L2-function on M . Then

we have the following proposition.

Proposition 4.10 Let M be a complete Riemannian manifold such that

RicM ≥ −µ0 at all x ∈ M and let N be a Riemannian manifold of

nonpositive scalar curvature. If φ : M → N is a harmonic morphism,

then

n4Mλ ≤ −λtrRicM
∣∣
H
≤ nµ0λ. (4.6)

Proof. Since 4Mλ2 = 2λ4Mλ− 2|∇Mλ|2, we have from (4.5),

nλ4Mλ = n|∇Mλ|2 − |∇dφ|2 − λ2trRicM
∣∣
H

+ λ4γN ◦ φ. (4.7)

Since |dφ|2 = nλ2, we have |dφ|∇M |dφ| = nλ∇Mλ and

∣∣∇M |dφ|
∣∣2 = n|∇Mλ|2. (4.8)

By the first Kato’s inequality([1]), i.e.,
∣∣∇M |dφ|∣∣2 ≤ n|∇dφ|2, (4.8) yields

n|∇Mλ|2 ≤ |∇dφ|2. (4.9)

Since the scalar curvature γN of N is nonpositive, the first inequality of

(4.6) follows from (4.7) and (4.9). The second inequality of (4.6) is trivial

from RicM ≥ −µ0. 2
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Theorem 4.11 Let M be a complete Riemannian manifolds such that

RicM ≥ −µ0 at all point x ∈ M and either RicM > −µ0 at some point

x0 or Vol(M) is infinite. Let N be a complete Riemannian manifolds

with the non-positive scalar curvature. Then any harmonic morphism

φ : M → N with E2(φ) < ∞ is constant.

Proof. Let x0 be a point of M and fix it. We choose a Lipschitz con-

tinuous function ω` on M such that 0 ≤ ω`(y) ≤ 1 for any y ∈ M .

Multiplying (4.6) by ω2
` λ and integrating by parts, we obtain

n

∫

M

〈dλ, d(ω2
` λ)〉 ≤ −

∫

M

ω2
` λ2trRicM

∣∣
H
≤ nµ0

∫

M

(ω`λ)2. (4.10)

By a direct calculation, we have

〈dλ, d(ω2
` λ)〉 = 2ω`λ〈dλ, dω`〉+ |ω`dλ|2 = |d(ω`λ)|2 − λ2|dω`|2. (4.11)

From (4.10) and (4.11), we have

∫

M

|d(ω`λ)|2 ≤ − 1

n

∫

M

ω2
` λ2trRicM

∣∣
H

+

∫

M

λ2|dω`|2 (4.12)

≤ µ0

∫

M

(ω`λ)2 +

∫

M

λ2|dω`|2.

Since µ0 is the infimum of the spectrum of the Laplacian 4M acting on

L2-functions on M, the Rayleigh theorem implies

∫

M

|d(ω`λ)|2 ≥ µ0

∫

M

(ω`λ)2. (4.13)

If we let ` → +∞ in (4.12) with (4.13),then we have

µ0

∫

M

λ2 ≤ − 1

n

∫

M

λ2trRicM
∣∣
H
≤ µ0

∫

M

λ2. (4.14)

This means that ∫

M

(
nµ0 + trRicM

∣∣
H

)
λ2 = 0. (4.15)
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(i) First case: If RicM ≥ −µ0 at all x and RicM > −µ0 at some x0, then

nµ0 + trRicM |H ≥ 0 for all x and nµ0 + trRicM |H > 0 at some point

x0, respectively. The unique continuation property for section implies

|dφ| = 0, i.e., φ is constant.

(ii) Second case: Now we study Theorem 4.11 under the assumption

RicM ≥ −µ0 and V ol(M) = ∞. We first note that for any real number

δ > 0

∣∣∣∣2
∫

M

ω`λ〈dλ, dω`〉
∣∣∣∣ ≤ δ2

∫

M

ω2
` |dλ|2 +

1

δ2

∫

M

λ2|dω`|2. (4.16)

From (4.10) , (4.11) and (4.16), we have

(1− δ2)

∫

M

ω2
` |dλ|2 − 1

δ2

∫

M

λ2|dω`|2 ≤ − 1

n

∫

M

ω2
` λ

2 trRicM
∣∣
H

(4.17)

≤ µ0

∫

M

(ω`λ)2.

If we choose δ = 1√
`

and let ` → +∞, then

∫

M

|dλ|2 ≤ − 1

n

∫

M

λ2trRicM
∣∣
H
≤ µ0

∫

M

λ2. (4.18)

On the other hand, from (4.11) and (4.17) we similarly obtain

(1 + δ2)

∫

M

ω2
` |dλ|2 ≥

∫

M

|d(ω`λ)|2 −
(

1 +
1

δ2

) ∫

M

λ2|dω`|2. (4.19)

If we put δ = 1√
`

and let ` → +∞, then we have from (4.13)

∫

M

|dλ|2 ≥ µ0

∫

M

λ2. (4.20)

From (4.18) and (4.20), we have
∫

M
(4Mλ− µ0λ)λ = 0. Hence (4.6) im-

plies that4Mλ = µ0λ. This means that λ is nonnegative L2-subharmonic

function. By the maximum principle ([16,18]), λ is constant. Since

V ol(M) = ∞, it is trivial that λ = 0, which yields that φ is constant.
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4.4 Liouville type theorem for p-harmonic morphisms

Let φ : (Mm, g) → (Nn, h)(m ≥ n) be a p-harmonic morphism with

dilation λ. Let {ei}i=1,··· ,m be a local orthonomal frame field on M such

that {ei}i=1,··· ,n ∈ Hx and {ei}i=n+1,··· ,m ∈ Vx. Then it is trial from (4.1)

that

|dφ|2 = nλ2. (4.21)

Moreover, it is easy to see that

m∑
i=1

h
(
dφ(RicM(ei)), dφ(ei)

)
=

n∑
i=1

λ2g
(
RicM(ei), ei

)

= λ2 trRicM
∣∣
H

(4.22)

and

m∑
i,j=1

h
(
RN(dφ(ei), dφ(ej))dφ(ej), dφ(ei)

)

=
m∑

i,j=1

h
(
RN(λ(vi), λ(vj))λ(vj), λ(vi)

)

= λ4γN ◦ φ

= λ4scalN ◦ φ (4.23)

From (4.21), (4.22) and (4.23), we have the following lemma.

Lemma 4.12 Let φ : (M, g) → (N, h) be a p-harmonic morphism with

dilation λ. Then we have the following.

−1

2
n4M λ2p−2 =

∣∣∇(λp−2dφ)
∣∣2 − 〈

λp−2dφ, δ∇d∇(λp−2dφ)
〉

(4.24)

+ λ2p−2tr
(
RicM

∣∣
H

)− λ2pscalN ◦ φ.

From Lemma 3.10 and (4.21), we have the following lemma.
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Lemma 4.13 Let M be a complete Riemannian manifolds such that

RicM ≥ −C (C > 0) at all x ∈ M and let N be a Riemannian manifolds

of non-positive scalar curvature. If φ : (M, g) → (N, h) is a p-harmonic

morphism, then

nλ4M λp−1 − 〈
dφ, δ∇d∇(λp−2dφ)

〉 ≤ −λptr
(
RicM

∣∣
H

) ≤ nCλp. (4.25)

Theorem 4.14 Let M is a complete Riemannian manifold such that

RicM ≥ −4(p−1)
p2 µ0 for all x and RicM > −4(p−1)

p2 µ0 at some point x0. Let

N be a complete Riemannian manifold with non-positive scalar curvature.

Then any p-harmonic morphism φ : M → N of Ep(φ) < ∞ is constant.

Proof. Let us put C = 4(p−1)
p2 µ0 in Lemma 4.13. By the same process as

in the proof of Theorem 4.11, we have that

∫

M

λp
(
trRicM + C

)∣∣
H

= 0. (4.26)

So RicM > −C at some point x0 implies that λ = 0. Hence φ is constant.

2

Corollary 4.15 Let M be a complete Riemannian manifold such that

RicM ≥ −4(p−1)
p2 µ0 at all x ∈ M and RicM > −4(p−1)

p2 µ0 at some point

x0. Let N be a complete Riemannian manifold with a non-positive scalar

curvature. Then any q-harmonic map φ : M → N with 2 ≤ q ≤ p of

Eq(φ) < ∞ is constant.
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<국문초록>

p -조화사상에 대한 리우빌 형식의 정리

조화함수에 대한 고전적인 리우빌정리는 “평면상에서 유계된 조화

함수는 상수 뿐이다.” 이다. 본 논문에서는 유한의 p -에너지를 갖

는 p -조화함수에 대한 리우빌형식의 정리를 연구하였다. 즉, 리치 

곡률 Ric
M≥ -

4(p-1)

p
2 μ0을 만족하는 완비인 리만다양체로부터 양

수가 아닌 단면곡률을 갖는 리만다양체로의 p -조화함수가 유한 p 

-에너지를 가지면 p -조화함수는 상수이다. 또한 양수가 아닌 

scalar 곡률을 갖는 완비인 리만다양체로의 p -조화사상이  유한 p 

-에너지를  가지면 p -조화사상은 상수이다.
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