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(Abstract)

LINEAR PRESERVERS OF TERM RANK
OF FUZZY MATRIX PRODUCT

In this thesis, we construct the sets of fuzzy matrix pairs. These sets are naturally occurred
at the extreme cases for the (zero) term rank inequalities relative to the product of fuzzy matri-
ces. These sets were constructed with the fuzzy matrix pairs which are related with the term
ranks of the products and the zero term ranks of the products of two fuzzy matrices.

That is, we construct the following 5 sets;
Ti(F) = {(X,Y) € My u(FP(XY) = min{r(X),c(Y)}};

B(F) = {(X,Y) € Mumu(F)?[H(XY) = #(X) + (V) — n};
T3(F) = {(X, Y, Z) € Muu(FPIH(XY Z) + 1(Y) = p(XY) + p(Y Z)};
21(F) = {(X,)Y) € Mynn(F)?|2(XY) = 0};

2(F) ={(X,Y) € Minn(F)?|2(XY) = 2(X) + 2(Y) };

For these 5 sets of fuzzy matrix pairs, we consider the linear operators that preserve them.
We characterize those linear operatord§dX’) = PXQ or T'(X) = PX'Q with appropriate
invertible fuzzy matrice$® and@. We also prove that these linear operators preserve above 5

sets.



1 Introduction and Preliminaries

One of the most active and continuing subjects in matrix theory during the last century,
is the study of those linear operators on matrices that leave certain properties or relations of
subsets invariant. Such questions are usually called "Linear Preserver Problems”. The earliest
papers in our reference list are Frobenius(1897) and Kantor(1897). Since much effort has been
devoted to this type of problem, there have been several excellent survey papers. For survey
of these types of problems, we refer to the article of Song([11]) and the papers in [10]. The
specified frame of problems is of interest both for matrices with entries from a field and for
matrices with entries from an arbitrary semiring such as Boolean algebra, nonnegative integers,
and fuzzy sets. It is necessary to note that there are several rank functions over a semiring that
are analogues of the classical function of the matrix rank over a field. Detailed research and
self-contained information about rank functions over semirings can be found in [1, 11].

There are some results on the inequalities for the rank function of matrices([1, 2, 3, 4]).
Beasley and Guterman ([1]) investigated the rank inequalities of matrices over semirings. And
they characterized the equality cases for some rank inequalities in [2]. The investigation of
linear preserver problems of extreme cases of the rank inequalities of matrices over fields
was obtained in [4]. The structure of matrix varieties which arise as extremal cases in the
inequalities is far from being understood over fields, as well as semirings. A usual way to
generate elements of such a variety is to find a matrix pairs which belongs to it and to act on
this set by various linear operators that preserve this variety. Song and his colleagues ([3])
characterized the linear operators that preserve the extreme cases of column rank inequalities
over semirings.

There are some results on the linear operators that preserve term rank([7, 8]) and zero-term
rank([5]). But in these papers, the authors studied the term rank and zero-term rank function
themselves.

In this thesis, we characterize linear operators that preserve the sets of matrix pairs which

satisfy extreme cases for the term rank inequalities and zero-term rank inequalities for the



product of matrices over fuzzy semirings.

Definition 1.1. ([3]) A semiringS consists of a se$ and two binary operations, addition and

multiplication, such that:
e Sis an Abelian monoid under addition (identity denoted by 0);
e Sis a semigroup under multiplication (identity, if any, denoted by 1);
e multiplication is distributive over addition on both sides;
e s0=0s=0forallseS.

Definition 1.2. ([3]) A semiring is calledantinegativef the zero element is the only element

with an additive inverse.

Definition 1.3. ([5]) The Boolean semiring consists of the get= {0, 1} equipped with two
binary operations, addition and multiplication. The operations are defined as usual except that

= ],

Definition 1.4. ([1]) A semiring is calledchainif the setS is totally ordered with universal
lower and upper bounds and the operations are definedby = max{a,b} anda - b =

min{a, b}.

It is straightforward to see that any chain semiring is commutative and antinegative.
Throughout we assume that < n. The matrixl,, is then x n identity matrix, J,, ,, is
them x n matrix of all onesO,, ,, is them x n zero matrix. We omit the subscripts when

the order is obvious from the context and we wiite/, andO, respectively. The matri¥; ;,
called acell, denotes the matrix with exactly one nonzero entry, that being a one i, the
entry. LetR; denote the matrix whosé&" row is all ones and is zero elsewhere, @ddenote
the matrix whosg'" column is all ones and is zero elsewhere. We 4gtdenote the number
of nonzero entries in the matrig.

Let M,, »(S) denote the set of. x n matrices with entries from the semiring Snif = n,

we use the notation/,, (.S) insteed ofM,, ,,(.5).



Definition 1.5. ([12]) Let R be the field of reals, leF={a. € R | 0 < « < 1} denote a subset
of reals. Definer + b = max{a,b} anda - b = min{a, b} for all a,b in . Then(F,+,) is
called afuzzysemiring.

Let M,,, ,(F) denote the set of ath x n matrices with entries in fuzzysemiring#. We

call a matrix inM,, ,,(F) as afuzzymatrix.
Definition 1.6. ([4]) A line of a matrix A is a row or a column of the matrix.

Definition 1.7. ([7]) A matrix A € M, ,,(F) hasterm rankk (t(A) = k) if the least number
of lines needed to include all nonzero elementsia$ equal tok. Let us denote by(A) the
least number of columns needed to include all nonzero elememsao byr(A) the least

number of rows needed to include all nonzero elements. of

Definition 1.8. ([5]) A matrix A € M,, ,(F) haszero-term rankk (z(A) = k) if the least

number of lines needed to include all zero elementd & equal tok.

Example 1.9. Let

" 283 1

3 3 1 3 00
S 2 4 =1 2 3
A 2 0 [ B=| i

I3 2

Thent(A) = 3,2(A) =1,¢(B) = 2andz(B) = 3 for A, B € M3(F).

Definition 1.10. ([10]) A matrix A € M,, »(F) hasfactor rankk (rank(A) = k) if there
exist matricesB € M,, ,(F) andC € My, (F) such thatd = BC andk is the smallest
positive integer such that such a factorization exists. By definition the only matrix with factor

rank equal to O is the zero matri®,

If S is a subsemiring of a certain field then there is a usual rank fungtidn for any
matrix A € M,, »,(S). Itis easy to see that these functions are not equal in general but the

inequalityrank(A) > p(A) always holds.

Example 1.11. ConsiderZ, , the set of nonnegative integers. The semithgis embedded



in the real fieldR. Then the matrix
01 2
A=|2 10
3 3 3

has different values as, wherenk(A)=3 andp(A)=2.

Definition 1.12. ([2]) Let F be a fuzzy semiring. An operat@i : M., ,,(F) — My, n(F) is
calledlinearif (X +Y) =T(X)+T(Y) andT (aX) = oT(X) forall X, Y € M, »(F),
aeF.

Definition 1.13. ([3]) We say an operatof,, preserves setP if X € P implies thatl'(X) €
P,or, if (X,Y) € Pimpliesthat(7T(X),T(Y)) € P whenP is a set of ordered pairs.

Definition 1.14. ([7]) The matrix X o Y denotes théHadamardor Schur produgti.e., the

(i,7) entry of X o Y is z; jy; ;.

Definition 1.15. ([7]) An operator?’ is called a( P, (), B)-operatorif there exist permutation
matricesP and(@, and a matrixB with no zero entries, such tha{ X' ) = P(X o B)Q for all

X € Myn(F),orifm=n,T(X)= P(X oB)'Qforall X € M,,,(F). The operator
T(X) = P(X - B)Q is called nontransposingP, @, B)-operator. A(P, (), B)-operator is

called a( P, Q)-operatorif B = J, the matrix of all ones.

Itwas shownin [2, 4, 9] that linear preserves for extremal cases of classical matrix inequal-
ities over fields are types 6P, Q)-operators wher® and@ are arbitrary invertible matrices.
On the other side, linear preservers for various rank functions over semirings have been the
object of much study during the last years, see for example [6, 7, 8, 10], in particular term rank

and zero term rank were investigated in the last few years, see for example [5].

Definition 1.16. ([5]) We say that the matrixt dominateghe matrixB if and only if b; ; # 0

implies thata; ; # 0, and we writeA > B or B < A.

Definition 1.17. If A andB are matrices and > B we let A\ B denote the matriX’ where
0 ifb;#0

CZ}] =
a;; otherwise



The behaviour of the functiomwith respect to matrix multiplication and addition is given
by the following inequalities:

Sylvester’s laws
p(A) + p(B) — n < p(AB) < min{p(A), p(B)},
and theFrobenius inequality
p(AB) + p(BC) < p(ABC) + p(B),

whereA, B, C are conformal matrices with coefficients from a field.



2 Term Rank Inequality Of Fuzzy Matrix Product

We obtain various inequalities for term rank of matrix product over fuzzy semirings. We
also show that these inequalities are exact and best possible.

We denote byd @ B the block-diagonal matrix of the form

O
O B

Note that in this sense the operati@is not commutative.

Over a fuzzy semiring the Sylvester lower bound holds:

Proposition 2.1. ([1]) Let F be a fuzzy semiring. Then for adye M, ,,(F), B € M, 1(F)
the following inequality holds:

ey 0 if t(A) + (B) < n,

tH(A)+t(B) —n if t(A) £ £(B) > n.

This bound is exact and best possible.

Proof. Let A € M,,, ,(F), B € M,, ,(F) be arbitray matrices(A) = t4, t(B) = tg. Then
A and B have generalized diagonals withand¢z nonzero elements, respectively. Denote
them byD 4 andD g, respectively. Thed B > D 4 Dp since F is antinegative. Since the prod-
uct of two generalized diagonal matrices, which h&yandtz nonzero entries, respectively,
has at least4 + tg — n honzero entries, the inequality follows.

In order to show that this bound is exact and the best possible for eacfrpgir0 < r,
s < nletustaked, = I, O,—., Bs = O,—s P I, in the casen = n. Itis routine to

generalize this example for the case# n. O]

Example 2.2. Let A, B € M,,(F). The inequalityt(AB) < min(t(A),¢(B)) does not hold.
Itis enough to taked = C1, B = R;. Then

HAB) = t(J,) =n > 1.



However the following inequality is true.

Proposition 2.3. ([1]) Let F be a fuzzy semiring. Then for adye M., ,(F), B € M, x(F)
the inequalityt(AB) < min(t¢,(A),t.(B)) holds. This is exact and the best possible bound.

Proof. This inequality is a direct consequence of the definition of the term rank and antineg-
ativity. The exactness follows from Example 2.2. In order to prove that this bound is the
best possible, for each pdir,s), 0 < r < m, 0 < s < k, consider the family of matrices

Ar:E1,1+---+E7',1 anst=E171+...—|—E17S. ]

Example 2.4. For an arbitrary fuzzy semiring, the trip(€', R1,0) is @ counterexample to
the term rank version of the Frobenius inequality, si(€& R, ) +¢(R10) = n > t(C1R10) +
t(Ry) = 1. However if 7 = {0, 1} is a subsemiring oR* the following obvious version is
true :

p(AB) + p(BC) < t(ABC) + #(B).



3 Zero-Term Rank Inequality Of Fuzzy Matrix Product

We obtain inequalities for the zero-term rank product over fuzzy semirings. We also show

that these inequalities are exact and best possible.

Proposition 3.1. ([1]) Let F be a fuzzy semiring. Fad € M,,, ,(F), B € M, one has
that
0 < 2(AB) < min{z(A4) + z(B), k, m}.

These bounds are exact and the best possible for2.

Proof. The lower bound follows from the definition of the zero-term rank function. In order
to show that this bound is exact and the best possible let us consider the family of matrices:
for each pair(r,s), 0 < r < min{m,n}, 0 < s < min{k,n}, we taked, = J\(X]_,E;;),
By = J\(X5_Ei;11) if s <min{k,n} andB; = J\(2={ Bijs1 + Es1) if s = min{k,n}.
Thenz(A,) = r, z(Bs) = s by definition and if» > 2 then A, B, does not have zero elements
by antinegativity. Thus (A, Bs) = 0.

The upper bound follows directly from the definition of zero-term rank and from the an-
tinegativity of F.

In order to show that this bound is exact and the best possible let us consider the family
of matrices: for each paifr,s), 0 < r < min{m,n}, 0 < s < min{k,n}, we takeA, =

J\(Z7_, R;) andB, = J\(Z5_,C)). 0

Example 3.2. The triple(C4, I, Ry) is a counterexample to the zero-term rank version of the

Frobenius inequality, since
2(C1) 4+ 2z(R1) =2n—2> z(C1R1) + z(I) =n

forn > 2.



4 Basic Results For Linear Operator Of Fuzzy Matrices

In this section, we obtain some basic results for our main theorems in the section 5 and 6.

For a surjective linear operator, we have the followings.

Lemma 4.1. Let F be a fuzzy semirind’ : M, »(F) — M, »(F) be an operator which
maps lines to lines and is defined BYE; j) = E,; j), Whereo is a permutation on the set

{(4,7)|i=1,2,--- ;m;j =1,2,---,n}. ThenT is a(P, Q)-operator.

Proof. Since no combination af rows andv columns can dominaté whereu+v = m unless

v = 0 (orif m = n, if u = 0) we have that either the image of each row is a row and the image
of each column is a column, @t = n and the image of each row is a column and the image of
each column is a row. Thus, there are permutation matficasd( such thafl'(R;) < PR;Q
andT’(C;) < PC;Qor, if m =n,T(R;) < P(R;)'Q andT(C;) < P(C;)'Q. Since each cell
lies in the intersection of a row and a column andaps nonzero cells to nonzero (weighted)
cells, it follows thatl'(E; ;) = PE; ;Q, or, if m = n, T(E; ;) = PE;;Q = P(E; ;)'Q.

ThenT is a(P, Q))-operator. O

Lemma4.2. LetT : M, n(F) — Mpyn(F) be a(P, Q) — operator. ThenT preserves all

term rank and zero term rank.

Proof. Let 7w be a permutation correspondiiy 4« be a permutation correspondigy

Lett(A) = r with A € M,, »(F). Then there are r lines such that those r lines cover all

nonzero entries o, sayry, 1o, - -+, rs, €1, C2, -+ -, ¢t With s + ¢t = r, covers all nonzero
entries ofA. ThenPAQ is covered byﬂ(l), Tr@2)s " 1 Tr(s) andcu(l), Cu(2)r " 1 Cud) with
s+t=r.

Thust(PAQ) = r and hence(T'(A)) = r. Thereforel preserves term rank r, and hence
T preserves all term rank.

Similarly T preserves all zero term rank.



Theorem 4.3.LetF be afuzzy semiring aril : M., ,,(F) — M, ,(F) be alinear operator.

Then the following are equivalent:
1. T is bijective.
2. T is surjective.

3. There exists a permutatienon {(i,j) | ¢ = 1,2,--- ,m;j = 1,2,--- ,n} such that
T(Eij) = Eo(j)-

Proof. That 1) implies 2) and 3) implies 1) is straightforward. We now show that 2) implies

3).

We assume thdt’ is surjective. Then, for any pait, j), there exists som& such that
T(X) = E; ;. ClearlyX # O by the linearity off". Thus there is a pair of indexgs, s) such
thatX = z, ;E, s + X' where(r, s) entry of X' is zero and the following two conditions are
satisfied:z, s # 0 andT'(E, ;) # O. Indeed, if in the contrary for all pai(s, s) eitherz, ; = 0
orT'(E, ) = O thenT(X) = 0 which contradicts with the assumptidi(X) = E;; # 0.
Hence

T(xr,sEr,s) 3 T(xr,sEr,s) T T(X \ (xr,sEr,s)) = T(X) = Ez',j

. Thatis,z, T (Ers) = T(xy By s) < E;j. ThusT (z, By s) = oF; ; for a certaina € F.
That is, there is some permutaieron {(¢,j) |« = 1,2,--- ,m;j = 1,2,--- ,n} such that
for some scalars; j, T(E; ;) = bijEq; ;. We now only need show that thg; are all
units. SinceT is surjective andl’'(E; s) £ Ey(; ;) for (r,s) # (i,j),there is somex such
thatT(aE; ;) = E,( j)- Butthen, sincd’ is linear, T'(aE; ;) = oT(E;j) = ab; jE,q ) =

E, i ). Thatis,ab; j = 1, orb; j is a unit. But 1 is the only unit over fuzzy semiring. Thus

bi,j =1 andT(Em) = EU( ]

?:7j).

10



5 Term Rank Preservers Of Fuzzy Matrix Product

In this section, we obtain characterizations of the linear operators that preserve the set
of matrix pairs which arise as the extremal cases in the inequalities of term rank of matrix
products.

Below, we use the following notations in order to denote sets of matrices that arise as the
extremal cases in the inequalities of term rank of matrix products listed in section 2 .

Ti(F) = {(X,Y) € Myp(F)*[t(XY) = min{r(X),c(Y)}},

T(F) = {(X,Y) € My (F)*t(XY) =t(X) + t(Y) — n},

T(F) = {(X,Y,Z) € Mp(FPHXY Z) +t(Y) = p(XY) + p(Y2)}.

5.1 Linear Preservers of7;(F)

Consider the set of matrix pairs:
T(F) = {(X,Y) € Mp(F)*[(XY) = min{r(X), c(Y)}}.
This set contain$/, I) and hence it is not empty.

We characterize the linear operators that preserve; $&t).

Theorem 5.1. Let F be a fuzzy semiring, : M,,(F) — M, (F) be a surjective linear map.
ThenT preserves the s (F) if and only if T is a( P, P*)-operator, whereP is a permutation

matrix.

Proof. By Theorem 4.3 we have th@{(F; ;) = E,(; j foralli,j, 1 <i<m,1<j<n,o
is a permutation on the set of paifis ;).

For all k one has thatt; ;, ;) € 71(F) since

t(Ei;E;r) =t(Eir) =1=min{l,1} = min{r(E;;),c(E;x)}. Thust(T(E; ;) T(E; 1)) =
min{r(T(E;;)),c(T(F;r))} = 1 sinceT transforms cell to cells. BUt'(E; ;)T(Ejx) =
Ey(ij)Eos(jk) SO thatE,; ) is in the same row a&,; ;) for everyk. That is, 7" maps rows
to rows, similarlyZ” maps columns to columns. That5(X) = PX( for some permutation
matricesP and Q. Therefore,I'(E; ;) = E,(;-(;) Whereo is the permutation correspond-

ing to P and is the permutation corresponding . But (E1;, E;1) € 71(F) implies

11



(T'(E1;), T(E;1)) € Ti(F) by assumtion. Thus,E, 1y-(i), Eoi)r1)) € 71(F), and hence
o = T, thatis,Q = Pt.

Conversely, P, Q)-operators preserve term rank by Lemma 4.2.Hedt¢e! )-operators
preserve the term rank, c(A) and r(A), since fuzzy semitfds antinegative. Therefore

(P, P*-operators preservg (F).

5.2 Linear Preservers of7;(F)

Consider the set of matrix pairs:
T(F) = {(X,Y) € My(F2[H(XY) = t(X) + t(Y) — n}.
This set contain$/, ) and hence it is not empty.

We characterize the linear operators that preservé;$&t).

Lemma 5.2. Let F be an abitrary fuzzy semiring and the linear transformaftionM,,(F) —

M., (F) preserves the sé@k(F). Then7 preserve the set of matrices with term-rank

Proof. Let A = 0 and letB be any matrix of term rank.
Then,t(A) =0, t(AB) = 0.
Hencet(AB) = t(A)+t(B)—n. Itfollows thatt(T'(A)T(B)) = t(T(A))+t(T(B))—n,
since7 preserverd;(F) .
Thatis,0 =0+ t(7'(B)) — n.
It follows thatt(7'(B)) = n . Thatis,T" preserves term-rank.
O

Lemma 5.3. Suppose? is a fuzzy semirindl is surjective linear transformatioft : M,,(F) —
M, (F). Transformatioril” preserves the set of matrices with term rank n if and onlyig a

(P, Q) — operator, whereP and @ are permutation matrices of order n.

Proof. By Theorem 4.3 we have tha@t(E; ;) = E,(; j foralli,j, 1 <i<m,1<j<n,0o

is a permutation on the set of paifis ;).

12



Let us show thaf’~!' maps lines to lines. Assume that the preimage of a row is not
dominated by any line. Then there are two cells in one line such that their preimages are not in
one line. Let us consider the celts ;, and E;; such thaﬂ“*l(Ei,k +FEi ) <E.s+Epqp#
r,q#£ S andT—l(Ez-,k + E; ;) is not dominated by each of the cells , E, ,.

By extendingE, ; + E, , to a permutation matrix by adding— 2 cells, we find a matrix
A suchthat(A) =n.

SinceT preservers term rank by assumption one has that’(A)) = n.

On the other hand]'(A) is dominated by — 1 lines by the choice of, ; and E, ,
and condition that the image of a cell is a cell, a contradiction wiif{A4)) = n. Thus the
preimage of every row is a row or a column.

Similarly, the preimage of every column is a column or a row.

Moreover, since is bijective on the set of pail$, j) and each row intersects each column
and does not intersect rows, maps rows to rows and columns to columns, or , it is also
possibleT maps all rows to columns and all columns to rows. Thus there are permutation
matricesP and@ such thafl'(E; ;) = PE,; ;Q,or,T(E; ;) = PE;;,Q = P(E;;)'Q,i.e, Tis
a (P, Q)-operator wheré? and() are permutation matrices of order n.

Therefore, we have that is a(P, QQ)-operator.

Conversely, lefl’ be a(P, Q)-operator.TherT" preserves all term rank by Lemma4.2 and
hencel preserve the set of matrices with term rank

O]

Theorem 5.4. Let F be a fuzzy semiring, : M,,(F) — M,(F) be a linear surjective map.
Then T preserves the s&t(F) if and only if T is a nontransposingP, P*) — operators ,

where P is a permutation matrix.

Proof. (<) LetT be a nontransposing®, P*)-operators, on\/,,(F). By Lemma4.2( P, Q)-
operators preserve all term ranks. TRUB(X) + t(T(Y)) —n =t(X) + t(Y) — n.
And t(T(X)T(Y)) = t(PXP'PYP!) = ¢(PXYP!) = t(XY).If (X,Y) € To(F),
Thent(XY) = t(X) + t(Y) + n. By above (T (X)T(Y)) = t(T(X)) + t(T(Y)) — n.
Therefore(T(X),T(Y)) € Ta(F).

13



HenceT preserveds(F) .

(=) Assume that linear preservers of the BgtF). ThenT preserves the set of term rank
n matrices by Lemmab.2 . Thus by applying Lemma 5.3 we obtairifthst (P, Q)-operator.

Thatis, T(X) = PXQ or T(X) = PX'Q . ButT1(X) = X! does not preserve the
setZy(F). Indeed, the pai(X = E; ;,Y =1 — E; ;) € To(F) sincet(XY) =¢(0) =0 =
1+(n—1)—n = t(E; ;)+t(I—E; j)—n. However( X' = E; ;) Y' = I-E; ;) ¢ To(F) since
HX'YY) =t(Ej) =1#0=tX")+t(Y")—n. ThusT (X) = PX'Q does not preserve the
set73(F). ThereforeI'(X) = PX() is a nontransposingP, @)-operator. Finally it remains
to prove that) P = I, the identity matrix.

We have that &P, Q)-operator preserves the SB{F) by Lemma4.2............... (1)

Thust(XY) = ¢(T(X)T(Y)) = t(PXQPYQ) = t(XQPY) for all pairs(X,Y) €
72(F). The matrix@Q P is permutation matrix as a product of two permutation matrices.

Assume that) P = I andQP transformg’th column intoj’th column. ............. (2)

LetX =F;;,Y =1, — E;;. Thent(X) =1,t((Y) =n—1, {(XY) = t(0) = 0 and
t(X)+t(Y)—n=14(n—-1)—n=0.ie(X,Y) € To(F).

On the other sideXQP = E; ;QP = E; j from (2). ThenXQPY = E; ;(I,, — E;;) =
Eij—0=E;;.

Now, t(T(X)T(Y)) = t(PXQPYQ) = t(XQPY) =1,andt(T(X))+t(T(Y))—n =
HPXQ)+t(PYQ)—n=tX)+t(Y)—n=1+(n—1)—n=0. Hence}(T(X)T(Y)) #
HT(X))+t(T(Y)) —n. Thus,(T(X),T(Y)) € T2(F). This contradicts the fact that ).
This contradiction comes frorf2). ThusQP = I andPQ = I. i.e., Q = P'. ThusT is a

(P, P*)-operator.

5.3 Linear Preservers of73(F)

Consider the set of matrix pairs:
T3(F) ={(X,Y, 2) € Mp(F)’ (XY Z) + t(Y) = p(XY) + p(Y Z)}.

This set containé!, I, I') and hence it is not empty.

14



We characterize the linear operators that preservé;$&t).

Theorem 5.5. Let F be a fuzzy semiring; : M, (F) — M, (F) be a linear surjective map.
Then T preserves the s&(F) if and only if T is a nontransposingP, P') — operators ,

where P is a permutation matrix.

Proof. By Theorom 4.3 we have that(E; ;) = E,; ; foralli,j, 1 <i,j < n, whereo is a
permutation on the set of paifs j). Then(E; ;, E; i, Ei;) € T3(F) for all [ and for abitrary
fixedi, j, k sincet(E;; B; 1 Eyy) + t(Ejr) = 1+ 1andp(E; ;E; ;) + p(EjrEry) =1+ 1.

SinceT preservesthe s@k(F), t(T(E; ;)T (Ejr)T (Er))+H(T(Ejk)) = p(T(Eij)T(Ejk))+
P(T (Ej) T(Eg,))-

By Theorem 4.3 it follows thal (E; ;) = Ep 4, T(Ejx) = Ers, T(Ey;) = By ,. Since
t(Ers) = 1 # 0 it follows from the last equality that either= ¢ or s = w or both. Let us
assume that only one of the equalities hold for a cettain

Without loss of generality, assume that u andr # ¢. Thus for arbitraryn, 1 < m <n
one has thatE; ;, Ej k., Exm) € T3(F).

By Theorem 4.3, we havB(E; ;) = Ep, ¢, T(E; 1) = Ers, T(Ekm) = Ew,.. SiNcer # q
and(E, 4, E, s, By ») € T3(F), it follows thats = w, and hencé’ mapsk'th row into s'th
row. Thus in this case we obtain : rows are transformed to rows.

By the same arguments, columns are transformed to columns.

Assume thas # w andr = q. (Eqj, Eji, Ery) € T3(F). T(Equj) = Evy, T(Ej)) =
E, s, T(Ey;) = Euy. And hencey = y = r.

It follows that there exists a permutatidghand @ such thatl'(X) = PXQ forall X €
M, (F).

In order to show that the transposition transformation does not preggntesuffices to
show an example th&¥ 5, F» 3, C3) € T3(F) and(Fa 1, Es 2, Rs) & T3(F).

In order to show tha€) = P' it suffices to show thatE; ;, E; ., E; ;) € T3(F). In fact,
HEiEjkEij) + t(Ejx) =0+ 1, p(Ei jEjr) + p(EjrEij) =1 +0.

Let o is corresponding® andr is corresponding)’.

By assumption(T'(E; ), T(Ej k), T(Ei ;) = (Eo(i)r(j)> Eo()r)> Eotiyrj)) € T(F)-

15



Thuso = 7. HenceQ = P! andT is a(P, P!)-operator.
Conversely, nontransposir{@, P*)-operator preserves term rank by Lemma 4.2. More-
over, nontransposingP, P!)-operator preserves real rank since P is an invertible matrix over

real fieldR. Hence( P, P')-operator preserves;(F).
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6 Zero-Term Rank Preservers Of Fuzzy Matrix Product

In this section, we obtain characterizations of the linear operators that preserve the set of
matrix pairs which arise as the extremal cases in the inequalities of zero-term rank of matrix
products.

Below, we use the following notations in order to denote sets of matrices that arise as the
extremal cases in the inequalities of zero-term rank of matrix products listed in section 3.

21(F) = {(X,Y) € Mn(F)*|2(XY) = 0},

Zo(F) ={(X,Y) € Mp(F)?|2(XY) = 2(X) + 2(Y)}.

6.1 Linear Preservers ofZ,(F)

Consider the set of matrix pairs:

Z1(F) ={(X,Y) € M,,(F)?*2(XY) = 0}.

This set containéJ, J), where J is the. x n matrix with1’s as its all entries. Thug, (F)
is not empty.

We characterize the linear operators that preserv€gef).

Theorem 6.1. Let F be a fuzzy semiring, : M,,(F) — M, (F) be a linear surjective map.
Then T preserves the s&(F) if and only if T is a nontransposingP, P') — operators ,

where P is a permutation matrix.

Proof. By Theorem 4.3 we have th@{(F; ;) = E,(; j foralli,j, 1 <i<m,1<j<n,o
is a permutation on the set of pais ).
Let us show thaf” maps lines to lines.
Suppose that the images of two cells are in the same line, but the cells are not in the same
line, say,E; ;, E; . are the cells such that—l(E,-J), T‘l(E@k) are not in the same line.
Let us considerl = T—1(J \ R;). Thus there are no zero rows dfsinceT is a permuta-
tion on the set of cells and not all elements of the preimage aofttheow of .J lie in one row
by the choice ot. HenceAJ does not have zero elements by the additions and multiplications

in 7 andz(AJ) = 0.

17



Thus (A,J) € Zi(F) as far as(T(A),T(J)) = (T(T7YJ \ R)), T(J)) = (J\

R, T(J)) & Z1(F), sincez((J \ R;)(T'(J))) = =z(J \ R;) = 1, a contradiction to the as-
sumption that T preserves the sat(F) .

Moreover, since is bijective on the set of pail3, j) and each row intersects each column
and does not intersect row®, maps rows to rows and columns to columns, or , it is also
possibleT maps all rows to columns and all columns to rows. Thus there are permutation
matricesP andQ such that’(E; ;) = PE, jQ,or,T(E; ;) = PE;;,Q = P(E; ;)'Q,i.e,Tisa
(P, Q)-operator wheré” and@ are permutation matrices of order n. Let us show ¢hat P!

. Assume on the contrary th@P £ I. Thus there exists indexesj such that) P transforms
i'th column into’th column. In this case we take matricds= J\(E 1 +---+ E1,) + E1
, B =J\E;1. ThusAB has no zero elements, i.€,AB) = 0.

However, the(1, j)!" element of'(A)T(B) is zero, i.ez(T(A)T(B)) # 0.

This contradiction implies tha@ P = I. ThusQ = P'. Hencel is a(P, P') — operator.

Conversely(P, Q)-operators preserve zero term rank by Lemma 4.2. THus?) —
operators preserve the sef; (F).

O]

Example 6.2. Let F be a fuzzy semiringl” : M4(F) — M4(F) be a surjective map such that

1.0 0 0
0010

T(A) = PAQ,whereP = I1,;,Q = ,andQP = Q # 1.
01 00

0 0 01
ThenT maps rows to themselves. Blitmapsl,; column of A to itself,2,,; column of A

to 3,.4 column,3,, column of A t02,,; column and4;;, column of A to4,;, column.

01 0 0 1 1 11

] 1 1 11 1 1 11
Considerd = , B =

1 1 1 1 0111

1 1 11 1 1 11

ThusAB = J and hence(AB) = 0. Thus(A, B) € Zi(F).

18



1 1 11 1111
ButT(A) = ,T(B) =
11 11 0111
11 11 1 1 11
0111
1111
ThenT'(A)T'(B) = and hence(T(A)T(B)) = 1. Thus(T'(A),T(B)) ¢
IsL W 1
11 11

Z1(F)
This example shows that linear operafbrdoes not preserve; (F), where7 is not

(P, Pt) — operator.

6.2 Linear Preservers ofZ,(F)

Consider the set of matrix pairs:

Zo(F) = {(X,Y) € M, (F)?|2(XY) = 2(X) + 2(Y)}.

This set containsJ, J), where J is the: x n matrix with 1’s as its all entries. Thug; (F)
is not empty.

We characterize the linear operators that preservEgef).

Theorem 6.3. Let F be a fuzzy semiring; : M,,(F) — M,(F) be a linear surjective map.
Then T preserves the s&b(F) if and only if T is a nontransposingP, Q) — operators ,

where P is a permutation matrix.

Proof. By Theorem 4.3 we have tha@t(E; ;) = E,(; j) foralli,j, 1 <i<m,1<j<n,0o
is a permutation on the set of paifis ;).

Let us show thafl" maps lines to lines. Suppose that the images of two cells are not
in the same line, but the cells are in the same line, #ay, ;. are the cells such that
T(E;;),T(E; ) are notin the same line.

Note thatz((J \ R;)J) = 2(J\ R;) =1 =14+0=2(J\ R;) + 2(J). Thus(J\ R;, J) €
Z5(F). Now, T(J \ R; has no zero rows by above argument, 81d) = J over M, (F).
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Hencel'(J\ R;)T(J) =T(J \ R;)J = J on M, (F) by the sums and products ov&t Thus
z(T'(J\ R;)T(J)) = 0. On the other hand,I'(J \ R;),T(J)) ¢ Z2(F). This contradiction
shows thafl” maps lines to lines.

It follows from Lemma4.1 thaf is a (P, Q)-operator where” and Q are permutation
matrices of order n.

To show that transposition operator does not pres&wé ), it suffices to take the pair of
matricesA = J\ R;, B = J\ C;. ConsidetA = J\ Ry, B = J\C;. Thenz(AB) =2 =1+
1 =2(A)+2(B), hencg 4, B) € Z5(F). Butz(A'B?) = z(J) = 0 andz(A?) = 2(B') = 1.
Hencez(A'BY) # z(AY) + z(BY), that is,(A!, BY) ¢ Zo(F). Thus(T(A),T(B)) & Z(F).
This show that transposing operator does not presgsy&).

Thereforel is a nontransposingP, )-operator.

Let us show thaf) = P! now.

Assume on the contrary th@tP # I. Thus there exists indexés;j such that) P trans-
forms:’th column intoj’th column. But then considet = J C;, B = R;. We havez(AB) =
2(0) =n=14+n=2(A) + z(B). Hence(4, B) € Z,(F). Butz(AQPB) = z((J — Cj)R;)
=z(J)=0andz(AQP) + 2(B) =1+ (n— 1) = n. Thus(T'(A),T(B)) & Z2(F), which
contradicts the fact thaf preservesZ,(F). HenceQP = I, andQ = P!. We haveT is a
nontransposingP, P!)-operator.

Conversely( P, Q)operator preserve zero term rank by Lemma 4.2. Tiu$)-operators

preserve the sefy(F).

20



References

[1] L. B. Beasley and A. E. Guterman, Rank inequalities over semirings, J. Korean Math.

Soc. 42(2)(2005), 223-241.

[2] L. B. Beasley, A. E. Guterman, and C. L. Neal, Linear preservers for Sylvester and Frobe-

nius bounds on matrix rank, Rocky Mountains J. Math. 36(1)(2006), 67-75.

[3] L. B. Beasley, A. E. Guterman, Y. B. Jun and S. Z. Song, Linear preservers of extremes
of rank inequalities over semirings: Row and Column ranks, Linear Algebra Appl.,

413(2006), 495-509.

[4] L. B. Beasley, S.-G. Lee, and S.-Z. Song, Linear operators that preserve pairs of matrices

which satisfy extreme rank properties, Linear ALgebra Appl. 350 (2002), 263-272.

[5] L. B. Beasley, S.-G. Lee, S.-Z. Song, Linear operators that preserve zero-term rank of

Boolean matrices]. Korean Math. Sog¢V. 36, no. 6, 1999, pp. 1181-1190.

[6] L. B. Beasley and N. J. Pullman, Operators that preserve semiring matrix fundtions,

ear Algebra Appl99 (1988) 199-216.

[7] L. B. Beasley and N. J. Pullman, Term rank, permanent and rook polynomial preservers,

Linear Algebra Appl90(1987) 33-46.

[8] L. B. Beasley and N. J. Pullman, Linear operators that preserve term rérkd.,Royal

Irish Academy91 (1990) 71-78.

[9] A. E. Guterman, Linear preservers for matrix inequalities and partial ordediigsar

Algebra and Appl.331(2001) 75-87.

[10] P. Pierce and others, A Survey of Linear Preserver Problemear and Multilinear

Algebra 33(1992) 1-119.

[11] S. Z. Song, Topics on linear preserver problems - a brief introduction (Kor€ammun.

Korean Math. So¢21(2006), 595-612.

21



[12] S. Z. Song, Linear operators that preserve column rank of fuzzy matrices, Fuzzy sets and

SystemsFuzzy sets and Systeng(3), 311-317,(1994).

22



o APuEA

<}

gy
;oo

Al

2 B

-
ol
i
ToR

A

shgic. of

£ AYES 7

o Agz 745

H$7 9

1
.

2 =zolA

=y
bf-
ol
i
ol

£ 9%

27 A veR

)
)

Mo

3} 2L 57k4 Mg T

o

=1

r}

e

oL

min{r(X),c(Y)}};

{(X,Y) € Mpun(F)H(XY)

T, (F)

Z1(F) = {(X,Y) € Mpn(F)?2(XY) = 0};

T(F) = {(X,Y) € Muu(F)?[H(XY) = #(X) + (V) — n};
T(F) = {(X, Y, Z) € Muu(FP (XY Z) + 1(Y) = p(XY) + p(Y Z)};

2(X) + 2(Y)};

{(X,Y) € Myau(F)?2(XY)

Z5(F)

o
TR

A

9/]

=
2=

B

o

57

—@J__

<, °| ¢

(4=

5|

T+ '8

=
=

FH

ARAE AT o] 1

PX!Q® ERGS o]

AR} 99 57HA QAL HE

T(X) = PXQ E+x T(X) =

X

B

3

3

To
Jm_-O
Klo
o
__OE

23



Al
i

T

N

X

25 Ao 7

Ytk gel

A A B

Fips

3|

T, A=Y

k!

FUrh.

=

A

=
5

Az
~

3| 7 o] 2} & 2],

|

]

S
THE B Fo

I

7

TR

Ao

Y

A

I F A A =

.

al

%/

20084 12¢

24



	1 Introduction and Preliminaries
	2 Term Rank Inequality Of Fuzzy Matrix Product
	3 Zero-Term Rank Inequality Of Fuzzy Matrix Product
	4 Basic Results For Linear Operator Of Fuzzy Matrices
	5 Term Rank Preservers Of Fuzzy Matrix Product
	6 Zero-Term Rank Preservers Of Fuzzy Matrix Product
	References
	＜국문초록＞
	감사의 글


<startpage>6
1 Introduction and Preliminaries 1
2 Term Rank Inequality Of Fuzzy Matrix Product 6
3 Zero-Term Rank Inequality Of Fuzzy Matrix Product 8
4 Basic Results For Linear Operator Of Fuzzy Matrices 9
5 Term Rank Preservers Of Fuzzy Matrix Product 11
6 Zero-Term Rank Preservers Of Fuzzy Matrix Product 17
References 21
＜국문초록＞ 23
감사의 글 24</body>

