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Abstract

In this thesis, we study the extent to which known properties of linear oper-
ators that preserve semiring ranks and column ranks of fuzzy matrices carry
over to operators that preserve maximal column ranks.

We characterize the linear operators, T, on the set of m x n fuzzy matri-
ces that preserve maximal column rank. For example, T preserves maximal
column ranks if and only if T' preserves maximal column rank 1 and it pre-
serves maximal column rank 3. Other characterizations of maximal column

rank-preserving operators are also given.



Chapter 1

Introduction

A semiring is essentially a ring in which the zero is required to have an
additive inverse(a formal definition is given in chapter 2). Thus all rings with
multiplicative identity are semirings. So are such combinatorially interesting
systems as the Boolean algebra of subsets of a finite set (with addition being
union and multiplication being intersection) and the nonnegative integers
(with the usual arithmetic). Fuzzy matrices provide another example of
matrices over a semiring. In this case, the semirig K of scalars consists of
the real numbers 0 < z < 1 with = + y = maz(z.y) and zy = min(z.y).

The concepts of matrix theory are defined over a semiring as over a field.
Recently a number of authors have studied various problems of semiring ma-
trix theory. One of them is the problem on the comparison of ranks (semiring
rank,column rank, and maximal column rank) and the characterization of
their preservers.

Beasely and Pullman obtained characterization of linear operators that



preserve semiring rank of fuzzy matrices(see [2]). Song characterized the
column rank case, in [6].

In this thesis, we study the extent to which known properties of linear
operators preserving semiring ranks and column ranks of matrices over "chain
semiring’ (see Definition 2.2) carry over to operators preserving maximal
column ranks. We obtain some characterizations of linear operators that
preserve maximal column rank of fuzzy matrices and of matrices over chain
semirings which is more general than the Boolean algebra.

In chapter 2, we introduce most of the definitions, notations, and prelimi-
nary results. In chapter 3, we give some characterizations of linear operators
that preserve maximal column rank of matrices over chain semirings other

than the binary Boolean algebra.



Chapter 2

Preliminaries

We start this chapter by introducing some basic definitions. A formal defi-

nition of a semiring is as follows:

Definition 2.1. ([3])
A semiring consists of a set S and two binary operations on S, addition

and multiplication, such that:

(1) S is an abelian monoid under addition (identity denoted by 0);
(2) S is a monoid under multiplication (identity denoted by 1);

(3) multiplication distributes over addition:

(4) sO0=0s =0 for all s € S; and

(3) 0#1

Usually S denotes both the semiring and the set. When some confusion

could arise, we denote the semiring by (S. +, x), if addition is denoted + and
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multiplication x. The set of m x n matrices with entries in a semiring S is
denoted by M, ,(S).The m x n zero matrices Om,n and the n x n identity
identity matrix I,, are defined as if S were a field. Addition, multiplication
by scalars, and the product of matrices are also defined as if S were a field.
Thus My, ,(S) is a semiring under addition and matrix multiplication. If §
1s not commutative, unless otherwise indicated we’ll take the operation of

multiplication by scalars to be left multiplication: (s,A) = sA.

Definition 2.2. ([2]) Let S be any set of two or more elements. If S is totally
odered by <, that is, S is a chain under < (i.e. z < yory < x for all distinct
z.y in S), then define z + y = maz(z,y) and zy = min(z,y) for all z,y in
S. If S has a universal lower bound and a universal upper bound, then S

becomes a semiring. This semiring is said to be a chain semiring.

Let H be any nonempty family of sets ordered by inclusion, 0 = Neen
vand 1 = J,cyr. Then S = HU{0,1} is a chain semiring. Let a,w be
real numbers with o < w. Define S = {3 : 3 € [a,w]}. Then S is a chain
semiring with a =" 0" and w =" 1”. It is isomorphic to the chain semiring

in the previous example with H = {[a, 8] : 0 < § < w}.

Definition 2.3. (2)) Let F = {8:0< 3 <1, 3 is real}. Then each

member of M, ,,(F) is called a fuzzy matriz.

If we take H to be a singleton, say {a}. and denote the empty set by
0 and {a} by 1. the resulting chain semiring is merely the binary Boolean

algebra, and denoted by B.



Hereafter, otherwise specified, K will denote a chain semiring which is
not the binary Boolean algebra , all matrices will denote the m x n matrices
over a chain semiring and we will write M or M(K) for M,, ,,(K).

If Vis a nonempty subset of SF = M 1 (S) that is closed under addition
and multiplication by scalars, then V is called a vector space over S. The
notions of subspace and of spanning or generating sets are the same as if S
were a field.

We will use the notation < W > to denote the subspace spanned by the
subset of W of V. As with fields, a basis for a vector space V is a generating
subset of the least cardinality. That cardinality is the dimension . dim(V),

of V.

Definition 2.4. ([1]) Let A(# 0) € M,,,, (S). The semiring rank, r(d) =
rs(A), is the least integer k such that A = BC for some m x k and k x n

matrices B and C over S. The semiring rank of the zero matrix is 0.

Lemma 2.1. ([2, Lemma 2.1]) The semiring rank of a nonzero matriz A is

the minimum number of semiring rank 1 matrices which sum to A.

Definition 2.5. ([3]) The column rank, ¢(A) = ¢s(A), of an m x n matrix

A over S is the dimension of the space < 4 > spanned by its columns.

Definition 2.6. ([3]) A set G of vectors over S is linearly dependent if for

some g € G . g €< G\{g} >. Otherwise, G is linearly independent.

Definition 2.7. ([4]) The mazimal column rank, me(A) = mes(A), of an
m X n matrix A over S is the maximal number of the columns of A which

are linearly independent over S.



The following is clear from those definitions;
Lemma 2.2. ([4]) For any A € M,, (S), we have

0 <rs(4) <es(A) <meg(d) <n.

— 3

The column rank of a matrix may actuallv exceed its semiring rank over
some semirings. Various examples are found in [3]. For the case that column
rank of a matrix can be strictly less than its maximal column rank. see [4].

We give the following example for Theorem 2.2.

Example 2.1. Let p be a nonzero nonunit element of K. Consider,

0 1
4=("7

QAp &

Since all the three columns of A are linearly independent, mec(A) = 3.

1 0
But ¢(A) = 2, because and generates < A > .

0 1
Definition 2.8. ([3]) u(S,m. n) is the largest integer k such that for all m x n

matrices A over S, 7(A) = ¢(A) if r(4) < k .

Definition 2.9. ([4]) (S, m, n) is the largest integer k such that for all m xn

matrices A over S, ¢(A4) = me(4) if ¢(A) < k .

Beasely and Pullman obtain the following relation between semiring rank

and column rank over M, ,,(K) and M,, ,,(B) in [3].



Theorem 2.1. (/8, Theorem 2 and 3))
(1) For any chain semiring K, we have

2 ifm>2andn =2,
n(K.m.n) =

1 otherwise.

(2) For the binary Boolean algebra B,

I whenever min(m,n) = 1.
u(B.m.n)=<¢ 3 for all m > 3and n = 3,

2 otherwise.

Lemma 2.3. (/4. Lemma 2.2]) Over any semiring S, if me(A) > c(A) for

some p x g matriz A, then for allm > p and n > ¢, (S, m. n) < c(4).

Theorem 2.2. Let K be a chain semaring. Then we have

2 fm= n =2,
a(K,m,n) =
1 otherwise.

Proof. Consider the matrix A in Example 2.1. Then by lemma 2.3, we may

conclude that
a(K,mn) <1 ifm>2 andn > 3.
If¢(B) =1, then clearly mc(B) = 1, for any matrix over K. Thus .

®(K,mn)=1 ifm >2 andn> 3.

-1



Suppose m = n = 2 and ¢(4) = 2. If me(A4) = 1, one column, say first,
is the scalar multiple of the second column. But this is impossible, because

c(A) = 2. Hence ,
aK,m,n)=2 ifm=n=2.
It is trivial that a(K, m,n) = 1, for other values of m and n. D

Lemma 2.4. ([3]) If the columns of A € M, ,(B) are linearly independent,
then mc(A) = c¢(A4) = n.

Lemma 2.5. (/6, Lemma 2.1]) The column rank of a matriz is unchanged by
pre-or post-multiplication by an invertible matriz. Furthermore, the column

rank of a 2 x 2 matriz is unchanged by transposition.

Lemma 2.6. The mazimal column rank of a matriz is unchanged by pre-
or post-multiplication by an invertible matriz. Furthermore, the mazimal

column rank of a 2 x 2 matriz is unchanged by transposition.

Proof. Note that an invertible matrix in M, ,(F) are precisely the permuta-

tion matrix. The rest follows from Lemma 2.5 using Theorem 2.2. O

A function T mapping M, ,.(S) into M »(S) called an operator on My, ,(S).

We introduce some definitions on 7.

Definition 2.10. ([4]) Let T be an operator on M, ,.(S).

(i) T is linear if T(aA + 8B) = aT(A) + BT(B) for all @, 3 € S and all
A Be M, (S),



(ii) T preserves semiring rank h if, for any A € M, »(S) with r(4) = h,
r(T(A)) =r(4),

(iii) T preserves column rank k if. for any A € M,,,(S) with c(d) = k,

(iv) T preserves mazimal column rank L if, for any 4 € M, o (S) with ¢(4) =

[, me(T(A)) = me(A).

(v) T is a congruence operator if there exist invertible martices U and 1"
in My, m(S) and M, ,(S) respectively such that T(A) = U AV for all
AeM,,,(S)

(vi) T is a transposition operator if m = n and T(A) = A for all 4 €

M, (S).

Lemma 2.7. Congruence operators on M, »(F) are linear, bijective. and

preserves all mazimal column rank.

Proof. Linearity follows from the linearity of matrix multiplication. The rest

follows from Lemma 2.6. |

Let jx denote the column vector of length k all of whose entries are 1.
and J,, the m x n martix all of whose entries are 1. When the orders are
understood, we may drop the subscript on j; and J,,,. Let Ei; be the m x n

matrix all of whose entries are 0 except the (i, j)th, which is 1.



Definition 2.11. ([2]) Let X € M,,,, (K). The norm ||.X

| of X is defined

by || X

| = j'Xj the sum of all entries in X. That is. | X|| is the maximum

entry in X.

Note the mapping .X" — ||.Y'|| preserves matrix addition and scalar multi-

plication.

Lemma 2.8. (/6. Lemma 2.3]) Suppose

a b
A=
c d
Then c(A) = 2 if and only if ad # be.
Lemma 2.9. Suppose
a b
c d

Then mc(A) = 2 if and only if ad # bc.

Proof. me(A) = 2if and only if ¢(A) = 2, by Theorem 2.2. The result follows

from Lemma 2.8. a
Lemma 2.10. If H is a submatriz of A, then mc(H) < mc(A).

Proof. 1t is clear from definition of the maximal column rank. O
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Chapter 3

Linear Operators that preserve

maximal column rank over

In this chapter, we characterize linear operators that preserve maximal col-
umn rank over M, ,(K). Hereafter, we shall adopt the convention m < n,
and the set of matrices of maximal column rank 1 over a fixed chain semiring

K is denoted by C;.

Definition 3.1. ([6]) Two column rank 1 matrices A, B are said to be sep-
arable if there is a matrix X with ¢(X') = 1 such that either 1 = ¢(4 + X)) <
co(B+X)orl=c¢(B+X)<c(A+X). In this case, X is said to separate A

from B.

Definition 3.2. Two maximal column rank 1 matrices A. B are said to

11



be separable if there is a matrix X with mc(X) = 1 such that either 1 =
me(A + X) <me(B+ X) or 1 =me(B+ X) < me(A + X). In this case, X

1s said to separate A from B.

Lemma 3.1. ([6, Theorem 3.1]) Distinct column rank 1 matrices are sepa-

rable if and only if at least one of them is not a scalar multiple of J.

Theorem 3.1. Distinct mazimal column rank 1 matrices are separable if

and only if at least one of them is not a scalar multiple of J.

Proof. Notice that me(A) = 1 if and only if ¢(4) = 1, by Theorem 2.2 and

Lemma 2.2, The results follows directly from Lemma 3.1. O

The symbol < is read entrywise, i.e. X < Y if and only if z;; < y,; for

all (7, 7).

Lemma 3.2. (/2, Lemma 4.3])
If T 1us a linear operator on M, ,(K), min(m.n) > 1, T preserves norm, and

A <LT(A), then T A) = T Y(A) for all ¢ > mn.

Lemma 3.3. Let T be a linear operator on M,, ,(K) with min(m,n) > 1.
If T preserves norm and mazimal column rank 1 but is not injective on C,

then T reduces the mazimal column rank of some matriz from k(>2) to 1.

Proof. Since T is not injective on Cy, T(A) = T(B) for some A, B in C; with
A# B. If A =aJ and B = 3J, then a = 3 because T preserves norms,

contradicting our assumption that A # B. Therefore by Theorem 3.1, some

12



matrix X of maximal column rank 1 separates A from B. Say, me(A+X) =1

and mce(X + B) = k > 2. Since
T(X+B)=T(X)+ T(B)=T(X)+T(4) = T(X + 4),
T reduces the maximal column rank of X' + B from k to 1. 4

Definition 3.3. ([6])
A linear operator T on M, ,(K) strongly preserves mazimal column rank 1,

provided that mc(X) = 1 if and only if mce(T(X)) = 1.

Lemma 3.4. If T is a linear operator on M, ,(K) min(m.n) > 1, and T

strongly preserves mazimal column rank 1. then T DPreserves norm.

Proof. Let A € My, n(K). o = [|4]| and 3 = ||T(A)]|; then 4 = a4 and 3 =
IT(A)]| = IT(aA)|| = a||T(4)|] < a. Suppose 3 < a. Then for some (i.j),
a,; = a. Let Y be the matrix whose entries are all a except for y,; = 0. Then
aJ =A+Y. Some(4A+Y)=1. Since me(34+Y) > 2 by Lemma 2.9 and
Lemma 2.10, but me(34+Y) < 2 by construction. we have me(3A+Y) = 2.
By linearity of T and definition of 3, we have T(3.4) = BT (A) =T(A). Hence
TB3A+Y)=T@BA)+TE)=T(A)+TY)=T(A+Y) = aT(J). SoT
reduces the maximal column rank of 34 + Y from 2 to 1, contrary to our

hypothesis. Thus T preserves norm. d

Lemma 3.5. Suppose T is a linear operator on M,, ,(K) and min(m.,n) >
1. If T strongly preserves mazimal column rank 1, then T permutes I', where

F={E,:1<i<m1<j<n}

13



Proof. By Lemma 3.4, T preserves norm. Therefore by Lemma 3.3. T is
injective on C. Suppose T(Ep,) is not in [ for some (p,q). Now T(E,,) =
> 7y E,;. for some 7;;. But ||T(E,,)|| = 1. 50 7y, = 1 for some (u,v). Without
loss of generality, we may assume that (u,v) = (p,q). because if P.Q are
permutation matrices, then the linear operator X — PT(X)Q preserves the
maximal column ranks that T preserves (see Lemma 2.6.) and permutes I if
and only if T does. Let E = E,,. Then E < T(E),so E # T(E) < T*(E) <
-+ <THE) = T**"(E), where k is the least integer for which equality holds
and h > 0 is arbitrary. By Lemma 3.2, we are assured that k exists and is
less than mn. Let B = T*"Y(E). Then B # T(B) but T(B) = T(T(B)).
despite the fact that B, T(B) are both in C, and T is injective on C,. This
contradiction implies that T maps I' into I'.. By injectivity. T permutes T.

a

Let B be the two element subsemiring {0.1} of K, and a be a fixed
member of K, other than 1. For each z in K define 7 = 0 if r < a, and
r® = 1 otherwise. Then the mapping r — z® is a homomorphism of K
onto B . Its entrywise extension to a mapping A — A% of M(K) onto M(B)
preserves matrix sums and products and multiplication by scalars. We call

A® the a — pattern of A.
Example 3.1. For a nonzero nonunit p € K, consider

Ppp
A=1fpp1
011

14



Then mec(A) = 3, because all the three columns of A are linearly indepen-
dent. But mc(A") = 2. Consider B=A® 0py_3,m_3 forallm > 3. IfT is a
transposition operator over My, ,,(K), then T(B) = B! has mazimal column
rank 2 while me(B) = 3. Thus a transposition operator does not preserve

mazimal column rank 3.

Earlier, linear operators that preserve semiring rank and column rank over
M(K) were characterized in [2] and [6]. respectively. Also linear operators
that preserve maximal column rank preserving operators over M, »(B) were

characterized in [4]. For our purpose, we write those results as follows:

Lemma 3.6. (1) ([2. Theorem 4.2]) Suppose T is a linear operator on M, . (K)
with n > m > 1. Then T is bijective and preserves semiring rank 1 if and
only if it s in the group of operators generated by congruence and transposi-
tion operators.

(2) ([6. Theorem 3.3]) Suppose T is a linear operator on M, (K) with
m > 2 and n > 3. Then T strongly preserves column rank 1 and it preserves
column rank 3 if and only if it is a congruence operator.

(3) ([4, Theorem 3.2]) Suppose T is a linear operator on M, (B) for
n2>m > 4. Then T preserves mazimal column ranks 1, 2 and 3 if and
only if it is a congruence operator. Moreover the transposition operator on

M, m(B) does not preserve mazimal column rank 3 for m > 4.

We say that an m x n matrix X is a column matriz if X\ = x(e;)! for
some x € S™ and e; € S", where e, is the vector with 1 in the ith position

and 0 elsewhere.



Theorem 3.2. Suppose T is a linear operator on the m x n matrices over
a chain semiring K, where m > 2 and n > 3. If T strongly preserves
mazimal column rank 1, and it preserves mazimal column rank 3, then T 1s

a congruence operator.

Proof. Let M = M, ,(B). Lemma 3.5 and linearity imply that T maps M
into itself. Let T denote the restriction of T to M. From the definition of
maximal column rank, the maximal column rank mcz(X) of a member X of
M is at least mcg(X), its maximal column rank as a member of M,, »(K),
because B C K. On the other hand, the mapping that takes a matrix A4 in
M, (K) to its 0-pattern A° in M preserves matrix sums and multiplication
by scalars. Hence meg(X) = mex(X) for all X in M. Therefore T strongly
preserves maximal column rank 1, and it preserves maximal column rank 3.

Case 1 (n > m > 4). Since T also permutes I' by Lemma 3.5 and it
strongly preserves maximal column rank 1. T must map a column matrix
either a column matrix or transpose of a column matrix if m = n > 4.
For the latter case, T is a composition of a transposition operator and
pre-multiplication by a permutation matrix. Since transposition operator
cannot preserve maximal column rank 3 by Lemma 3.6(3), 7 must map a
column matrix to a column matrix. Thus the linearity of T implies that
meg(T(X)) < mes(X) for all X in M. In particular, T preserves maximal
column rank 2. Hence T is a congruence operator on M by Lemma 3.6(3).
Then T(.X) = UXV for some invertible matrix over M. Notice that matrices

U. V are also invertible over K; in fact, they are just permutation matrices.

16



Let A € M(K). Then T(A4) = Y a,;T( = > a,;T(E,;), because each E,,
is in M(B). Since T(E,,) = UE;V for all 7, j by definition of congruence op-
erator, the result follows directly from the linearitv of matrix multiplication.
Case 2(n = 3 and 2 < mn < 3). Theorem 2.2 guarantees that T strongly
preserves column rank 1. Note that meg(.X') = 3 if and only if cz(X) =3 by
Lemmas 2.2 and 2.4. Hence it preserves column rank 3. because if cp(X) =
3. then 3 = mes(X) = mez(T(X)) = cz(T(X)). Also, T strongly preserves
semiring rank 1 and it preserves semiring rank 3. by Theorem 2.1(2). If
rs(.X') =2 for X € M. then X can be factored as a sum of two matrices A
and X, whose semiring ranks are 1, by Lemma 2.1. Thus T(X)=T(X,) +
T(X,) has semiring rank two or less. Since T strongly preserves semiring
rank 1. r=(T(X)) = 2. That is, T preserves semiring rank 2. Therefore T
1s in the group of operators generated by congruence (and if m = n = 3.
also the transposition) operators by Lemma 3.6(1). Let A € ). Then
= Y a,T(E;) = Y a,;T( Eij), since each E,; is in M. By similar
argument as in case 1, there are permutation matrices [’ and 1~ (m x m and
n x n respectively) such that in the case n = 3 and m = 2, T(4) = UAV",
while in the case m = n = 3. T(A) is either UAV or UA'V". However.
since transposition operator does not preserve maximal column rank 3 by

Example 3.1, we see that in fact, T must be a congruence operator. O

Theorem 3.3. Suppose T is a linear operator on the m X n matrices over
a chain semiring with m > 2 and n > 3. Then the following statements are

equivalent:



(i) T preserves all mazimal column ranks.

(i1) T strongly preserves mazimal column rank I and it preserves mazimal

column rank 3.
(1i) T 1s a congruence operator.
(w) T is bijective and preserves mazimal column ranks 1 and 3.

Proof. It is obvious that (i) implies (ii). Theorem 3.2 establishes that (ii)
implies (iii). According to Lemma 2.7, (iii)implies (i) and (iv). If T satis-
fies (iv). then T is in the group of operators generated by congruence and
transposition operators by Lemma 3.6(1) and Theorem 2.2. Since the trans-
position operator does not preserve maximal column rank 3, T must be a

congruence operator. Therefore, (iv) implies (iii). O

How necessary is it that m > 2 and n > 3 ? If m = n = 2, then a linear
operator that preserves all maximal column ranks is the same as a linear
operator that preserves all column ranks by Theorem 2.2. The characteri-
zations of the column rank preservers were obtained in [6]. Thus we have
characterizations of the linear operators that preserve the maximal column
rank of matrices over a chain semiring(and in particular, of fuzzy matrices)

when m > 2 and n > 3.
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