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<Abstract>

Linear operators that preserve commuting pairs of
nonnegative integer matrices

There are many papers on linear operators that preserve
commuting pairs of matrices. We have studied linear op-
erators over Boolean matrices and fuzzy matrices. They
gave us the motivation to the research on commuting pairs
preservers of matrices over nonnegative integers. Recently,
Beasley, Pullman and Song obtained characterizations of
the linear operators that strongly preserve and preserve
commuting pairs of Boolean matrices, fuzzy matrices and
max algebra matrices. In this thesis, we extended their re-
sults to the matrices over nonnegative integers. Namely we
characterize the linear operators that preserve commuting
pairs of matrices over nonnegative integers.
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1 Introduction

Partly because of their association with nonnegative real
matrices, Boolean matrices [(0, 1)-matrices with the usual
arithmetirc, except 1 + 1 = 1] have been the subject of
research by many authors. In 1982, Kim [7] published a
compendium of results on the theory and applications of
Boolean matrices.

Often, parallels are sought for results known for field-
valued matrices, see e.g, deCaen and Gregory [5], Rao and
Rao [9, 10], Richman and Schneider [11], Beasley and Pull-
man [2, 3].

The set of commuting pairs of matrices, C, is the set of
(unordered) pairs of matrices (X, Y ) such that XY = Y X.
The linear operator T is said to strongly preserve C when
T(X)T(Y )=T(Y )T(X) if and only if XY = Y X.

In 1976 Watkins [12] proved that if n ≥ 4, M is the
set of n × n matrices over an algebraically closed field of
characteristic 0, and L is a nonsingular linear operator on
M which preserves commuting pairs, then there exists an
invertible matrix S in M, a nonzero scalar c, and a linear
functional f such that either L(X) = cSXS−1 + f(X)I or
L(X) = cSX tS−1+f(X)I, for all X inM. In 1978, Beasley
[1] extended this to the case n = 3. Also in [1], Beasley
showed that the same characterization holds if n ≥ 3 and
L strongly preserves commuting pairs. The real symmet-
ric and complex Hermitian cases were first investigated by
Chan and Lim [4] in 1982; the same results were estab-
lished as in the general case, with the exception that the
invertible matrix must be orthogonal or unitary. Further
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extensions and generalizations to more general fields were
obtained by Radjavi [8] and Choi, Jafarian, and Radjavi
[6]. Song and et al obtained characterizations of the linear
operators that preserve the commutativity of matrices over
nonnegative reals [13] and general Boolean algebras [15].

Here we investigate the set of linear operators onMn(Z+)
which preserve the set of pairs of commuting matrices,
where Z+ is the nonnegative part of the ring of integers
Z.

We obtain characterizations of linear operators that pre-
serve commuting pairs of nonnegative integer matrices. In
Chapter 2, we introduce most of the definitions, notations,
and well - known facts. In chapter 3, we study linear op-
erators that strongly preserve commuting pairs of Boolean
matrices. In Chapter 4, we give characterizations of linear
operators that preserve commuting pairs of nonnegative in-
teger matrices as following;

Theorem 4.3. Let T be a linear operator on Mn(Z+).
Then T is a surjective linear operator which preserves pairs
of commuting matrices if and only if there exists an invert-
ible matrix U ∈Mn(Z+) such that either

(1) T(X) = UXU t for all X ∈Mn(Z+), or

(2) T(X) = UX tU t for all X ∈Mn(Z+).
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2 Definitions and Preliminaries

Let B = {0, 1} be the set with the two operations, addi-
tion(+) and multiplication(·) such that

(1) 0 + 0 = 0, 0 · 0 = 0.

(2) 0 + 1 = 1 + 0 = 1, 0 · 1 = 1 · 0 = 0.

(3) 1 + 1 =1, 1 · 1 = 1.

Then B is called a Boolean algebra. A matrix with entries
in B is called a Boolean matrix. We letMm,n denote the set
of all m × n Boolean matrices. The n × n identity matrix
In and the m × n zero matrix Om,n are defined as for a
field. The m×n matrix all of whose entries are zero except
its (i,j)th, which is 1, is denoted Ei,j. We call Ei,j a cell.
We denote the m × n matrix all of whose entries are 1 by
Jm,n. We omit the subscripts on I, O, and J when they are
implied by the context.

Example. If A and B are n × n Boolean matrices, then
A + I commutes with B + I whenever A commutes with
B. On the other hand, when E1,1 does not commute with
J . Therefore X → X + I preserves commuting pairs of
Boolean matrices, but not strongly.

If A and B are in M(=Mm,n), we say B dominates
A(written B≥A or A≤ B) if bi,j = 0 implies ai,j = 0 for all
i,j. This provides a reflexive, transitive relation on M.

Linearity of transformations is defined as for vector spaces
over fields. A linear transformation on M is completely de-
termined by its behavior on the set of cells. The number
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of nonzero entries in a matrix A is denoted |A|. A matrix
S having at least one nonzero off-diagonal entry is a line
matrix if all its nonzero entries lie on a line (a row or a
column); so 1≤ |S| ≤ n. If the nonzero entries in S are
all in a row, we call S a row matrix and St a column ma-
trix. We use Ri (respectively, Ci) to denote the row matrix
(respectively, column matrix), respectively with all entries
in the ith row (respectively, column) equal 1. We say that
cells E and F are collinear if there is a line matrix L such
that L ≥ E + F . When X and Y are in M, we define X

\ Y to be the matrix Z such that zi,j = 1 if and only if
xi,j = 1 and yi,j = 0. For example, the matrix in Mn,n

having all off-diagonal entries 1 and all diagonal entries 0
is denoted Kn. Thus, Kn = J \ I. A linear operator T
on M is said to be nonsingular if T(X)=O implies that
X = O. A nonsingular linear operator on M need not be
invertible. If U is any matrix whose first column has all
entries 1, then X → XU is nonsingular but never invert-
ible, unless m = n = 1. Similarly, a matrix A is said to
be nonsingular if Ax = 0 implies that x= 0 (x a column
vector). If A has a nonzero entry in each column, then
A is nonsingular. Also, when m = n, the only invertible
matrices are permutation matrices. Therefore, many non-
singular Boolean matrices are not invertible. We let C(A)
denote the commutator semigroup of A, i.e., C(A) = {X ∈
M | XA = AX}. Then C(J) consists of O and the ma-
trices X such that both X and X t are nonsingular. Let
S denote the set of all symmetric matrices in Mn,n. We
define a digon matrix to be the sum of a cell and its trans-
pose. A star matrix is the sum of a line matrix and its
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transpose. Clearly all digon matrices and all star matrices
are symmetric. Let Ĉ(J) denote the subsemigroup of C(J)
which lies in Sn, that is, Ĉ(J) is the commutator of J in S.
Then Ĉ(J) is the set of all symmetric nonsingular matrices
together with O.

Evidently, the following operations strongly preserve the
set of commuting pairs of matrices;

(a) transposition (X → X t) ;

(b) similarity (X → SXS−1 for some fixed invertible ma-
trix S).
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3 Linear operators that strongly
preserve commuting pairs of Boolean matrices

In this section, we obtain the characterizations of lin-
ear operators that strongly preserve commuting pairs of
Boolean matrices. In Lemma 3.1 through 3.8, we let M =
Mn,n, and T be a linear operator on M
Lemma 3.1. If A ∈ C(J) is nonzero and B ≥ A, then B
∈ C(J).

Proof. Notice that A ∈ C(J) if and only if both A and
At are nonsingular, A has no zero row or column if and only
if A and At are nonsingular. Therefore, if A ∈ C(J) and B

≥ A, then B has no zero row or column. Hence B ∈ C(J).

Lemma 3.2. If T strongly preserves C(J), then T is bijec-
tive on the set of cells in M.

Proof. First, we show that T is nonsingular. We may
assume that n >1. If T(E) = O for some cell E, let M

be a minimal matrix in C(J) dominating E, that is, |M | ≤
|X| for all X ∈ C(J) with E ≤ X. Such a matrix exists
because J ∈ C(J). Moreover, M 6= E, as E /∈ C(J) because
E is singular. Then T(M)=T(E + M \ E)=T(M \ E),
contrary to the fact that M ∈ C(J) and M \ E /∈ C(J).

Since M is finite, there exists some integer p >0 such
that Tp is idempotent. Let Q = Tp. Then Q preserves both
C(J) and M\ C(J), and Q is nonsingular.

Suppose E and F are cells and E ≤ Q(F ). If E 6= F ,
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then there is a line matrix L such that L ≥ E and L 6≥ F .
Let N = J \ L, then N + E ∈ C (J). but N + F /∈ C(J),
as the former has no zero row or column and the latter
does. We have Q(N + E) = Q(N) + Q(E) ≤ Q(N + F ).
Since N +E ∈ C(J), we have Q(N +E) ∈ C(J), and hence
Q(N + F ) ∈ C(J) by Lemma 3.1. But N + F /∈C(J). This
contradicts the fact that Q preserves M \ C(J). Thus
E = F , and hence Q is the identity on the cells of M.
Therefore T is bijective on the cells of M.

Lemma 3.3. If T strongly preserves C(J), then T preserves
the set of line matrices.

Proof. Suppose M is a line matrix. If E and F are
noncollinear cells and E+F ≤ T(M), choose a permutation
matrix P ≥ E + F and let X=T−1 (P \ (E + F )). Then
X + M has a zero row or a zero column, and so X + M
/∈ C (J), even though T(X + M) ≥ P ∈ C(J). T(X + M)
∈ C(J). By Lemma 3.1 a contradiction to the fact that T
preserves M \ C(J).

Lemma 3.4. If T strongly preserves C(J), then either

(a) T maps row matrices to row matrices and column ma-
trices to column matrices ; or

(b) T maps row matrices to column matrices and column
matrices to row matrices.

Proof. According to Lemma 3.3, T(R1) is a row ma-
trix Ri, or a column matrix Ci, for some i. Suppose that
T(R1) = Ri. Select j distinct from i, and suppose that the
line matrix T(Rj) is the column matrix Cl.
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Then | T(R1 +Rj) | = | Ri +Cl | < 2n. while | R1 +Rj |
= 2n, contradicting the bijectivity of T . Hence T maps row
matrices to row matrices and (a) holds. A similar argument
establishes (b) when T(R1) is a column matrix.

Lemma 3.5. If T strongly preserves C(J), then there are
permutation matrices P and Q such that either (i) T(X) =
PXQ for all X ∈M or (ii) T(X) = PX tQ for all X ∈M.

Proof. By Lemma 3.4 either (a) T maps row matrices
to row matrices and column matrices to column matrices,
or (b)T maps row matrices to column matrices and column
matrices to row matrices. Since T is bijective, no two lines
can be mapped to the same line. Let P be the permutation
matrix that corresponds to the mapping T induces between
the row indices and the row [column] indices, and let Q be
the permutation matrix that corresponds to the mapping T
induces between the column indices and the column [row]
indices, according as (a)[(b)] holds. Obviously (i) follows
when (a) holds and (ii) follows when (b) holds.

Theorem 3.1. A linear operator T on M strongly pre-
serves commuting pairs if and only if there exists a permu-
tation matrix P such that either (a) T(X) = PXP t for all
X ∈M or (b) T(X) = PX tP t for all X ∈M.

Proof. We only need to prove the necessity, and we
may assume that n >1. Suppose that T strongly preserves
commuting pairs. We first show that T(J) = J . Sup-
pose T(J) = Y , and choose X = [xi,j] ∈ M such that
T(X) = Y and | X | ≤ |A | for all A with T(A) = Y . Since
T(X)=T(J), C(X) =C(J).
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Suppose x1,1 = 1. Since JP = PJ , PJP t = J for
any permutation matrix P . It follows from C(X) = C(J)
that PXP t = X for any permutation matrix P . Thus
xi,i = 1 for all i = 1, 2, . . . , n. Now, X has a nonzero off-
diagonal entry; Otherwise X ≤ I and thus C(I) = C(J),
which is impossible for n >1. Without loss of generality
we may assume that x1,2 = 1. We note that PX = XP

for any permutation P . In particular, if P fixes the first
row[column], it follows that the first row of X has all entries
equal 1. Also, PiX = XPi, where Pi is the permutation
matrix that interchanges the first row [column] with the
ith and fixes the rest, 2 ≤ i ≤ n. It follows that X = J .

Now suppose x1,1 = 0. An argument similar to the above
shows that xi,j = 0 if and only if i = j. Now J , and hence
X, commutes with I +E1,2. However, X(I +E1,2) has (2, 2)
entry equal to 1, while (I + E1,2)X has (2, 2) entry equal
to 0, a contradiction.

Thus T(J) = J , and hence T strongly preserves C(J).
Let Pn denote the set of n × n permutation matrices. Then
if case (i) of Lemma 3.5 holds, we have T(Pn) = Pn and
T(I) = PQ. Then PQ commutes with every member of Pn

and hence PQ = I. A similar argument holds if case (ii)
of Lemma 3.5 holds.

In the following lemmas, T is a linear operator on S

Lemma 3.6. If A ∈ Ĉ(J), B ∈ S, and B ≥ A, then
B ∈ Ĉ(J).

Proof. Notice that A ∈ Ĉ(J) if and only if both A and
At are symmetric nonsingular, A has no zero row or column
if and only if A and At are nonsingular. Therefore, if A ∈
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Ĉ(J) and B ≥ A, then B has no zero row or column. Hence
B ∈ Ĉ(J).

Lemma 3.7. If T strongly preserve Ĉ(J), then T is bijec-
tive on the set of digon matrices of M, where n > 2.

Proof. First, we show that T is nonsingular. We may
assume that n > 2. If T(E) = O for some digon matrix E,
let M be a minimal matrix in Ĉ(J) dominating E, that is,
|M | ≤ |X| for all X ∈ Ĉ(J) with E ≤ X. Such a matrix
exists because J ∈ Ĉ(J). Moreover, M 6= E, as E /∈ Ĉ(J)
because E is singular. Then T(M)=T(E+M \ E)=T(M \
E), contrary to the fact that M ∈ Ĉ(J) and M \E /∈ Ĉ(J).

Since Mn,n is finite, there exists some integer p >0 such
that Tp is idempotent. Let Q =Tp. Then Q preserves both
Ĉ(J) and Mn,n \ Ĉ(J), and Q is nonsingular. Suppose E
and F are digon matrices and E ≤ Q(F ). If E 6= F , then
there is a star matrix S such that S ≥ E and S 6≥F. Let
N = J \ S, then N + E ∈ Ĉ(J). but N + F /∈Ĉ(J), as
the former has no zero row or column and the latter does.
We have Q(N + E) = Q(N) + Q(E) ≤ Q(N + F ). Since
N + E ∈ Ĉ(J), we have Q(N + E) ∈ Ĉ(J), and hence
Q(N + F ) ∈ Ĉ(J) by Lemma3.6. But N + F /∈Ĉ(J). This
contradicts the fact that Q preserves Mn,n \ Ĉ(J). Thus
E = F ,and hence Q is the identity on the digon matrices
of Mn,n. Therefore T is bijective on the digon matrices of
Mn,n.

Lemma 3.8. If T strongly preserves Ĉ(J), then T preserves
the set of star matrices.

Proof. Suppose S is a star matrix. If E and F are digon
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matrices not dominated by a star matrix S and E + F ≤
T(S), Choose a permutation matrix P ≥ E + F and let
X=T−1 (P \ (E + F )). Then X + S has a zero row or
column, so X +S /∈ Ĉ(J), even though T(X +S) ≥ P ∈ Ĉ
(J) by Lemma 3.6 contradicting the fact that T preserves
M \ Ĉ (J).

Theorem 3.2. A linear operator T on S strongly preserves
commuting pairs if and only if there exists a permutation
matrix P such that either (a) T(X) = PXP t for all X ∈ S
or (b)T(X) = PX tP t for all X ∈ S.

Proof. Let σ be the map of {1, 2, . . . , n} to itself defined
by σ(i) = j if and only if the maximal star matrix on row
and column i is mapped to one on row and column j. By
Lemma 3.7, σ is one-to-one, and hence onto. Let P be the
permutation matrix corresponding to σ. Then the results
follow.
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4 Linear operators that preserve commuting pairs
of nonnegative integer matrices.

In this section, we characterize the linear operators that
preserve commuting pairs of nonnegative integer matrices.
We let Mn(Z+) denote the set of n× n matrices over Z+.
A mapping T: Mn(Z+) −→ Mn(Z+) is called a linear
operator if T(αA + βB)= α T(A) + β T(B) for all A,B ∈
Mn(Z+) and for all α, β ∈ Z+. For A = [ai,j] and B =
[bi,j] in Mn(Z+), we recall that A dominates B, denoted
by A ≥ B, if bi,j 6= 0 implies ai,j 6= 0. Let T be a linear
operator on Mn(Z+). If A and B are matrices in Mn(Z+)
with A ≤ B, we can easily show that T(A) ≤ T(B). Let
∆n = {(i, j) | 1 ≤ i, j ≤ n}. Then for any (i, j) ∈ ∆n, we
recall that Ei,j denotes the n×n matrix whose (i, j)th entry
is 1 and other entries are all 0. We call Ei,j a cell.

Lemma 4.1. Let T: Mn(Z+) −→ Mn(Z+) be a linear
operator on Mn(Z+) . Then the following are equivalent :

1. T is bijective.

2. T is surjective.

3. There exists a permutation σ on ∆n such that T(Ei,j) =
Eσ(i,j)

Proof. That 1) implies 2) and 3) implies 1) is straight
forward. We now show that 2) implies 3). We assume that
T is surjective. Then, for any pair (i, j) ∈ ∆n, there exists
a matrix X ∈ Mn(Z+) such that T(X) = Ei,j. Clearly
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X 6= O by the linearity of T. Thus there is (r, s) ∈ ∆n

such that X = xr,sEr,s + X ′ where (r, s) entry of X ′ is zero
and the following two conditions are satisfied: xr,s 6= 0 and
T(Er,s) 6= O. Since Z+ has no zero divisors it follows that

T(xr,sEr,s) ≤ T(xr,sEr,s)+T(X \ (xr,sEr,s)) =T(X) = Ei,j,

equivalently,

T(xr,sEr,s) =xr,sT(Er,s) ≤ Ei,j,

and so T(Er,s) ≤ Ei,j.

It follows from xr,s 6= 0 that T(Er,s) = br,sEi,j for some
nonzero scalar br,s. Let Pi,j = {Er,s | T(Er,s) ≤ Ei,j}. By
the above Pi,j 6= φ for all (i, j) ∈ ∆n. By its definition,
Pi,j ∩ Pu,v = φ whenever (i, j) 6= (u, v). That is, {Pi,j} is
the set of n2 nonempty sets which partition the set of cells.
By the pigeonhole principle, we must have that | Pi,j |= 1
for all (i, j) ∈ ∆n. Necessarily, for each pair (r, s) there is
the unique pair (i, j) such that T(Er,s) = br,sEi,j. Thus,
there is some permutation σ on {(i, j) | i, j = 1, 2, . . . , n}
such that T(Ei,j) = bi,jEσ(i,j), for scalars bi,j. We now only
need to show that bi,j = 1, for all i, j. Since T is surjective
and T(Er,s) 6≤ Eσ(i,j) for (r, s) 6= (i, j), there is some α such
that T(αEi,j) = Eσ(i,j). Since T is linear,

Eσ(i,j) =T(αEi,j) = α T(Ei,j) = αbi,jEσ(i,j).

That is, αbi,j = 1, or bi,j is unit. Since 1 is the only unit
element in Z+, bi,j = 1 for all (i, j) ∈ ∆n

We denotes Cn(Z+) as the set of commuting pairs of ma-
trices over Z+; that is, Cn(Z+) ={(A,B) ∈M2(Z+) | AB =
BA} .
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Example 4.2 Let A be given in Mn(Z+). Define an oper-
ator T on Mn(Z+) by

T (X) =

( n∑
i,j=1

xi,j

)
A

for all X=[xi,j] ∈ Mn(Z+). Then we can easily show that
T is a linear operator that preserve commuting pairs of
matrices, while it does not preserve non-commuting pairs
of matrices.

Thus, we are interested in linear operators that

(T (A), T (B)) ∈ Cn(Z+) if and only if (A,B) ∈ Cn(Z+).

For a matrix A ∈Mn(Z+), A is called invertible inMn(Z+)
if there exists a matrix B ∈ Mn(Z+) such that AB =
BA = In. It is well known [2] that all permutation matrices
are only invertible matrices in Mn(B). Using this fact,
we can easily show that all permutation matrices are only
invertible matrices in Mn(Z+).

Theorem 4.3. Let T be a linear operator on Mn(Z+).
Then T is a surjective linear operator which preserves pairs
of commuting matrices if and only if there exists an invert-
ible matrix U ∈Mn(Z+) such that either

(1) T(X) = UXU t for all X ∈Mn(Z+), or

(2) T(X) = UX tU t for all X ∈Mn(Z+).

Proof. Let T be a surjective linear operator on Mn(Z+)
that preserves pairs of commuting matrices. By Lemma
4.1, T is bijective and there exists a permutation σ on ∆n
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such that T(Ei,j) = Eσ(i,j). Note that if AX = XA for all
X ∈ Mn(Z+), then we have A = αIn for some α ∈ Z+.
Thus we have T(In) = βIn for some β ∈ Z+ because T
is bijective. Since T maps a cell onto a cell, T(In) = In.
It follows that there is a permutation γ of {1, . . . , n} such
that T (Ei,i) = Eγ(i)γ(i) for each i = 1, . . . , n. Define L:
Mn(Z+) →Mn(Z+) by L(X) = PT(X)P t, where P is the
permutation matrix corresponding to γ so that L(Ei,i) =
Ei,i for each i = 1, . . . , n. Then we can easily show that L
is a bijective linear operator on Mn(Z+) which preserves
pairs of commuting matrices. By Lemma 4.1, L maps a cell
onto a cell. Therefore, there exists (p, q) ∈ ∆n such that
L(Er,s) = Ep,q for any (r, s) ∈ ∆n.

Suppose that r 6= s. Since L is bijective, we have p 6= q

because L(Ei,i) = Ei,i for each i = 1, . . . , n. Assume that
p 6= r and p 6= s. Then

Er,s(Er,r + Es,s + Ep,p) = (Er,r + Es,s + Ep,p)Er,s

so that

L(Er,s)L(Er,r +Es,s +Ep,p) =L(Er,r +Es,s +Ep,p)L(Er,s),

equivalently,

Ep,q(Er,r + Es,s + Ep,p) = (Er,r + Es,s + Ep,p)Ep,q.

It follows that q = r or q = s. Since Er,s(Er,r + Es,s) =
(Er,r + Es,s)Er,s, we have

L(Er,s)L(Er,r + Es,s) = L(Er,r + Es,s)L(Er,s),

equivalently,
Ep,q(Er,r + Es,s) = (Er,r + Es,s)Ep,q.
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Since q = r or q = s, we have Ep,q(Er,r + Es,s) = Ep,r

or Ep,s, but (Er,r + Es,s)Ep,q = 0, a contradiction. Hence
we have p = r or p = s. Similarly we obtain q = r or
q = s. Therefore we have L(Er,s) = Er,s or L(Er,s) = Es,r

for each (r, s) ∈ ∆n. Suppose that L(Er,s) = Er,s with
r 6= s and L(Er,t) = Et,r for some t 6= r, s. Then we have
L(Es,t +Et,s) = Es,t +Et,s. Let A = Er,r +Es,t +Et,s so that
L(A) = Er,r+Es,t+Et,s. Then (Er,s+Er,t)A = A(Er,s+Er,t),
and hence

L(Er,s + Er,t)L(A) = L(A)L(Er,s + Er,t).

But
L(Er,s + Er,t)L(A) = Er,t + Et,r,

while
L(A)L(Er,s + Er,t) = Er,s + Es,r.

Thus we have t = s, a contradiction. It follows that if
L(Ei,j) = Ei,j for some pair (i, j) ∈ ∆n with i 6= j, then
L(Er,s) = Er,s for all pairs (r, s) ∈ ∆n. Similarly, if L(Ei,j) =
Ej,i for some pair (i, j) ∈ ∆n with i 6= j, then L(Er,s) = Es,r

for all pairs (r, s) ∈ ∆n. We have established that either
L(X) = X for all X ∈ Mn(Z+) or L(X) = X t for all X ∈
Mn(Z+). Therefore T(X) = P tXP or T(X) = P tX tP for
all X ∈ Mn(Z+). If U = P t, then we have T(X) = UXU t

or T(X) = UX tU t for all X ∈Mn(Z+).
The converse is immediate.

Thus we have characterized the linear operators that pre-
serve commuting pairs of matrices over nonnegative inte-
gers.
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< 국 문 초 록 >

음이 아닌 정수 행렬들의 교환 쌍을 보존하는 

선형연산자들

본 논문에서는 부울 행렬과 실수 상에서의 행렬들의 교환 쌍을 

보존하는 선형연산자들의 특성에 관한 기존의 논문 결과가 음

이 아닌 정수 행렬의 경우에도 적용할 수 있는가를 고찰하였다. 

즉, 비음의 정수에서 원소를 갖는 행렬들 위에서 가환행렬의 짝

들을 보존하는  선형연산자의 특성을 밝혔다.

그 결과 음이 아닌 정수 행렬 상에서 선형연산자가 교환행렬의 

쌍을 보존하는 전사인 선형연산자일 필요충분조건은 모든 행렬

에 대하여 T(X) =  UXU
t  또는 T(X) = UX

t
U
t 를 만족하는 

가역행렬 U가 Mn(ℤ
+) 에 존재하는 것임을 밝혔다.
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