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<Abstract>

Integral formulas and vanishing theorems on a

Riemannian Foliation

In this thesis, we study infinitesimal automorphisms of a compact Rie-
mannian manifold with non-minimal foliations. In particular, we establish
the integral formulas for infinitesimal automorphisms and prove vanishing
theorems of transversal Killing field, transversal affine Killing field, transver-
sal projective Killing field and transversal conformal Killing field under some

transversal Ricci curvature conditions and mean curvature conditions.



1 Introduction

Let (M, gy, F) be a closed, oriented, connected Riemannian manifold of di-
mension p + ¢ with a transversally oriented foliation F of codimension ¢ and a
bundle-like metric gy, with respect to F. Let L be the tangent bundle of F and
Q) = TM/L the normal bundle of F. A vector field Y on M is called an infinitesi-
mal automorphism of F if the flow generated by Y preserves the foliation, that is,
maps leaves into leaves. In other words, for any Z € 'L, [Y, Z] € I'L. There has
been extensive studies of geometric infinitesimal automorphisms of a minimal
Riemannian foliation by many differential geometers([6,7,8,10,11,15]). For the
point foliation, such infinitesimal automorphisms of a Riemannian manifold. In
this paper, we extend well-known results concerning infinitesimal automorphisms
on a Riemannian manifold to a foliated version. Among geometric infinitesimal
automorphisms, transversal Killing, affine, projective, conformal fields have been
the objets of main interest. Many results about those infinitesimal automor-
phisms on a minimal foliation have obtained([6,7,10,11,15]). In this paper, we
extend many results on a minimal foliation to the general case, that is, the case
where the foliation is non-minimal. This paper is organized as the followings. In
Chapter 2, we review the known facts on the foliated Riemannian manifold. In
Chapter 3, we study the basic Laplacian. In Chapter 4, we have integral formulas
about infinitesimal automorphism. In Chapter 5, we have vanishing theorems of

infinitesimal automorphisms on a Riemannian foliation.



2 Riemannian foliation

Let M be a smooth manifold of dimension p + q.

Definition 2.1 A codimension ¢ foliation F on M is given by an open cover
U = (U))ier and for each i, a difftomorphism ¢; : RP*? — U; such that, on
U; NU; # 0, the coordinate change goj_l op; ;i (U;NU;) — gpj_l(Ui N Uj) has
the form

o5 opi(x,y) = (wis(, ), Y (V))- (2.1)

From Definition 2.1, the manifold M is decomposed into connected submanifolds
of dimension p. Each of these submanifolds is called a leaf of F. Coordinate
patches (U;, ¢;) are said to be distinguished for the foliation F. The tangent
bundle L of F is the subbundle of 7'M, consisting of all vectors tangent to the
leaves of F. The normal bundle @) of F on M is the quotient bundle () = T'M/L.

Equivalently, () appears in the exact sequence of vector bundles

0—-L—-TMSQ—D0. (2.2)
If (z1,...,2p;%1,...,Y,) are local coordinates in a distinguished chart U, then
the bundle Q|U is framed by the vector fields 778%1, e ,Waiyq. For a vector field

Y € I'TM , we denote also Y = 7Y € T'Q.

Definition 2.2 A vector field Y on U is projectable, if Y =, aia%i +3 . b

* 0ya

With%‘z:Oforalla:1,...,qandi:1,...,p.

Definition 2.2 means that the functions b, = b,(y) are independent of x. Then

Y = Y ba% with b, independent of z. This property is preserved under the
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change of distinguished charts. Note that every projectable vector field preserves
the leaves in sense of [Y, Z] € I'L for any Z € I'L.
Let V(F) be the space of all projectable vector fields on M, i.e.,

V(F)={Y e TM|Y,Z] e TL, VZeTL}. (2.3)
An element of V(F) is called an infinitesimal automorphism of F. Now we put
V(F)={Y ==(Y) eTQ|Y € V(F)}. (2.4)

The transversal geometry of a foliation is the geometry infinitesimally modeled
by @, while the tangential geometry is infinitesimally modeled by L. A key fact
of the transversal geometry is the existence of the Bott connection in ) defined
by

Vs =([X,Y)]), VX eTL, (2.5)

where Y, € TM is any vector field projecting to s under 7 : TM — Q. It is a
partial connection along L. The right hand side in (2.5) is independent of the
choice of Y. Namely, the difference of two such choices is a vector field X’ € I'L
and [X, X'] € I'L, which implies 7([X, X']) = 0.

Definition 2.3 A Riemannian metric gg on the normal bundle @ of a foliation

F is holonomy invariant if
0(X)go =0, VX elL, (2.6)
where 6(X) is the transversal Lie derivative, which is defined by 6(X)s =

[ X, Ys].

Here 6(X)gq is defined by

(0(X)gq)(s,t) = Xgq(s,t) — go(0(X)s,t) — gqo(s,0(X)t) Vs, t €TQ.



Definition 2.4 A Riemannian foliation is a foliation F with a holonomy invari-
ant transversal metric gg. A metric gy is a bundle-like if the induced metric gg

on () is holonomy invariant.

The study of a Riemannian foliation was initiated by Reinhart in 1959([14]). A
simple example of a Riemannian foliation is given by a nonsingular Killing vector

field X on (M, gyr), because 6(X)gn = 0.

Definition 2.5 An adapted connection in () is a connection restricting along L

to the partial Bott connection V.

To show that such connections exist, consider a Riemannian metric gy, on
M. Then TM splits orthogonally as TM = L @ L*. This means that there
is a bundle map o : Q = L splitting the exact sequence (2.2), i.e., satisfying

mo o = identity. This metric gp; on T'M is then a direct sum

guM = 9. D grt.

With gg = o*gp1, the splitting map o : (Q,gg) — (L*,g;1) is a metric iso-
morphism. Let VM be the Levi-Civita connection associated to the Riemannian

metric gy;. Then the adapted connection V in @ is given by([5,15])

Vys = 7([X,Y)]) VX €TL,
VXs = (27)
m(VYY,) vX eTlL*,

where s € I'Q) and Y € I'L* corresponding to s under the canonical isomorphism

Q = L*. For any connection V in @, there is a torsion Ty defined by
Tv(Y,Z) =Vyn(Z) = Vzrn(Y) — (Y, Z]) (2.8)
for any Y, Z € I'T'M. Then we have the following proposition ([15]).
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Proposition 2.6 For any metric g,y on M and the adapted connection V in )

defined by (2.7) the torsion is free, i.e., Ty = 0.
Proof. For any vector fields X € 'L, Y € I'I'M, we have
To(X,Y)=Vxn(Y)—n([X,Y]) =0.
For any vector fields Z, Z' € T'L*, we have
15(2,2') = (V7 Z') = n(VyZ) = n([2,2']) = n(Tyu(Z, 2")) = 0,

where Ty is the (vanishing) torsion of VM. Finally the bilinearity and skew

symmetry of Ty imply the desired result. O

The curvature RV of V is defined by
RY(X,Y)=VxVy — VyVx—Vixy] VX, Y €TM. (2.9)

From the adapted connection V in ) defined by (2.7), its curvature R coincides
with ]O% for X,Y € 'L, hence RV(X,Y) = 0 for X,Y € 'L. And we have the

following proposition ([4,5,15]).

Proposition 2.7 Let (M, gy, F) be a (p+ q)-dimensional Riemannian manifold
with a foliation F of codimension q and bundle-like metric gy, with respect to
F. Let V be the connection defined by (2.7) in Q with curvature RY. Then for
X € I'L the following holds:

i(X)RY = 0(X)RY = 0. (2.10)

By Proposition 2.7, we can define the (transversal) Ricci curvature p¥ : I'Q — I'Q

and the (transversal) scalar curvature 0¥ of F by

pv<8) = ZRV(S’ Ea)Eav oV = ZQQ</)V(E&)= Ea)? (2'11)

b}



where {E,}4—1,.. 4 is a local orthonormal basic frame of Q.

Definition 2.8 The foliation F is said to be (transversally) Finsteinian if the
model space N is Einsteinian, that is,
v_1l v .
p =-0"-id (2.12)

with constant transversal scalar curvature oV.

Definition 2.9 The mean curvature vector x* of F is defined by
p
K=m(> VIRE), (2.13)
i=1

where { E;} is a local orthonormal basis of L. The foliation F is said to be minimal

if k¥ = 0.

For the later use, we recall the divergence theorem on a foliated Riemannian

manifold ([19]).

Theorem 2.10 Let (M, gy, F) be a closed, oriented, connected Riemannian man-
ifold with a transversally orientable foliation F and a bundle-like metric gy with

respect to F. Then
/ dive (X) = / g0 (X, k) (2.14)
M M
for all X € T'Q, where divg(X) denotes the transversal divergence of X with
respect to the connection V defined by (2.7).



Proof. Let {E;} and {E,} be orthonormal basis of L and @, respectively. Then
for any X € I'Q,

div(X) = > ou(VEX E)+ Y ou(VE X, o)
= > —ou(X,m(VEE)) + > gu(n(Vi, X), Ey)

)

= _gQ(X7 ﬁﬂ) + ZgQ(anXv Ea)

= —go(X, k") + divg (X).

By Green’s Theorem on an ordinary manifold M, we have

oz/de(X):/dev(X)—/MgQ(X,nﬁ). O

Corollary 2.11 If F is minimal, then we have that for any X € I'Q),

/ divg (X) = 0. (2.15)



3 The basic Laplacian

Let (M, ga, F) be a compact Riemannian manifold with a foliation F of codi-

mension ¢ and a bundle-like metric g,,.

Definition 3.1 Let F be an arbitrary foliation on a manifold M. A differential

form w € Q" (M) is basic if

i(X)w=0, 6(X)w=0, VXeTlL. (3.1)

In a distinguished chart (xy,...,2py1,...,y,) of F, a basic 1-form w is ex-

pressed by

w= Z Way-ar@Yay N -+ N dYa,,

a1<---<ar

where the functions wq, «, are independent of z, i.e. 22w, ..., = 0. Let Q(F)

be the set of all basic r-forms on M. The foliation F is said to be isoparametric
if Kk € QL(F), where r is a go-dual 1-form k*. Then we have the well known

theorem([9,15]).

Theorem 3.2 Let F be an isoparametric Riemannian foliation on M. Then the

mean curvature form k is closed, i.e., dk = 0.

We now define the star operator * : Q(F) — Q% "(F) naturally associated

to go. The relationships between * and * are characterized by
%6 = (—1)P) % (p A x£), (3.2)

for ¢ € Q3(F), where xz is the characteristic form of F and x is the Hodge
star operator([15]). Then the inner product < , >p on Q5(F) is defined by
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< ¢, >p= ¢ A*x A xr for any ¢, € Qf and the global inner product is given
by

< 0 >>B=/ <65, (3.4)
M

With respect to this scalar product, the adjoint dp : Q5 (F) — Q5 H(F) of dp is

given by
opp = (=1)10 V% (dp — kA% (3.5)
Then the basic Laplacian is given by
Ap =dpdp + 0pdp. (3.6)
Lemma 3.3 ([1,2]) On the Riemannian foliation F, we have

dpo = ZEaAan 05 = Z—z IVed+i(s)o,  (37)

when {E,} is a local orthonormal basic frame on @ and {E*} its gg-dual 1-form.

Definition 3.4 For any vector field Y € V(F), we define an operator Ay : I'Q) —
I'Q as
Ays =0(Y)s — Vys. (3.8)

Remark. Let Y; € I'TM with m(Y;) = s. Then it is trivial that

AyS - —VYST(Y). (39)

So Ay depends only on s = 7(Y') and is a linear operator. Moreover, Ay extends
in an obvious way to tensors of any type on @ (see [6] for details). Namely, we

can define the following.



Definition 3.5 For any basic 1-form ¢ € QL(F), the operator Ay is given by

(Ayd)(X) = —d(AyX) VX €TQ. (3.10)

Now, we introduce the operator V; .V, : QL (F) — Q5 (F) as
ViViud ==Y Vi 5o+ Vao, (3.11)
where VX, = VxVy — Vyuy for any X, Y € TM. Then we have the following.

Proposition 3.6 ([2]) On the Riemannian foliation F on a compact manifold

M, the operator Vi, V. satisfies
L Vi V1, ¢ >p=< V1, Vo >p (3.12)
for all 1, @2 € Qp(F), where < Vi1,V >p=> < Vg, 01,V >p.
By the straight calculation, we have the following theorem.
Theorem 3.7 On the Riemannian foliation F, we have
Apd = Vi, Vi + At + F(0) (3.13)

for ¢ € Qp(F), where F(¢) =3, , E* A i(Ey)RY (Ey, Eu)é. In particular, if ¢ is
a basic 1-form, then F(¢)* = p¥(¢*).

Proof. Fix x € M and let {E,} be an orthonormal basis for ) with (VE,), = 0.
Then from (3.7) we have

dpdpgp = Z(Ea AV )(—i(Ey) V¢ + i(k)o)

a,b

= Y E AV {i(E) Vel + Y ECAVi,i(kh)o

a,b

= =) E"Ni(E)VE, V¢ + dpi(s)e
a,b

10



and

Opdpd = Y —i(Ey) Vi {E"AVp,¢}+i(k)dpo
a,b

= > —(i(Ey)E")VE, V¢ +i(k)dpo

a,b

+> B Ni(By) Ve, Vi, ¢

a,b

= > ~VeVeé+ Y E"Ni(E)VE Ve +i(k)dse.
a a,b
Summing up the above two equations, we have

Apd = ddpd+ opdpd
= dpi(k")¢ + i(K")dpg — Z Ve VE®

4 Z E*N i(Eb)RV(Eb, E,)¢

a,b

= O(k")p — Z Ve Ve o+ Z E* Ni(Ey) R (Ey, Eq)¢
a a,b

= =) ViVeé+F(@)+ Aup + Vaud

= = Vh 6+ Vo + F(6) + Agd

= vlfrvh"gb + F(¢> + A:‘iﬁgb'

The proof is completed. On the other hand, let ¢ be a basic 1-form and ¢* its

gg-dual vector field. Then

gQ(F(¢)7 EC) = ZQQ<E(Z A i(Eb)Rv<Eba Ea)¢7 EC)
a,b

= Z i(Eb)RV(Eb, EC)¢ = Z gQ(Rv(Eba EC)gbﬁv Eb)
b b

=" 9a(RY (&, By) By, Ex) = go(p” (¢F), E.).

11



This yields that for any basic 1-form ¢, F(¢)* = p¥V(¢#). O

From (3.10) and Theorem 3.7, we have the following corollary.

Corollary 3.8 On the Riemannian foliation, we have that for any X € I'Q)
ApX =V VX +p¥(X) - AL X. (3.14)

Lemma 3.9 Let F be a Riemannian foliation. For any vector fields Y, Z € V(F)
and s € I'Q, we have

(OYV)(Z,8) = RV(Y, Z)s — (VzAy)s. (3.15)

where (0(Y)V)(Z,5) = 0(Y)Vzs — Vgr)zs — Vz0(Y)s and
(Vsz)S = —VzvyW(Y) + szsﬂ(Y).

Proof. By a direct calculation, we have that for any Y, Z € V(F)

OY)V)(Z,s) = [Vy,Vz]s = (0() =Vy)Vzs=Vz(0(Y)—=Vy)s = Vyzs. O

12



4 Integral formulas

Let (M, gu, F) be a closed, oriented, connected Riemannian manifold with a
foliation F of codimension ¢ and a bundle-like metric gy;. Let {E,} be a local

orthonormal basic frame of @ such that (VE,), =0 at = € M.

Proposition 4.1 For any basic function f on M, it holds that

/MABf ~0. (4.1)

Proof. From (3.6) and Lemma 3.3, we have

ABf = (SBdBf = — ZZ(Ea)andBf + i(liﬁ>d3f = —diUv(dBf) + Z'(Iiﬁ>d3f.

By integrating the above equation and using the divergence theorem (2.14), we

have

/MABf:—/Mdz’v(dgf)Jr/MgQ(H”,dBf)
:—/gQ(,‘iﬁ,dBf)‘F/ gQ</€u7dBf>
M M

=0. O
Note that, the direct calculation gives
1
5081° = (B5N)f = [V fl, (4.2)

which yields
/M (DB f — [V fP} =0, (43)

Hence we have the following proposition.

Proposition 4.2 On the Riemannian foliation F on M, if a basic function f

satisfies Apf > 0 (orApf <0), then f is constant on M.

13



Proof. By Proposition 4.1, if Agf > 0, then Agf = 0. So f is constant from
(4.3). O

Proposition 4.3 For any basic function f and a constant A on M, if Agf = A\f,

then \ is positive.
Proof. From (4.3), if Agf = Af, then
[ 1OH7 =¥ =0
M
which implies A > 0. O
Lemma 4.4 For any vector X € V(F), it holds that

TrAxAx = —%|d35‘2 + VX[
= 18XV gal* ~ VX2
where £ is gg-dual 1-form of X.
Proof. For any basic 1-form ¢, it is well-known that
(dpo)(Y,2) =Y §(Z) = Z¢(Y) = ¢([Y, Z]), VXY eT'Q.
Since [E,, E) = 0 at x € M, we have that at = € M
51> = {(dsS)(Ea, )}
ab
= {EL(E) — B(E)Y =) {90(VE X, Ey) — 90(Vg, X, Ea)}
ab

a,b

=2VX[" =2 g0(VE,X, E)go(Ve,X, E,). (4.4)

a,b

14



On the other hand, from (3.9) it is trivial that

TrAxAx =Y 90(Ve,X, E)go(VEeX, E,). (4.5)

a,b
Hence the first equation in Lemma 4.4 is proved from (4.4) and (4.5). Next, it is

well-known that

1
TrAxAx = —TrAG Ax + §T7’(AX + A% )?

1
= — |V, X]? + 5 Tr(Ax + AL)2 (4.6)
Moreover, from (3.9) we have

0(X)g0” = {90(VE X, Ey) + 90(VE,X, E,)}

a,b

=D o((Ax =+ AN )EL ) = Tr(Ax + A%)”. (4.7)

a,b

From (4.6) and (4.7), the second equation is proved. O

Proposition 4.5 On the Riemannian foliation F on M, any vector field X €
V(F) satisfies

—divv(AxX) — dlvv(dlvv(X)X)
= 00(p"(X), X) + S 0(X)gal” — [V X[? — (5rX)?

1
= 90(p" (X), X) = 5ldptl + |V X* = (6rX)*.
Proof. By a direct calculation with (3.9), it holds that for any X € V(F)

divv(AXX) = — gQ(VEaVXX, Ea),
divy (dive (X)X) =X dive (X) + (divy (X))

15



Since Xdivy(X) = Xgo(VE, X, E,) = 90(VxVg,, E,), we have

divy (divy (X)X) + divy (Ax X)
= 90(VxVE,X — Vi, VxX, E,) + (divy(X))?
= go(RY(X, E0)X + Vix.5X, Eu) + (divg(X))?
= —9(p¥(X), X) + 9o(Vix,p) X, Ea) + (divy (X))
= —90(p"(X), X) = go(Ax[X, B}, E,) + (divy (X))

= —90(pV(X), X) — go(Ax Ax E,, E,) + (dive (X)),
From Lemma 4.4, the proof is completed. O

Corollary 4.6 On the Riemannian foliation F on M, any vector field X € V(F)

satisfies
[ (006" (0. X) + 510000 = [0 XP - 6%} 48)
[ {0067 (X).) = 5ldn€l? + VX — (627} (4.9

Lemma 4.7 On the Riemannian foliation F on M, any vector field X € V(F)

satisfies

[ so@ex.x) = [ [9uXF+ [ g0l - 4)00).X).

Proof. It is trivial from (3.14). O

From (4.8) and (4.9), we have the following corollary.

16



Corollary 4.8 On the Riemannian foliation F on M, if OpX = ApX —2pY(X)
for any X € V(F), then

| (900X, 5) = 510(X)g0F + (6277} (4.10)
+ /M (00(AuX, X) — dive(Ax X) — dive(dive(X)X)} = 0,

| {00(8X.3) = Sidue — (52) (@.11)
n /M (00(A s X, X) + dive(Ax X) + dive (dive (X)X)} = 0.

Lemma 4.9 On the Riemannian foliation F on M, any vector field X € V (F)

satisfies
2 4 _
10(X)g0 + 5(5TX)|2 = 0(X)gol* = 5(5TX)2 VX € V(F).

Proof. A direct calculation gives

6(X)go + §<6TX>|2 —10(X)gql? + §<6TX>2 " ‘g(w) S (0(X)g0) (Fa, E)
—10(X) g0l + §<5TX>2 - §<5TX>2
~10(X)g0 - (6rX)".

From Corollary 4.8 and Lemma 4.9, we have the following.

Corollary 4.10 On the Riemannian foliation F on M, any vector field X €
V(F) satisfies

| 190(0X.5) = 510()00 + 2 (52 X0P + L6077}

+ /JW{QQ(AMX,X) — dZ’Uv(AxX) — dZvv(dZvv(X)X)} =0. (412)

17



Lemma 4.11 On the Riemannian foliation F on M, any vector field X € V (F)

satisfies

/{gQ uX X)+d2?)v AxX / XgQ ji)( (413)

/Mdivv(divv(X)X) = —/M((FTX)QQ(X,F; ). (4.14)

Proof. The second equation is followed from the divergence theorem. From (3.4)
and divergence theorem, the first equation is proved. O

Now we denote VK (F) by
VK (F) ={X € V(F)|go(X, x") = 0}. (4.15)
Then we have the following theorem.

Theorem 4.12 Let (M, gy, F) be a closed Riemannian manifold with a foliation
F and a bundle-like metric gy;. For any vector field X € VKL(F) we have

| (90(0X.5) = 5100X)00 + 2 (5 X0 + 2g0( A X, X) + L2 (6rX)) =0,
(4.16)

Proof. From Corollary 4.10 and Lemma 4.11, it is trivial. O

18



5 Vanishing theorems for infinitesimal automor-
phisms

Let (M, gy, F) be a closed, oriented, connected Riemannian manifold of di-
mension p + ¢ with a transversally oriented foliation F of codimension ¢ and a

bundle-like metric g, with respect to F.

5.1 Transversal Killing fields
Definition 5.1 A vector field X € V(F) is a transversal Killing field if it satisfies
0(X)gq — 0, (5.1)
equivalently,
9o(VyX,Z) + go(VzX,Y) =0, VY,ZecTQ. (5.2)
From (5.2), we have the following proposition.

Proposition 5.2 Let X € VKL(F) be a transversal Killing field on M. Then

we have

/dev(AXX) :—/MgQ(AXKJﬁ,X) = —/MgQ(AKnX,X). (5.3)

Proof. Let X be a transversal Killing field with go (X, x*) = 0. From (5.2), we
have

Go(AxY, Z) + go(Y, AxZ) = 0, VY, Z € TQ. (5.4)
Hence the divergence theorem with (5.4) implies that
/ dZUv(AxX) = / gQ(AxX, /iﬁ) = —/ gQ(X, Axﬁﬁ). (55)
M M M
On the other hand, the second equality follows from Lemma 4.11. O
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Theorem 5.3 Let (M, gy, F) be a compact Riemannian manifold with a folia-
tion F and a bundle-like metric gyr. Any infinitesimal automorphism X € V (F)

is a transversal Killing field iof and only if
(1) OpX + AL X + Axr? =0,
(2) 67X = —divg X = 0,
®) [ gol(Ax+ A%, k) =0
Proof. Let X € V(F) be a transversal Killing field. Then it holds that
90(Ve, X, Ey) + 90(Ve X, E,) = 0. (5.6)
Hence (2) is trivial from (5.6). For the proof of (1), we have from (5.6)

90(p¥(X), By) =9o(> " R(X, E.)Eq, By) = go(R(E., Ey) X, E,)

=90(VE,VEX, Ei) — 9o(VE,VEX, Ey)
=E.9q(VE,X, Ea) — Evgo(VE, X, Ea)
=—090(Ve, Ve, X, E).
Hence
pV(X)=~-Vg Vg, X.

From (3.10) and (3.13), (1) is proved. Next (4.10) together with the properties
(1)and (2) gives (3). Conversely, if X € V(F) satisfies (1), (2) and (3), then
6(X)go = 01in (4.10). So X is a transversal Killing field. O

Corollary 5.4 Let F be a minimal foliation on M. Then any infinitesimal au-

tomorphism X is a transversal Killing field if and only if
OgX =0 and 67X =0.
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Proposition 5.5 Let X € VKL(F) be a transversal Killing field on M. If
X =dgf for some basic function f, then X = 0.

Proof. Since X is a transversal Killing field with go(X, k%) = 0, we have jpX =
orX. Hence

Apf =0pdpf =X =drX =0.
From Proposition 4.2, f is constant, which implies X = 0. O

Theorem 5.6 Let X € VKL(F) be a transversal Killing field on M, Then

if pV(X) — Axk* <0, then V,, X =0, i.e VX =0
ifpV(X) — Axr* <0 and < 0 at some point, then X = 0.

Proof. Let X be the transversal Killing field with go (X, %) = 0. Since 67X = 0,
Corollary 4.6 yields

/ [90(p¥ (X) — AxrF, X) — [V X [P = 0.
M
Therefore the proof is completed. O

Corollary 5.7 ([6]) Let F be a minimal foliation and X a transversal Killing
field on M. If the transversal Ricci curvature is non-positive, then X is parallel.

If the transversal Ricci curvature is quasi-negative, then X is trivial.

5.2 Transversal affine Killing fields

Definition 5.8 A vector field X € V(F) is a transversal affine Killing field if it

satisfies
O0(X)V =0, Thatis, RY(X,E,)E,+ Vg VX =0, (5.7)
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where
OX)VIY,Z) =0(X)VyZ — VoxyZ — Vy0(X)Z, VY,ZelQ.

Theorem 5.9 On the Riemannian foliation F, if X € V(F) is a transversal
affine Killing field, then

OpX + AL X + Axk* =0 and dpdrX =0. (5.8)

Proof. From (5.7), pV(X)+ Vg, Vg, = 0, which means the first equation. Next,
(5.7) implies that

0= gQ(VEaVEbX, Eb) = EagQ(VEbX, Eb) = Eadivv(X>.

Therefore the second equation is proved. O

Theorem 5.10 If any transversal affine Killing field X € VK*(F) satisfies

/ 9o((Ax + A%) X, k%) = 0, (5.9)
M
then X is a transversal Killing field.

Proof. Since go(X,x*) =0, 65X = 67X. Hence

0= / 9go(dpérX, X) = / 167X |?,
M M
which yields 07X = 0. By Theorems 5.3 and 5.9, the proof is completed. O

Theorem 5.11 On the Riemannian foliation F on M, any transversal affine

Killing field X € VK*(F) satisfies

/ {290(p¥ (X), X) — go(Axrk* + A: X, X) — |07 X|* — %|ng|2} =0. (5.10)
M
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Proof. Since go(X, k*) = 0, we have
9o(Ax X, K%) = —go(AuX, X).

Hence (5.10) is proved from (4.11) and (5.8). O
If k¥ of F is a transversal Killing field, then

gQ(AXFLﬁ—i-A,{nX,X) :gQ<Axliﬁ,X), (511)
because go(A.:X, X) = 0. Hence we have the following theorem.

Theorem 5.12 Let (M, gur, F) be a closed, oriented, connected Riemannian man-
ifold with a foliation F and a bundle-like metric gy such that k* is a transver-
sal Killing field. If any transversal affine Killing field X € VKL(F) satisfies
pV(X) — Axk* <0 on M, then dpé = 67X = 0, which implies VX = 0. If any
transversal affine Killing field X € V. K+(F) satisfies p¥ (X) — Axrk* <0 and < 0
at some point, then X = 0.

Proof. It is trivial from (3.14) and Theorem 5.11. O

Corollary 5.13 ([6]) Under the same assumption as in Theorem 5.12 except for

F is minimal,if p¥ < 0, then every transversal affine Killing field is a transversal

Killing field.

Remark. If p¥ < 0, then every transversal affine Killing field is parallel. If
pV < 0 and < 0 at some point, then every transversal affine Killing field is

trivial.
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5.3 Transversal projective Killing fields

Definition 5.14 A vector field X € V(F) is a transversal projective Killing field

if it satisfies
(BO)V)(Y.2) = a(Y)Z +a(2)Y, Y.ZeTQ, (5.12)
where a is a basic 1-form on M.

Proposition 5.15 Let X € V(F) be a transversal projective Killing field on M.
Then it holds

OpX + AL X + Axrf = —20F. (5.13)
Proof. From (5.7), it is well-known that

> (OX)V)(Eas Ba) = pY (X) = V;, Ve X — Axrt. (5.14)

T
a

From (5.12), we have >, (0(X)V)(E,, E,) = 2a(E,)E, =23, a*. So we have
pV(X) = ViV, X — Axkf = 20°, (5.15)
which prove (5.13) by virtue of (3.14). O

Lemma 5.16 Let X € V(F) be a transversal projective Killing field on M. Then
it holds
dp(67X) = —(q+ 1. (5.16)

Proof. From Lemma 3.3, we have

dp(6rX) = E,AVp,[—i(E) Ve X] ==Y E,AV5,g0(VeX, E)
a,b a,b
= _ZgQ(anvaXv Eb)Ea- (517)

a,b
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From (5.7) and (5.12), we have
RY(X,E)Ey + V5, Ve, X = a(E,)Ey + a(Ey) E,. (5.18)

From (5.17) and (5.18), it follows (5.16). O
From (5.13) and (5.16), we have the following proposition.

Proposition 5.17 Let X € V(F) be a transversal projective Killing field on M.
Then it holds

2

OpX + AL X + Axkl =
B +nﬁ + AxK q+1

dgorX. (5.19)
From (4.11) and (5.19), we have
v 1 2 2 2
0= {290(p" (X), X) = Sldp&|” = (60 X)" + ——go(dpdr X, X)
M 2 g+1
+ 90(Ax X, ') — go(Axk", X) + dive (dive (X)X)}. (5.20)
Hence we have the following theorem.

Theorem 5.18 On the Riemannian foliation F on M, any transversal projective

Killing field X € VKL (F) satisfies

qg—1 1
- 0r X |* — §|dB§|2} =0.

/ (200(07(X), X) — go(Axrt + AuX, X)
M q+1

(5.21)
Proof. Since go(X, x*) = 0, we have
orX = 05X, go(AxX, k") = —go(AuX, X).

Hence (5.21) is proved from (5.20). O

If k! of F is a transversal Killing field, then we have the following theorem.
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Theorem 5.19 Let (M, gur, F) be a closed, oriented, connected Riemannian man-
ifold with a foliation F and a bundle-like metric gy such that k* is a transversal
Killing field. If any transversal projective Killing field X € VK*(F) satisfies
pV(X) — Axk* <0 on M, then dgé = 67X = 0, which implies VX = 0. If any
transversal projective Killing field X € VK*(F) satisfies p¥ (X) — Axrx* <0 and
< 0 at some point, then X = 0.

Proof. It is trivial from (3.14), (5.11) and Theorem 5.18. O

Corollary 5.20 ([6]) Let (M, g, F) be a closed, oriented, connected Rieman-
nian manifold with a minimal foliation F and a bundle like metric gy;. If p¥ < 0,

then every transversal projective Killing field is a transversal Killing field.

Remark. If pV < 0, then every transversal projective Killing field is parallel. If
pY < 0 and < 0 at some point, then' every transversal projective Killing field is

trivial.

5.4 Transversal conformal Killing fields

Definition 5.21 A vector field X € V(F) is a transversal conformal Killing field

if it satisfies
0(X)g9q = 2fgq, (5.22)
where f >0 s a basic function. In fact, f = —%5TX.

Proposition 5.22 On the Riemannian foliation F, any transversal conformal

Killing field X € V(F) with 0(X)gq = 2fgq satisfies

OV, Z2) = (dpf)(Y)Z + (dpf)(2)Y — go(Y, Z)dpf, VY,Ze€TQ.
(5.23)
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Proof. Lemma 3.9 implies that for any Z, W € I'Q),

Vy (0(X)gQ)(Z, W) + V2(0(X)go) (Y, W) = Vi (0(X)go)(Y, Z)
=g0(Vy V2 X, W) 4+ 9o (VyVwX, Z) + 9o(VzVy X, W) + go(VzVw X,Y)
— 9o(VwVy X, Z) — go(VwV2X,Y)
=go(RY(Y, W)X, Z) + go(RV(Z,W)X,Y) + go(RY (Y, Z)X, W) + 290(V 2 Vy X, W)
= —290(RY(Z, X)Y,W) + 290(VVy X, W)
=2gq((O(X)V)(Y, Z2),W).
On the other hand, since X € V(F) is a transversal conformal Killing field, (5.22)
implies
Vy (0(X)ga)(Z, W) 4+ Vz(0(X)go)(Y, W) = Vi (6(X)gq)(Y, Z)
=Y (f)90(Z, W)+ Z(f)ga(Ys V) =W (f)go(Y, Z)
=9Q(Y (/) Z, W)+ go(Z(f)Y,W) — gq(daf, W)ge(Y, Z)

From the above two equations, the proof is completed. O

From (4.8), we have the following proposition.

Proposition 5.23 On a Riemannian foliation F, any transversal conformal Killing

field X € V(F) with (X)gg = 2fgq satisfies

/M{gQ<pV<X>,X> a2

167X |2 — |V X2 4 divg (Ax X) + dive (dive (X)X)} = 0.

(5.24)

Theorem 5.24 Let (M, gy, F) be a closed, oriented, connected Riemannian man-
ifold with a foliation F and a bundle-like metric gy;. For any transversal confor-

mal Killing field X € VK*(F), if holds
q—2

OpX + AL X + Axkt = — dporX. (5.25)
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conversely, if k* is a the Killing field, any vector field X € VKL(F) satisfies

(5.25) is a transversal conformal Killing field.

Proof. Let X € VK*(F) be a transversal conformal Killing field. Then by
(5.23) and Lemma 3.9, we have

RY(X,Y)Z = Vyy2X + VyVzX = (dpf)(Y)Z + (dpf)(2)Y — go(Y, Z)dpf.
From this equation, we have

pV(X) = ViV X — AY =2 (dpf)(E.)E. — qdpf = —(q — 2)dp .

q—2

DBX + AiﬁX -+ 14)(/{1:i = — dB(STX.

Conversely, since xf is a transversal Killing field, gg(4,:X, X) = 0. By Theorem
4.12; if X satisfies (5.25), then X is a transversal conformal Killing field. O
From (4.11) and Theorem 5.24, we have

1 -2
0= | 120007 (X), X) = 5ldpgP = (5rX) = & go(dpdr X, X)

+ 90(Ax X, k%) — go(Axk*, X) + dive (dive (X)X)}. (5.26)
Hence we have the following theorem.

Theorem 5.25 On the Riemannian foliation F on M, any transversal conformal
Killing field X € VK*(F) satisfies

29 — 2

1
/ {290(p¥ (X), X) — go(Axr* + A X, X) — 07 X|? — §|dB§|2} =0.
M

(5.27)
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Proof. Since go(X, k*) = 0, we have
orX =05X, go(AxX, k") = —go(Au:X, X).

Hence (5.27) is proved from (5.26). O
If k¥ of F is a transversal Killing field, then we have the following theorem by
(5.11)

Theorem 5.26 Let (M, gy, F) be a closed, oriented, connected Riemannian man-
ifold with a foliation F and a bundle-like metric gy such that k' is a transversal
Killing field. If any transversal conformal Killing field X € VK*(F) satisfies
pV(X) — Axrk* <0 on M, then dp€ = 67X = 0, which implies VX = 0. If any
transversal conformal Killing field X € VK*(F) satisfies p¥ (X) — Axk* <0 and

< 0 at some point, then X = 0.
Proof. It is trivial from (3.14) and Theorem 5.25. O

Corollary 5.27 ([6]) Let (M, g, F) be a closed, oriented, connected Rieman-
nian manifold with a minimal foliation F and a bundle like metric gy;. If p¥ <0,

then every transversal conformal Killing field is a transversal Killing field.

Remark. If pV < 0, then every transversal conformal Killing field is parallel. If
pV < 0 and < 0 at some point, then every transversal conformal Killing field is

trivial.
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