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<Abstract>

LINEAR OPERATORS THAT PRESERVE RANK
OF THE BOOLEAN MATRIX PRODUCT

In this thesis, we consisted sets of pairs of matrices on Boolean
Algebra.

these are pairs of matrices being shown naturally in the cases of the
equality’s extremum associated with ranks of two Boolean matrices’
product.

The sets composed of these pairs are constructed of extremal cases on
the equalities related to multiplication of ranks(coefficients) of two
Boolean matrices.

immediately, It is made up of the following five kinds of sets

P,(B)={(X, V)EM,(B}| rfXY)=min{rgX),r{¥)}}

P,(B)={(X, Y)EM,(BF| r{XY)=0}

(X, Y)EM,(B?| rf XY)=rX)+r/{Y)—n}

{(
{
)= {(X, NEM,(BP| r{XY)=1}
)={(
)={(

X, Y,2)EM,(BP| rdXY2)+rX)=rXV)+r/¥2)}

we mapped the pairs of matrices as were stated above by Linear
operators , studied the Linear operators that preserve the properties of
the set, and identified the forms.

In a moment, we realized that the form of the Linear operators that
preserve the sets of the matrix pairs show 7(X)=PXQ or T(X)=PX'Q
and proved it.

Moreover, we researched the conditions equivalent of this Linear
operators, and gave proof of equality of these ones.
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1 Introduction

During the past century a lot of literature has been devoted to investigations of
semiring. Briefly, a semiring is essentially a ring where only the zero element is required
to have an additive inverse. Therefore, all rings are also semirings.

A semiring S consists of a set S and two binary operations, addition and multiplication,

such that:

e S is an s monoid under addition (identity denoted by 0);

e S is a semigroup under multiplication (identity, if any, denoted by 1);

e multiplication is distributive over addition on both sides;

e sS0=0s=0forallses.

A semiring is called antinegative if the zero element is the only element with an
additive inverse. For example, the set of nonnegative integers is an antinegative semiring

with usual addition and multiplication.

Definition 1.1. A semiring S is called Boolean if S is equivalent to a set of subsets of a
given set N, the sum of two subsets is their uion, and the product is their intersection.

The zero element is the empty set and the identity element is the whole set N.

It is straightforward to see that Boolean semiring is commutative and antinegative.
If B consists of only the lower and upper bounds and the N then it is called a binary
Boolean algebra (or {0,1} -semiring) and is denoted by S

A semiring S is called chanin if the set S is totally ordered under set inclusion with
universal lower and upper bounds and the operations are defined by a + b = max{a, b}

and @ - b = min{a, b}.



It is straightforward to see that any chain semiring S is a Boolean semiring on the
set of appropriate subsets of S. Consider the set IV of all elements in S, and choose all
those subsets that consist of all elements strictly lower than a given element.

Let M, n(B) denote the set of m x n matrices with enties form the binary Boolean
algebra B. Matrix theory over semirings is an object of intensive study during the
last decades, see for example [6, 7] and references therein. In particular, many authors
have investigated various rank functions for matrices over Boolean algebra and their
properties, see [1, 10, 11, 14]. Among the rank functions that have the most interesting
applications is the well-Known notion of the factor rank.

Let My, »(B) be the set of m x n Boolean matrices. Throughout we assume that
m < n. The matrix I, is the n x n identity matrix, J, , is the m x n matrix of all
ones, O, » is the m x n zero matrix. We omit the subscripts when the order is obvious
from the context and we write I,J, and O, respectively. The matrix F; ;, called a cell,
denotes the matrix with exactly 1, that being a 1 in the (i, 7) entry. Let R; denote the

matrix whose *?

row is all ones and is zero elsewhere, and C; denote the matrix whose
7 column is all ones and is zero elsewhere. We let |A| denote the number of nonzero

entries in the matrix A.

Definition 1.2. The matrix A € M, ,(B) is said to be of Boolean rank k (rg(A) = k)
if there exist matries B € M, x(B) and C € My »(B) such that A = BC and k is the
smallest positive integer such that a factorization exists. By definition the only matirx

with Boolean rank equal to 0 is the zero matrix, O.

If B is considered as a subsemiring of a real field R then there is a real rank function

p(A) for any Boolean matrix A € Mg, »(B).



Example 1.3. Let

A= € My4(B).

\1011}

then rg(A) = 4 from Example 2.3.1 [5]. But p(4) =3

The example 1.3 shows that the Boolean rank and real rank of A are not equal.
However, the inequality rg(A) > p(A) always holds.
The behavior of the function p with respect to matrix multiplication and addition

is given by the following inequalities: The rank-sum inequalities:
| p(A) — p(B) |< p(A + B) < p(A) + p(AB) < min{p(A), p(B)}
and the Frobenius inequality:
p(AB) + p(BC) < p(ABC) + p(B),

where A, B, C are real matrices (see [8]).
Arithmetic properties of Boolean rank is restricted by the following list of inequal-

ities established from [3] because Boolean algebra is antinegative semiring.

1. rg(A+ B) < rg(A) + rp(B);

2. rg(AB) < min{rg(A),rp(B)}.
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rg(A) if B=0

3.78(A+B)=4 rg(B) if A=0 ;

1 if A#0and B#0

0 if rp(A)+rg(B)<n
4. rg(AB) > .

1 if rp(A)+re(B)>n

If B is considered as a subsemiring of R, the positive real numbers, we have:

5. rg(A+ B) 2 |p(A) — p(B)|;

0 ifp(A) + p(B) < n,
6. rg(AB) > ;
p(A) +p(B) —n ifp(A)+p(B)>n

7. p(AB) + p(BC) < rg(ABC) + r5(B).

As was proved in [3] the inequalities 1 ~ 7 are sharp and the best possible.

The natural question is to characterize the equality cases in the above inequalities.
Even over fields this is an open problem, see [2] for more details. The structure of matrix
varieties which arise as extremal cases in these inequalities is far from being understood
over fields, as well as over Boolean algebra. A usual way to generate elements of such
a variety is to find a tuple of matrices which belongs to it and to act on this tuple by
various linear operators that preserve this variety. The linear operators that preserve
cases of equalities in various matrix inequalities over fields were obtained in [8, 9].
For the details on linear operators preserving matrix invariants one can see [13] and
references therein. The aim of the present thesis is to characterize linear operators that
preserve the sets of matrix pairs which satisfies the Boolean rank equalities. Among
those sets, we consider the sums of two Boolean matrices and their Boolean ranks.

These rank equalities come from the extreme cases of the inequalities of Boolean ranks.

4



In section 2, we present the concrete sets of matrix pairs which come from the the
extreme cases of the inequalities of Boolean ranks.
In section 3 to 7, we characterize the linear operators that preserve the sets of matrix

pairs which come from the the extreme cases of the inequalities of Boolean ranks.



2 Preliminaries

Let B be the binary Boolean algebra. Consider following notation in order to denote

sets of Boolean matrices that arise as extremal cases in the inequalities listed above:

Pi(B) = {(X,Y) € Ma(B)? | rp(XY) = min{rs(X),ra(Y)}};
Pa(B) = {(X,Y) € Mn(B)? | rp(XY) = 0};
P3(B) = {(X,Y) € Ma(B)? | 7B(XY) = 1};
Pa(B) = {(X,Y) € My(B)? | rp(XY) = rg(X) +rp(Y) - n};
Ps(B) = {(X,Y,2) € Mu(B)® | rp(XY Z) +rp(Y) = rp(XY) +r5(Y 2)};

Definition 2.1. We say an operator, T, preserves a set P if X € P implies that
T(X) € P, or if P is a set of ordered pairs [triples], that (X,Y) € P [(X,Y, Z)] € P]

implies (T(X),T(Y)) e P [(T(X),T(Y),T(Z)) € PJ.

Definition 2.2. An operator T strongly preserves a set P if X € P if and only if
T(X) € P, or, if P is a set of ordered pairs [triples], that (X,Y) € P[(X,Y, Z) € P] if

and only if (T(X),T(Y)) € P [(T(X),T(Y),T(Z)) € P].

Definition 2.3. An operator T : My, n(B) = My, 1(B) is called a (P, Q)-operator if
there exist permutation matrices P and Q of appropriate orders such that T(X) =
PXQ for all X € My, »(B), or, if m = n, T(X) = PX'Q for all X € M, o(B), where

X' denotes the transpose of X

Definition 2.4. A mapping T : Mpn(B) — My o(B) is called a Boolean linear

operator if T(Opmp) =Omnand T(X +Y)=T(X)+ T(Y) for all X,Y € My, »(B).



Definition 2.5. A matrix A € My, »(B) is called monomial if it has exactly one

nonzero element in each row and column.
Definition 2.6. A line of a matrix A is a row or a column of the matrix A.

Definition 2.7. We say that the matrix A dominates the matrix B if b; ; # 0 implies

that a; ; # 0, and we write A > Bor B < A.

Definition 2.8. If A and B are Boolean matrices and A > B we let A\ B denote the
matrix C where
0 ifb;=1
Ci,j == .
1 ifb; =0
Definition 2.9. The matrix X oY denotes the Hadamard or Schur product, i.e., the

(i,7) entry of X oY is z; ;5 ;.
The following theorem implies the characterizations of the surjective linear operator

on My, »(B).

Theorem 2.10. [15] Let T : My, n(B) = M n(B) be a Boolean linear operator. Then

the following are equivalent:
1. T is bijective.
2. T is surjective.
3. There erists a permutation o on {(i,j7) | i = 1,2,---,m;j = 1,2,--- ,n} such
that T(E; ;) = Eq( j)-

Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now show that 2)
implies 3).
We assume that T is surjective. Then, for any pair (¢, j), there exists some X such

that T(X) = E; ;. Clearly X # O by the linearity of T. Thus there is a pair of indices
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(r,s) such that X = E, s+ X' where (r, s) entry of X' is zero and T(E, ;) # O. Indeed,
if T(E,s) = O for all pairs (r,s), then T(X) = O by linearity of T. Thus we have a

contradiction. But T'(X) = E;; # O. Hence

T(Em) < T(ET,S) +T(X\ (E',-‘s)) =T(X) = Ei,]"

That is, T(E,s) < E;; and T(E,s) = E;;. Since the set {(i,7) | i = 1,2,--- ,m;j =

1,2,--- ,n} is a finite set, T is injective since it is surjective.
Therefore there is some permutation o on {(¢,7) | 1 =1,2,--- ,;m;5=1,2,-- ,n}
such that T(E; ;) = Eq i j)- ]

Henceforth we will always assume that m,n > 2.

Lemma 2.11. [15] Let T : My, n(B) — My n(B) be a Boolean operator which maps
lines to lines and is defined by T(E; ;) = Ey(; j), where o is a permutation on the set

{G,))1i=1,2,--- ,m;j=1,2,--- ,n}. Then T is a (P,Q)-operator.

Proof. Since no combination of a rows and b columns can dominate J wherea+b=m
unless b = 0 (or if m = n, if a = 0) we have that either the image of each row is a row
and the image of each column is a column, or m = n and the image of each row is a
column and the image of each column is a row. Thus, there are permutation matrices
P and Q such that T(R;) < PR;Q and T(C;) < PC;Q or, if m = n, T(R;) < P(R;)'Q
and T(C;) < P(C;)*Q. Since each cell lies in the intersection of a row and a column
and T maps nonzero cells to nonzero (weighted) cells, it follows that T'(E; ;) = PE; ;Q,

or, if m= n, T(Ei,j) = PEjyiQ = P(Ei,j)tQ. |



3 Linear preservers of P;(B).

Recall that

Pi(B) = {(X,Y) € My(B)? | rg(XY) = min{rg(X),rs(Y)}};

We begin with some general observations on Boolean linear operators of special

types that preserve P;(B).

Theorem 3.1. Let B be a Boolean semiring, T : M,(B) — My(B) be a surjective
linear operator which preserves Py(B). Then there ezists permutation matriz P such

that T(X) = PX P! for all X € M,(B).

Proof. By Theorem 2.10 we have that T(E;;) = E,; ;) which a permutation o on
{G, 7)1 < i, < n}. Consider, (E;;, Ejx) € Pi1(B) since rg(E;;Ejx) = rp(Eix) =
1 = min{rg(Ei;),7B(E;r)}. Since T preserves S1(B), (T(E;;),T(E;x)) € Pi(B).
Thus r5(T(E;;)T(E;x)) = min{ra(T(Ei;),78(T(Ejx))} = 1, but r8(T(Ei ;)T (Ej))
=FE,(i.j)Eo(jr)- It follows that E; ;) is in the same row as E; ;1) for all k. That is, T
maps rows to rows. Similarly 7' maps columns to columns. By Lemma 2.11, we have
that T(X) = PXQ for some permutation matrices P, Q.

Let us show that Q@ = P’. Let T(E;;) = Eqa(;)(;) Where a and (3 are permutation
corresponding to P and Q?, respectively.

It follows from (E1;, Eiy) € Si(B) that (T(Ey;), T(Ei1))= (Ex()ai) Eagys)) €

S1(B). Hence (i) = B(i) for all i and so a = 3. Thus Q = P* ]



Corollary 3.2. Let B be a Boolean semiring, T : Mp(B) — My(B) be a linear opera-
tor. Then T strongly preserves Pi(B) if and only if there exists permutation matriz P

such that T(X) = PXP? for all X € My(B).

Proof. 1t is easily shown that all operators of the form T'(X) = PXP! for all X €
M, (B) strongly preserves P;(B).

Conversely suppose that T strongly preserves P;(B). Our aim is to show that T is
surjective on My(B). Equivalently, for each cell E;;, there exists ¥ € My,(B) such
that T(Y) = E; ;. If not, there exists M € My(B) with m, s = 0 such thatT(M) =
T(J). Let A = J\E;;, then (A,A) ¢ Pi(B). Since T strongly preserves P;(B),
(T(A), T(A)) ¢ Si(B). Since M < A< J, T(J) = T(M) < J(A) < T(J), and so
T(A) = T(J). Since (T(J),T(J)) € Pi(B), (T(A),T(A)) € P1(B), a contradiction.
Thus, T is a surjective. By Theorem 3.1, there exists permutation matrix P such that

T(X)= PXPt! for all X € M,(B). [

Corollary 3.3. Let B be a Boolean semiring, T : M, (B) — My (B) be an operator de-
fined by T(X) = PXQ for some permutation matrices P,Q. Then, T strongly preserves

P1(B) if and only if Q = Pt.

Proof. Suppose that T strongly preserves P;(B). Let X be an arbitrary matrix in
M, (B). Then there exists P! XQ* € M, (B) such that T(P!XQ!) = X. Thus T is
surjective. By Theorem 3.1, Q = Pt

Conversely assume that @ = P*. It follows from Corollary 3.2 that T strongly preserve

P1(B). s
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4 Linear preservers of Py(B).

Recall that

Pa(B) = {(X,Y) € Mn(B)? | rg(XY) =0};

Theorem 4.1. Let B be a Boolean semiring, T : My,(B) — My(B) be a nonsingu-
lar(that is, T(X) = 0 = X = 0) additive operator. If T(J) = J, then T preserves
P2(B) if and only if there exists a permutation matriz P such that T(X) = PX P! for

all X € My (B).

Proof. 1t is easy to see that operators of the form T(X) = PXP? for all X € M,(B)
preserves Ps(B).

Assume now that T preserves Py(B). Since T(J) = J, there are n different cells

whose images have nonzero entries in every column.
Suppose that these cells can be chosen such that their nonzero entries are in fewer than
n columns. Say X = E) + Ey + - - - + E,, is the sum of n such cells and that X has no
nonzero entry in k*column. Then (X, Ry) € Py(B), and hence (T(X), (T(Rx)) € P2(B)
. But (T(X),T(Rx)) # 0, a contradiction.

Thus, T must map columns to columns, and further, 7" induces a permutation on
the set of columns. Similarly T induces a permutation on the set of rows. That is,
T(X) = PXQ for all X € M,(B) for some permutation matrices P and Q. Let
us show that Q = P*. Indeed we have that T(E;;) = E.(i)s(;) Where a, 3 are per-
mutations corresponding P and Q!, respectively. If Q # P! then a # 3, and so
a(i) # B(i) for some i, hence, for some j # i,a(j) = B(i). Here, (E;;, E;;) € Pa(B),

but (T'(E;;), T(E;i)) ¢ P2(B), a contradiction. Therefore Q = P! ]

11



Corollary 4.2. Let B be a Boolean semiring, T : Mp(B) — M,(B) be a surjective
linear operator. Then T preserves Po(B) if and only if there exists a permutation matriz

P such that T(X) = PXP® for all X € My(B).
Proof. Since T is surjective, T is nonsingular. By Theorem 4.1 the result follows. =

Theorem 4.3. Let B be a Boolean semiring, T : M, (B) — M, (B) be a linear operator.
Then T strongly preserves P2(B) if and only if there ezists a permutation matriz P such

that T(X) = PXP* for all X € My(B).

Proof. Tt is easy to see that operators of the form T(X) = PXP! for all X € M,(B)
strongly preserve Pa(B).

Assume now that T strongly preserves Pa(B). Let us check that T'(J) = J, Assume
in the contrary that T'(J)has a zero column (all considerations in the case of zero row
are quite similar). Up to a multiplication with permutational matrices we may assume
that there are nonzero elements in columns 1,2,--- ,¢ of T(J) and all elements in the
columns (¢ + 1),---,n are zero. Then, there exist column matrices Cj1,Cja, -+ ,Cjs
whose images have nonzero entries in columns 1 through t. Let | # ji for all k,
1 <k < s Thus (Cj1,Cja, -+ ,Cjs)Ry = 0. Since T preserves Pa(B) it follows that
T(Cj1,Cj2,--- ,Cj5)T(R;) = 0. Then T(R;) has no nonzero entries in rows 1 through
t, since in each of the first ¢ columns of T'(C}1, Cjo, - - - , Cjs) there is a nonzero element.
Therefore, T(E;;) has nonzero entries only in rows t + 1,---,n and only in columns
1,---,t. Thus T(Ey;)? = 0, ie, (T(Ey;), T(Er;)) € P2(B). This is a contradiction sine
T strongly preserves P2(B) and (Ey;, Ej;) ¢ P2(B). Thus, T(J) has neither a zero
row, nor a zero column. Let us check that T is nonsingular. Assume that there exists
0 # X such that T(X) = 0. Thus (T(X),T(I)) € P2(B) as far as (X, I) ¢ P2(B). This

contradicts with T strongly preserves P(B). Hence Theorem 4.1 is applicable and by

12



this T(X) = PX P! for all X € My(B) for some permutation matrix P. The Theorem

follows. (]
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5 Linear preservers of P;(B).

Recall that

P3(B) = {(X,Y) € Mn(B)? | rp(XY) = 1};

Corollary 5.1. Let B be a Boolean semiring, T(E; ;) = E,(; ;) for some permutation,
o, of {(1,7) | 1 £ ¢, < n}. Then T preserves P3(B) if and only if there erists a

permutation matriz P such that T(X) = PXP! for all X € M,(B).

Proof. Clearly operators of the form T(X) = PX P! preserve P3(B).

Suppose that T preserves P3(B). Consider, (E;;, E;x) € P3(B) for all k. If T(E;;) =
E, s for some r,s, then T(E; ) = E, ;) for some permutation 7. That is, T(R;) <
R;. Thus, T induces a permutation on the rows. Similarly, T induces a permutation
on the columns. Thus, for some permutations 7 and 7, T(E;;) = Eruyr)- Now,
rg(T(E;;)T(E;;)) must be 1, and so, m(¢) = 7(i). That is, 7 = 7, and we have that

T(X) = PXP! for all X € M,(B) where P is the permutation corresponding to . ®

Theorem 5.2. Let B be a Boolean semiring, T : Mp(B) — My(B) be a surjective
linear operator. Then T preserves P3(B) if and only if there exists a permutation

matriz P such that T(X) = PXP? for all X € My(B).

Proof. By Theorem 2.10 we have that for all 4,j,1 <4,j < n, T(E;;) = E,; ;- Thus

by Corollary 5.1 the result follows. [ |

Theorem 5.3. Let B be a Boolean semiring, T : Mp(B) — My (B) be a linear operator.
Then T strongly preserves P3(B) if and only if there exists a permutation matriz P such

that T(X) = PXP? for all X € My(B).

14



Proof. Since operators of the form T(X) = PX P! preserve P3(B), we assume that
T strongly preserves P3(B) and show that T is of the form T(X) = PXP! Let
M € M,(B) such that |T(M)| = |T(J)|, and if |T(N)| = |T(J)| then |M| < |N|(that
is, M is a minimal matrix), so that T(M) = T(J). Assume that there exists an
index j such that j®*column of M is zero. Then ME;; = 0, thus (M, E;x) ¢ P3(B).
Since T preserves P3(B), (T(M),T(E;x)) = (T(J),T(E;x)) ¢ P3(B), a contradiction.
Thus M has no zero column. Similarly, M has no zero row. Now (J,I) € P3(B),
so that (T(J),T(I)) = (T(M),T(I)) € Ps(B). Since T strongly preserves P3(B),
(M,I) € P3(B). Thus rg(M) = 1 and hence M = J. Since M define, T induces a
bijection on the set of cells, that is, T(E;;) = E,;; for some permutation, o. By

Corollary 5.1, the theorem follows. [ |
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6 Linear preservers of Py(B).

Recall that

Pa(B) = {(X,Y) € Mp(B)? | rg(XY) =rp(X) +rg(Y) — n};

Theorem 6.1. Let B be a Boolean semiring, T : Mp(B) — My(B) is a surjective
linear operator which preserves P4(B). Then there exists a permutation matriz P such

that T(X) = PX P for all X € My(B).

Proof. By Theorem 2.10, we have that T(E; ;) = E,(; ;) which a permutation ¢ on
{(, 1)1 £ 4,5 < n}. If rg(A) = n then (E;;, A) € Ps(B). Since T preserves Py(B),
(T(E:;), T(A)) € Ps(B). That is, rg(T(A)) = n. Thus T preserves rg — n matrix.

If image of a row is not dominated by any line then there are cells, E; j, Eg 4 such that
T(E;j+Esq) < Er;+Ery and i # s, j # q. By extending E; j + E, ; to a permutation
matrix by adding n — 2 cells, we find a matrix which is the image of a permutation
matrix. but is dominated by n — 1 lines, a contradiction, since T preserves rg — n
matrix. Thus the pre-image of every row is a row or column and similarly, the pre-
image of every column is a row or column. Hence T maps lines to lines. By Theorem
2.11, we have that T is (P, Q)-operator. Since (E11 + E21+ -+ + Epn_1) € Pa(B),
while (T(E1y + Er2+ -+ + En_15) ¢ Pa(B), we have that the transpose operator
does not preserve P4(B), thus, there exist permutation matrices P and @ such that
T(X)=PXQ.

Without loss of generality we may assume that P = I. If Q # I, say @ corresponds to
the permutation 7, and n(1) # 1. Without loss of generality, T(F1,1) = E1,2. Then,

(Ervq+ Ego+ -+ Epp) € Py(B), while (T(Er + E22+ -+ + Enn) ¢ Ps(B),since

16



(EL])(E2‘1|-(2) + E3,.,r(3) +---4 En,vr(n)) = E1’2E2,1r(2) # 0. This contradiction gives that

Q = P, that is, T(X) = PXP". .

Corollary 6.2. Let B be a Boolean semiring, T : Mp(B) — My(B) is defined by
T(X) = PXQ for all X € M, (B) where P, Qare permutation matriz. Then T preserves

P4(B) if and only if Q = Pt.

Proof. Suppose that Q = P? then rg(T(X)T(Y)) = rg(PXP'PY PT) = rp(XY) =
rg(X)+rg(Y) — n=rg(PXP") + rg(PY P!) — n=rg(T(X)) + rg(T(Y)) — n.
Conversely, Let T preserves Py4(B), for X € M,(B) there exists P!XQ! € M, (B) such

that T(P*XQ') = X. Thus T is a surjective. By Theorem 6.1 we have done. [ ]

Theorem 6.3. Let B be a Boolean semiring, T : Mn(B) — Mu(B) is a surjective
linear operator. Then T preserves Py(B) if and only if there exists a permutation

matriz P such that T(X) = PXP! for all X € My(B).

Proof. 1t is easily shown that all operators of the form T(X) = PXP! for all X €
My (B) preserves Py(B) . Conversely suppose that T preserves P4(B). Since T is a
surjective, by Theorem 2.13, we have that T(E; ;) = E,(; ;) which a permutation o on

{(Z, 7)1 £ 14,7 < n}. By Theorem 6.1, there exists a permutation matrix P such that

T(X)= PXP! for all X € M,(B). ]

17



7 Linear preservers of Ps(B).

Recall that

Ps(B) = {(X,Y,Z) € Mu(B)® | rg(XYZ) +rp(Y) = rg(XY) + ra(Y 2)};

Corollary 7.1. Let B be a Boolean semiring, T : Mp(B) — Mpn(B) be a surjective
linear preserver of Ps(B). Then there exists a permutation matriz P such that T(X) =

PXP for all X € My(B).

Proof. By Theorem 2.10 we have that T(E; ;) = E,(; j) for a certain permutation o on
{(i,5) | 1 <i,j < n}. It can be easily checked that (T(E;;), T(E;r), T(Ex;)) € Ps(B)
for all ! and for arbitrary fixed 4, j, k. Thus rg(T'(E; ;)T (E;x)T(Ek.)) + B(T(Ejx))=
rB(T(Ei;)T(Ejk)) + ra(T(E;k)T(Eg,.))

By Theorem 2.10, it follows that T(E; ;) = Epq,T(E;x) = Ers,T(Eg)) = Eyy, indices
p,q,7,8,u,v. Since rg(T(Ej;x)) = 1 # 0 it follows from the equality that either r = ¢
or s = u or both.

If for all L = 1,...,n both equalities hold then for fixed i, j, k all matrices T(Ey ), =
1,...,n, have their nonzero elements lying in one row. Thus 7" maps rows to rows.
Similarly it is easy to see that T maps columns to columns.

Assume now that there exists an index ! such that the only one of the above equalities
holds for the triple (E;;, Ejk, Ex;). Without loss of generality assume that s = u
and 7 # ¢. Thus for arbitrary m, 1 < m < n one has that (E;;, Ejx, Ex1) € Ps(B).
By Theorem 2.10, T(Ej m) = Ey, for certain w, z depending on k,m. In the above
notations obtain that rows are transformed to rows. By the same arguments with

the first matrix it is easy to see that columns are transformed to rows. By the same

18



arguments with the first matrix it is easy to see that rows are transformed to columns
and columns to rows. By Lemma 2.11, it follows that there exists a permutation P and
Q such that T(X) = PXQ or T(X) = PX'Q for all X € My(B).

In order to show that transposition operator does not preserve Ps(B) it suffices to note
that (E;j, I, I\E;;) € Ps(B) while (Ej;, I,1\Ej ;) € Ps(B).

In order to show that Q = P* it suffices to note that (E; ;, Ej;, E;:) € Ps(B).
Therefore, (E, (i) .r(j)» Eo(i)r()> Eoti)r(i)) EPs(B). Thus o = 7, that is, T(X) = PXP*

for all X € M,(B). -

Corollary 7.2. Let B be a Boolean semiring, T : Mn(B) — My(B) be defined by
T(X) = PXQ for all X € My(B) where P,Q € M, (B) are permutation matrices.

Then T preserves Ps(B) if and only if Q = P:.

Proof. Suppose that Q = P* then rg(T(X)T(Y)T(Z)) + re(T(Y))

—rg(PXY ZP') + rg(PY PY)=rp(XYZ) + r5(Y)=rp(XY) + r5(Y Z)
=rg(T(X)T(Y)) + ra(T(Y)T(Z)). Conversely, for X € Mn(B) there exists P'XP €
M (B) such that T(P*XP) = X. Thus T is a surjective, By Theorem 2.10, Lemma

7.1, there exists a permutation P such that T(X) = PX P!, that is, Q = P.. (]

Theorem 7.3. Let B be a Boolean semiring, T : Mnp(B) — Mu(B) be a surjective
linear operator. Then T preserves Ps(B) if and only if there ezists a permutation P

such that T(X) = PXP! for all X € M,(B).

Proof. It is to see that operators of the form T(X) = PX P! preserves Ps(B).

Conversely suppose that T preserves Ps(B). Since T is surjective, by Theorem 2.10, we
have that T(E; ;) = E,(; ;) for a certain permutation o on {(i,5) |1 <4,j < n}.Then,
by Corollary 7.1, there exists a permutation matrix P such that T(X) = PX P! for all

X € My(B). [ ]
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