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I. Introduction

In the late nineteenth century a Russian mathematician, A M.Liapunov,
introduced a valuable tool-now known as Liapunov’s direct or second method-
for studying certain qualitative properties of solutions to systems of ordinary
differential equations. This method essentially was in a dormant state for
a few decades and was revived by several Russian mathematicians in the
1930s. However, it did not begin to receive much international attention
until the late 1940s. The method then began to flourish in the 1950s and has
been an important part of scientific literature, in general, and mathematics
literature, in particular. ever since.

The basic idea behind Liapunov's direct method involves the study of
an auxiliary function along solutions to a system of differential equations,
and several steps are involved in order to use this approach. First, one
must construct the auxiliary function-usually called a Liapunov function -
which satisfies certain properties in compliance with the theory that has
been developed. Then, the system of equations itself and the derivative of
the Liapunov function along solutions to the system are examined for various
attributes. Among the qualitative properties of solutions that one often can
investigate using this technique are stability. uniform stability. asymptotic
stability, uniform asymptotic stability.

One of the goals of this dissertation is to improve and supplement previ-
ous theorems in the literature regarding globally asymptotically stable and
globally uniformly asymptotically stable for ordinary differential equations.

In particular, we concentrate on two main directions ; namely, we seek to (i)
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present sufficient conditions to ensure the globally uniform asymptotic sta-
bility of the zero solution of differential equation, (ii) present the examples
to apply our results.

In chapter II, we present the concept of an equililbrium point and defini-
tions of stability. Chapter III is dedicated to obtain new theorems involving

Liapunov functions.
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IT. The Concept of an Equilibrium Point and Definition of Stability

2.1. The Basic Notation and Concept of an Equilibrium Point

We concern ourselves with systems of equations

(E) o' = f(t,z),

where z € R" and R" denotes Euclidean n-space. When discussing global
results, such as global asymptotic stability, we shall always assume that
f:RT xR* - R" [ R* = [0,00) ] is continuous. On the other hand. when
considering local results, we shall usually assume that f : R* x B(h) — R"
[ B(h) = {z € R" | 0 < |z]| < h,for some h > 0} |. On some occassions we
may assume that ¢ € R, rather than ¢+ € Rt. Unless otherwise stated, we

shall assume that for every (t9,£),to € R*. the initial value problem
(I) @' = f(t,z), a(to) = ¢

possesses a unique solution é(t,t,,£) which depends continuously on the ini-
tial data (¢9.£). Since it is very natural in this chapter to think of f as
representing time, we shall use the symbol t; in (I) to represent the ini-
tial time (rather than using 7 as was done earlier). Furthermore, we shall

frequently use the symbol z4 in place of ¢ to represent the initial state.

Definition 2.1.1. A point z. € R is called an equilibrium point of (E)
(at time t* € R*) if

flt,ze) =0 for all t > ¢*.



Other terms for equilibrium point include stationary point, singular point,
critical point, and rest position. Note that if r is an equilibrium point of
(E) at ¢*, then it is an equilibrium point at all 7 > #*. Note also that in the

case of autonomous systems

(A) ' = f(z)

and in the case of T-periodic systems

(P) ' =f(t,x),  f(t,z) = f(t+T.z),

a point r. € R" is an equilibrium at some time t* if and only if it is an
equilibrium point at all times. Also note that if r. is an equilibrium (at t*)

of (E), then the transformation s = ¢t — #* reduces (E) to
dr/ds = f(s +t*. 1),

and 7. is an equilibrium (at s=0) of this system. For this reason, we shall
henceforth assume that t* = 0 in Definition 2.1.1 and we shall not mention
t* further. Note also that if z, is an equilibrium point of (E), then for any
to >0

¢(t,t0,.l‘e) = T fon all t 2 to,
i.e., r¢ is a unique solution of (E) with initial data given by ¢(to,to.1.) = x..

Example 2.1.2. Considered the simple pendulum described by the equa-

tions

-1:] == IQ,

ry = —ksinur, k>0
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Physically, the pendulum has two equilibrium points. However, the model of
this pendulum has countably infinitely many equilibrium points which are

located in R? at the points (mn,0), n = 0,4+1,+2.--- .

Definition 2.1.3. An equilibrium point r. of (E) is called an isolated
equilibrium point if there is an r > 0 such that B(r.,r) = {r € R" |

|ze —x| < 7} C R™ contains no equilibrium points of (E) other than z, itself.
Example 2.1.4. The linear homogeneous system

(LH) ¥ =A(t)r

where A(t) = [a,(t)] is a real n x n matrix function, has a unique equilibrium
which is at the origin if A(ty) is nonsingular for all ty > 0.

Example 2.1.5. Assume that for

f is continuously differentiable with respect to all of its arguments. and let

af(x)
or !

I=T,

J(re) =

where Of /Or is the n x n Jacobian matrix defined by
8f/dx = [0f:/0z,).

If f(ze) = 0 and J(x.) is nonsingular, then x. is an isolated equilibrium of
(E).
Unless stated otherwise, we shall assume throughout this chapter that a

given equilibrium point is an isolated equilibrium. Also, we shall usually find



it extremely useful to assume that in a give discussion, the equilibrium of
interest is located at the origin of R". This assumption can be made without
any loss of generality. To see this, assume that z. # 0 is an equilibrium point
of

2’ = f(t,z),

1e., f(t,ze)=0forallt >0. Let w=1r — r.. Then

(2.1) W' = F(t,w),
where
(2.2) F(t,w) = f(t,w + ).

Since (2.2) establishes a one-to-one correspondence between the solutions of
(E) and (2.1), we may assume henceforth that (E) possesses the equilibrium
of interest located at the origin. This equilibrium r = 0 will sometimes be

referred to as the trivial solution of (E).

2.2. Definitions of Stability
Definition 2.2.1. The equilibrium r = 0 of (E) is stable if for every ¢ > 0
and any ty € R* there exists a §(¢,to) > 0 such that
'¢(f,t0,f)| <€ for all ¢ > to

whenever

|£| < 5(65 10)
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Definition 2.2.2. The equilibrium z = 0 of (E) is said to be uniformly

stable if 6 is independent of ¢, in Definition 2.2.1,1.e.,if § = 8(e).

Definition 2.2.3. The equilibrium r = 0 of (E) is asymptotically stable
if
(1) it is stable, and

(11) for every to > 0 there exists an n(te) > 0 such that
tlim é(t,t0,€6) =0 whenever €] < 7.

The set of all £ € R™ such that é(t,to.€) — 0 as t — oo for some t, >0
is called the domain of attraction of the equilibrium z = 0 of (E). Also,
if for (E) condition (ii) is true, then the equilibrium r = 0 is said to be

attractive.

Definion 2.2.4. The equilibrium = = 0 of (E) is uniformly asymptoti-
cally stable if

(1) it is uniformly stable, and

(i1) there is a 89 > 0 such that for every € > 0 and for any t, € R*, there

exists a T(e) > 0, independent of #o, such that
l¢(t,20,€)| <, forall t> ¢+ T(e)
whenever  [£] < 6.

Definition 2.2.5. The equilibrium z = 0 of (E) is globally asymptot-
ically stable if it is stable, and if every solution of (E) tends to zero as

t — oc.
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Definition 2.2.6. The equilibrium ¢ = 0 of (E) is globally uniformly
asymptotically stable if

(1) it is uniformly stable, and

(i) for any @ > 0 any € > 0. and to € R*, there exists T(e,a) > 0,

independent of ty, such that

if [¢| < a, then |@(t,49,£)| < € for all t >ty + T(e, a).



III. Principal Liapunov Stability

3.1. Liapunov Functions

We shall present stability results for the equilibrium & = 0 of a system
(E) ' = f(t,z).

Such results involve the existence of real valued functions v : D — R. In the
case of local results (e.g.. stability, asymptotic stability), we shall usually
only require that D = B(h) C R" for some h > 0, or D = R* x B(h).
On the other hand, in the case of global results (e.g., globally asymptotic
stability), we have to assume that D = R™ or D = Rt x R™. Unless stated
otherwise, we shall always assume that v(#,0) = 0 for all t € Rt [ resp..
v(0)=0].

Now let ¢ be an arbitrary solution of (E) and consider the function
t — v(t, §(t)). If v is continuously differentiable with respect to all of its ar-
guments, then we obtain (by the chain rule) the derivative of v with respect

to ¢ along the solutions of (E), v{,, as

Ov
vig)(t, ¢()) = 5 (1 o) + Vu(t, ¢())T f(t, 6(t)).

Here Vv denotes the gradient vector of v with respect to r. For a solution

#(t,t0,€) of (E), we have

t
olt.0(t)) = vlta,€)+ [ vipy(r.olroto, €))dr.

to
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Definition 3.1.1. Let v : Rt x R" — R [resp., v : Rt x B(h) — R | be
continuously differentiable with respect to all of its arguments and let Ve
denote the gradient of v with respect to z. Then vipy : RP x R" - R

[ resp., Vg Rt x B(h) — R ] is defined by

, v n o
vy ltir) = 1)+ ; ‘B‘;(tgf)fi(tf)

(3.1) = %u,n + Vo(t, o)l f(t, 2).

We call v, the derivative of v (with respect to t) along the solutions

of (E) [ or along the trajectories of (E) ].

Occasionally we shall only require that v be continuous on its domain of
definition and that it satisfy locally a Lipschitz condition with respect to
r. In such case we call v a Liapunov function and we define the upper
right—hand derivative of v with respect to t along the solutions of

(E) by

U('E)(t. r)= Blir& sup(1/8){v(t + 6, 6(t + 6,t,r)) — v(t, 1)}

(3.2) = 01i1;1+ sup(1/8){v(t + 6,2 + 8- f(t, 7)) — v(t.r)}).

When v is continuously differentiable, then (3.2) reduces to (3.1).

Definition 3.1.2. A continuous function w : R* — R [resp..w : B(h) — R]
is said to be positive definite if
(i) w(0) =0, and

(i1) w(z) >0 forall r#0 [ resp., 0 < |z| < r for some r >0 ].
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Definition 3.1.3. A continuous function w : R” — R is said to be radially
unbounded if

(1) w(0) =0,

(ii) w(z) >0 for all » € R — {0}. and

(i) w(z) = o as |r| — oc.

Definition 3.1.4. A function w is said to be negative definite if —u is a

positive definite function.

Definition 3.1.5. A continous function w : R" — R [ resp., w: B(h) — R]
is said to be positive semidefinite if

(1) w(0) = 0, and

(1) w(x) >0 for all € B(r) and for some r > 0.

Definition 3.1.6. A function w is said to be negative semidefinite if —

is positive semidefinite.
Next, we consider the case v : Rt x R* — R [resp..v : R* x B(h) — R].

Definition 3.1.7. A continuous function v : Rt x R* — R [ resp.. v :
Rt x B(h) — R ] is said to be positive definite if there exists a positive
definite function w : R" — R [ resp.,w: B(h) —» R ] such that

(1) v(t,0) =0 for all ¢ > 0, and

(i1) v(t,r) > w(x) forall t>0 and forall e B(r)

for some r > 0.
Definition 3.1.8. A continuous function ¢ : R+ x R" — R is radially

unbounded if there exists a radially unbounded function w : R" — R such

that
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(1) v(t,0)=0 for all ¢ > 0, and
(11) v(t,x) > w(x) forall t >0 and forall re R".

Definition 3.1.9. A continuous function v : RY x R® — R [ resp.. ¢ :
R* x B(h) — R ] is said to he decrescent if there exists a positive definite

function w : R® — R [ resp., w: B(h) — R ] such that
lv(t, z)| < w(r) forall +>0 and forall r € B(r)

for some r > 0.

Definition 3.1.10. A continuous function W : Rt — R7 is called a wedge

if W(0) = 0 and W is strictly increasing on R*.

Theorem 3.1.11 ([11, Theorem 5.7.12]). A continuous function v : Rt x

R"™ — R [resp., v : R x B(h) — R ] is positive definite if and only if
(1) v(t,0)=0 for all +> 0. and

(ii) for any r > 0 [ resp., some r > 0 ] there exists a wedge W such that

v(t,r) > W(

z|) forall +>0 and forall r e B(r).

Proof. 1f v(t,1) is positive definite, then there is a function w(r) satisfying

the conditions of Definition 3.1.2 such that
v(t,z) > w(r) for t >0 and |r]<r

Define ¢o(s) = inf {w(z) : s < |z] < r} for 0 < s < r. Clearly vy is a positive

and nondecreasing function such that

Yol lr]) < w(x) on 0< |z <r
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Since 1 is continuous. it is Riemann integrable. Define the function v by
¥(0) = 0 and
dv(u):u_l/ (s/r)o(s)ds, 0<u<r.
0
Clearly 0 < ¥(u) < ¢o(u) < w(zx) <wv(t,r) ift > 0and || = u. Moreover,

¥ 1s continuous and increasing by construction.

Theorem 3.1.12 ([11, Theorem 5.7.13]). A continuous function v : Rt x
R™ — R is radially unbounded if and only if
(1) v(t,0) =0 for all ¢ >0, and

(11) there exists a wedge W such that

v(t,z) > W(|z|) forall t>0 and forall re R".

where im W(r) = oo.

r—oc

Theorem 3.1.13 ([11, Theorem 5.7.14]). A continuous function ¢ : R* x
R" — R [resp., v: Rt x B(h) — R ] is decrescent if and only if there

exists a wedge W such that
lo(t.z)| < W(|z]) forall +>0 and forall r € B(r),

for some r > 0.

Example 3.1.14. (a) The function w : R — R given by w(r) = 2Tr =

z} + 73 + 2} is positive definite and radially unbounded.
(b) The function w : R® — R given by w(z) = z? + (z2 + 13)? is positive
semidefinite. It is not positive definite since it vanishes for all r € R® such

that 1 =0 and vy = —r3.
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(c) The function w : R* — R given by w(r) = }+ 73— (22 + 033 s
positive definite (in the interior of the unit circle given by x? + 23 < 1).
However, it is not radially unbounded. In fact, if r"r > 1, then w(z) < 0.

(d) The function w : R®* — R given by w(z) = 2% + r} is positive semidef-
inite. It is not positive definite.

(e) The function w : R* — R given by w(r) = r}/(1+4 1) + 23 is positive
definite but not radially unbounded.

Theorem 3.1.15 ([11, Theorem 5.9.1]). If there exists a continuously

differentiable, positive definite function v with a negative semidefinite (or

identically zero) derivative Uy £)» then the equilibrium = = 0 of (E) is stable.

Proof. According to Definition 2.2.1, we fix ¢ > 0 and ¢, > 0 and we seek a
6 > 0 such that Definition 2.2.1 and Definition 2.2.3 are satisfied. Without
loss of generality, we can assume that € < h,. Since v(¢,.r) is positive definite,

then by Theorem 3.1.11 there is a wedge W such that

v(t,x) > W(

xl) “for 0<|r|<hy, t>0.

Pick 6 > 0 so small that v(to,z0) < W(e) if |xo| < 8. Since vip(t.r) <0,
then v(t, #(t, 9. r¢)) is monotone nonincreasing and v(t, o(t, tg, ro)) < Wi(e)
for all t > t3. Thus, |o(t.to.20)| cannot reach the value e, since this would
imply that

‘U(t, ¢(t,t0,$0)) 2 Wr(l(ﬁ(f, f(),.l‘())l) = W'(e)

Theorem 3.1.16 ([12, Theorem 8.5]). If there exists a continuously d-
ifferentiable, positive definite function v with 'v('E)(t, r) <0, if z.v('E)(t,;r) <
—c(]z|), where ¢(r) is continuous on [0, A] and positive definite, and if F(t. 1)

1s bounded, then the solution z(¢) = 0 of (E) is asymptotically stable.
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Theorem 3.1.17 ([11, Theorem 5.9.2]). If there exists a continuously
differentiable, positive definite, decrescent function v with a negative semi-
definite derivative vE g)> then the equilibrium z = 0 of (E) is uniformly

stable.

Proof. By Theorem 3.1.11 and Theorem 3.1.13, there are two wedges W)
and W, such that
Wi(lz]) < v(t, z) < Wa(lz|)

forall $>0 and for all z with |z| < ky. Fix € in the range 0 < € < h;.
Pick 6 > 0 so small that W,(§) < Wi(e). If to > 0 and if |z¢| < 6, then
v(to, z0) < Wa(6) < Wi(e€). Since ’UZE) is nonpositive, then v(¢, @(t,to,z0))
13 monotone nonincreasing. Thus v(t, ¢(t, 1o, 70)) < Wi(e) for all ¢t >
to. Hence, Wi(|¢(t,t0,20)|]) < Wy(e) for all ¢t > t,. Since W, is strictly

increasing, then |¢(¢,t0,70)] < ¢ for all ¢ > to.

Theorem 3.1.18 ([11, Theorem 5.9.6]). If there exists a continuously d-
ifferentiable, positive definite, decrescent function v with a negative definite
derivative vf E)> then the equilibrium z = 0 of (E) is uniformly asymptot-

ically stable.

Proof. By Theorem 3.1.17 the equilibrium z = 0 is uniformly stable. It
remains to be shown that Definition 2.2.4(ii) is also satisfied.

The hypotheses of this theorem along with Theorems 3.1.11-3.1.13 imply
that there are wedges Wy, W,, and W3 such that

Wi(le]) < v(t,2) <Wa(lz])  and  w{g(t,2) < —Wi(z])

for all (¢,z) € Rt x B(r,) for some r; > 0. Pick &, > 0 such that Wa(é)) <
Wi(r1). Choose € such that 0 < ¢ < r1. Choose 63 such that 0 < §, < §; and
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such that Wy(6,) < Wi(e). Define T = Wi(r;)/W3(é2). Fix ¢y > 0 and
with |zo] < &).

We now claim that |¢(t*,¢p,20)| < 82 for some t* € [ty.to + T]. For
if this were not true, we would have |¢(t,t9,29)| > 62 for all ¢ € [to.ty + T).
Thus

0 < Wi(d2) < v(t, d(t, to.xg))

< U(to,lo / IV(F) s fQ,.I'()))dS
to

< Wy(é /Wg

Nowatt=1t3+ T we find that
0 < W2(é1) —TWs(62) = Wy(dy) — Wi(ry) < 0.

a contradiction. Hence. #* exists.

Now for t > t*  we have

Wilé(t, to, x0)]) < v(t, 0(t.tg.19)) < v(t*, d(t*, b9, 20))

< Wa(|a(t*. to.rg)]) < Wa(b2) < W(e).

Since W) is strictly increasing, it follows that |¢(t,29,x0)] < € for all
t > t* and hence forall ¢t >ty +T.

Theorem 3.1.19 ([11, Theorem 5.9.7]). If there exists a continuously
differentiable. positive definite, decrescent, and radially unbounded function
v such that U(IE) 1s negative definite for all (¢#,z) € Rt x R", then the

equilibrium z = 0 of (E) is globally uniformly asymptotically stable.
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Proof. The trivial solution of (E) is uniformly asymptotically stable by The-
orem 3.1.18. It remains to be shown that the domain of attraction of + =0
is all of R™.

Fix (tg,x9) € Rt x R™. Then v(t, (t,t9.ro)) is nonincreasing and so has

alimit »n >0.1If |z9| < a, then
Wala) 2 v(t, 8(t.to, 20)) = Wi(|o(t.to, xo)|),

and so |¢(t.te, x0)| < a; = W’,—I(W’g(a)).

Suppose that no T(a,€) exists. Then for some ry, n > 0. By Theorem
3.1.11, for |z| £ a; find a wedge W3 such that z':E)(t,.r) < —Wis(|z|). Thus,
for t > to we have W, 1(n) < |6(t,to, ro)| and

t
n S U(t, ¢(t1 tOs IO)) S U(tﬂs‘rU) - / ‘.1"3(|¢(81t0~ Iu)l)dS
Jitg

t
Sv(fu,fo)—/ Wi, ' (n))ds.
{

Jio
Thus, the right-hand side of this inequality becomes negative for ¢ sufficiently

large. But this is impossible when n > 0. Hence. = 0.
Example 3.1.20. Consider the simple pendulum

.Z"l = Ty,
(3.3) ry = —ksinur,,

where k > 0 iIs a constant. The system (3.3) has an isolated equilibrium at
r = 0. The total energy for the pendulum is the sum of the Kinetic energy

and potential energy. given by

1 o 1 :
v(r) = 51‘% + k / sinndn = 31'3 + k(1 — cos.ry).
2 Jo 2
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Note that this function is continuously differentiable, that v(0) = 0, and that
v Is positive definite. Also. note that v is automatically decrescent. since it

does not depend on t. Along the solutions of (3.3) we have
v('3_3)(1') = (ksinzy)r) + z20h = (ksine ey + ro(—ksinrg) = 0.

In accordance with Theorem 3.1.15, the equilibrium r = 0 of (3.3) is stable.
and in accordance with Theorem 3.1.17, the equilibrium r = 0 of (3.3) is

uniformly stable.
Example 3.1.21. Consider the system
=19 +er (2 + r3).
(3.4) .Iffz =—-r + crg(rf + lr:}f),
where c is a real constant. Note that r = 0 is the only equilibrium. Choosing
v(z) = r? 4+ 12, we obtain

' E 2 2,2
t3.4)(7) = 2e(a] + 23)".

If ¢ = 0. then Theorem 3.1.15 and 3.1.17 are applicable and the equilibrium
r = 0 of (3.4) is uniformly stable. If ¢ < 0, then Theorem 3.1.19 is applicable

and the equilibrium r = 0 of (3.4) is globally uniformly asvmptotically.
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3.2. Main Results

Theorem 3.2.1. Let a function v : R* x R® — R be continuous and locally
Lipschitz in # € R™ and let n : Rt — R* be a measurable function such
that fooo n(s)ds = oc.

Suppose that there exist wedges W, W, and W such that for all t € Rt
and r € R",

(i) Wi(lz]) < olt. 2) < Wa(Jz]) and

(i) 0! (£, 1) < —n(O)Wa(l2]),

where

lim Wi(r) = lim Wy(r) = oc.

Then the zero solution of (E) is uniformly stable and globally asymp-

totically stable.

Proof. Let € > 0 be given. Then there exists a & = 8(¢) > 0 such that
Wa(é) < Wi(e). Let ¢(2, to, x0) be a solution of (E) such that t > ¢, > 0 and

|r(to)| = |xo] < é. Then we have

Wi(

@(t,t(),l‘())') S 'U(t, ¢(tst011?0)) S U(tOvIO)

< W2(|10|) < Wa(8) < Wi(e),

which implies that |¢(t,t0,20)| < € if t > g and |ry| < 6. This proves the
uniform stability of the zero solution of (E).

Now we show that the domain of attraction of r = 0 of (E) is all of R".
Fix (tg,r9) € RT x R™. Then v(t.d(t,tg, xg)) is nonincreasing and so has a

limit r >0, where |r9| < a for any a > 0.
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Suppose that
é(t,to,10)) /— 0 as t — ooc.

Then there exists r > 0 such that lim, .. v(t, ¢(t,tg.r9)) = r. This imnplies

r < u(t, o(t. to,z0) < Wallo(t)])

lo(t)| > W'{l(r) for all t > t,.
By integrating v’ along ¢(t,tg,z¢), we obtain
t
ot oft.to.20)) < vita.z0) = [ (s IWalols)l)d
to
t
< ofto, xo) — W’:s(wrz_l(r))/ n(s)ds — —oc  ast — oo,

to

which is a contradiction. Thus the proof is complete.

Example 3.2.2. Counsider a scalar equation
(3.5) r' = —a(t)g(x)

where a : Rt — R*. Suppose that there exists a wedge W* such that

rg(r) > W*(|z|) for any z € R, and that fo s)da = oo. Then the zero
solution x = 0 of (3.5) is uniformly stable and globally asymptotically
stable.

Proof. Consider the function v(t, z) = %.rz. Then

(3 5)(t z) = z(—a(t)g(x))
= —a(t)zg(r)

HW*(|z|).

IA
I
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Therefore, all conditions in Theorem 3.2.1 are satisfied. Hence the zero

solution z = 0 of (3.5) is uniformly stable and globally asymptotically stable.

Example 3.2.2 revisted Consider a scalar equation
(3.5) ' = —a(t)g(z)
where a : Rt — Rt and ¢ : R — R are continuous such that
zg(z) >0 for any z € R — {0}.

Then

(1) the zero solution z = 0 of (3.5) is unique to the right,

(2) the zero solution z = 0 of (3.5) is uniformly stable, and

(3) if f0°° a(t)dt = oo, then the zero solution z = 0 of (3.5) is globally
asymptotically stable.

Proof. (1) If > 0, then |z|' = ' = —a(t)g(t) < 0. If £ <0, then
|z} = (=z) = —x' = a(t)g(x) < 0.

That is, |r|' <0 for all z € R — {0}. Thus |¢(t)| is nonincreasing for any
solution ¢(t) of (3.5). Therefore, ¢(t) = 0 for all t > ¢, if there exists to > 0
such that é(ts) = 0.

(2) Let € > 0 be given. Then |¢(t,t0,20)] < |zo] < €iftg >0, t > tg
and |zg| = |z(to)| = |#(to)| < €. Put é§ = ¢. Then the zero solution = = 0 of
(3.5) is uniformly stable.

(3) Let ¢(t,to,z0) be a solution of (3.5). Then ¢(t,0,z9) >0 forallt >0
if ¢(0) = zo > 0, and ¢(t,0,z9) < 0 for all ¢ > 0 if ¢(0) = zo < 0, since the

zero solution of (3.5) is unique to the right.
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Case 1). Let ¢(0) = zo > 0. Then ¢(¢,0,7¢) is nonincreasing, since
|o(t)]" < 0 for any ¢t > 0.

Now we claim that lim;_. ¢(?) = 0. Suppose not. Then there isa P > 0
such that lim,_, ¢(t) = P. By assumptionon ¢ 1/¢(r) is bounded for all
z € (P, ¢(0)). Thus we have

#(0) 1 0 o0
/ dr = / —u(t)dt = / a(t)dt = oo,
P g(J‘) o 0

which is a contradiction.

Case 2). Let ¢(0) = z¢ < 0. Then ¢(t,0,70) is nondecreasing, since
|¢(¢)]" <0 for any > 0.

Now we claim that lim;_ ¢(t) = 0. Suppose not. Then there is a Q < 0
such that lim;_ ¢(t) = Q. By assumptionon ¢ 1/g(x) is bounded for all
z € (¢(0). Q). Thus we have

Q [ oo
/ Ld;l.‘ = / —a(t)dt = —/ a(t)dr = —oxc,
(0) g(x) 0 0

which is a contradiction. Hence the proof is complete.

In the process of the above proof of Example 3.2.2 revisted we do not
use the result of Theorem 3.2.1. Suppose that we replace the condition that
zg(z) > 0 for any z € R — {0} with the condition that zg(x) > W*(|z|) for
some wedge W* and any r € R in Example 3.2.2 revisted. Then we apply

Theorem 3.2.1 to prove the Example 3.2.2 revisted.

Remark 3.2.3. We can easily find a function ¢(z) such that rg(z) > 0 for
x € R—{0} implies that there exists a wedge W* such that W*(|z|) < g(r)r
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for any r € R. Consider g(x) = Mz™, where M > 0 and n is a positive odd
number. Then zg(z) = Mz™*! > 0 if r € R — {0}. Furthermore, we can
consider W*(|z|) = zg(x) = Mx"*!.

Lemma 3.2.4. Let  : Rt — R% be a measurable function such that
limgs_. f:+s n(s)ds = oc uniformly with respect to t € R*. Then for any

M > 0 there exists a § = 6( M) > 0 such that
t+6
/ n(s)ds > M for any te€ RT.
i

Proof. Suppose that limg_,o fHS

. n(s)ds = oo uniformly with respect to

t+ 6o

t € RT. Then for 1 there exists 8§y > 0 such that jt

t e RT.

Let M > 0 be given. If M < 1, then we may take 6 as § = 8. if Ml > 1.

n(s)ds > 1 for any

then there exists a positive integer N with M < N. Thus we have

t+80 t4265 t+Nég
M<N< / n(s)ds +/ n(s)ds + - - +/ n(s)ds
t t t

+éo +(N-1)é
t+ Nbo
= / n(s)ds
t

for any t € R. That is, 6 = Nég. Hence the proof is complete.

Theorem 3.2.5. Let a function v : R x R® — R be continuous and locally
Lipschitz in * € R™ and let n : Rt — R% be a measurable function such
that img_. o f:+s n(s)ds = oo uniformly with respect tot € Rt.

Suppose that there exist wedges Wy, W, and W; such that for all t € Rt
and r € R".

(i) Wi(]z|) < v(t, x) < Wy(|z]) and
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(i) v g, (t,0) < —n(t)Wal]z]).

where

lim W) (r) = lim W5(r) = occ.

r—2C r—2

Then the zero solution of (E) is globally uniformly asymptotically sta-
ble.

Proof. Let € > 0 be given. Then there exists a § = 8(¢) > 0 such that
W,(6) < Wil(e). Let ¢(t, 19, o) be a solution of (E) such that ¢t > ¢5 > 0 and

|x(tg)| = |zo| < é. Then we have

Wi(|d(t,to, 20)]) < v(t, d(t, to, 20)) < v(to, xo)

< Wal)ro]) < W(6) < W),

which implies that (2,1, r0)] <€  if ¢+ >, and. |rg| < é. This proves
the uniform stability of the zero solution of (E).

For 1 take &9 = 6o(1) of the uniform stability. By the Lemma 3.2.4 there
is an L = L(¢) such that

t+1L
/ n(s)ds > Wy(by)/W3(é) forall ¢, € RT.
t)

Let o(t,to,xo) be a solution of (E) with |ro] < éo. Now we claim that
|o(t*, to, x0)] < & for some t*¢€ [to.to + L]. For if this were not true. we

would have

|¢(t.f0,.1.‘0)| 2 ) for all t € [f().,f() + L]
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Thus
t
0 < Wi(8) < wv(t,é(t,tg,20)) < v(ty,zo) +/ Uy ( 5. 0(s8))ds
to
t
< v(ty,ry) —/ (s)Ws(lo(s)|)ds
ty

t
< Wa(by) — I’V3((5)/ n(s)ds
to
< Wa(bo) — W3(6)Wo(by)/W3(8) =0,

which is a contradiction if ¢ = ty + L. Therefore, for t > t5 + L and some

t* € [to.to + L] with |g(t*)] < &,

Willo(t)]) < v(t, 8(1)) < v(t*. ¢(1"))
S Wa(lo(t)]) < Wa(é) < Wile).

which implies that the zero solution of (E) is uniformly asymptotically stable.

Finally. we show that the domain of attraction of r = 0 of (E) is all of
R™. Fix (tg.r9) € Rt x R™. Then v(t.6(t to.19)) is nonincreasing and so
has a limit A >0, where |zg] < « for any a > 0.

Suppose that no T = T(a,€) > 0 exists. Then
’h_glo v(t.o(t.tg,.20))=A>0 for some rg with |ry| < a.
Thus. for t > t; we have
A < vt ¢t to, 20))

t
S U(t(),l'()) —/ 7’(5)‘/"73('Q&(.ﬁ',fo,l'o)l)dﬁ
to

t
< v(tg,19) — W‘B(W'Z—I(A))/ n(s)ds.
to



26

Therefore, the right-hand side of this inequality becomes negative for t suf-
ficiently large. But this is impossible when 4 > 0. Hence the proof is

complete.

Remark 3.2.6. Theorem 3.2.5 generalizes Theorem 3.1.19. For if 7 is a

constant, then limg._. f:+s n(s)ds = oo uniformly with respect to t € R*.

Remark 3.2.7. Consider a scalar differential equation

1

= g
(3.6) T t+11

on [0, oc).

Then the zero solution £ = 0 of (3.6) is uniformly stable and globally
asymptotically stable (by Theorem 3.2.1). But it is well known that the
zero solution of (3.6) is not globally uniformly asymptotically stable. In fact,

n(t) = HLI does not satisfy the condition in Theorem 3.2.5

Example 3.2.8. Consider a scalar differential equation
(3.7) ' = —|sint|z" on [0, 00),

where n is a positive odd integer. Then the zero solution of (3.7) is globally

uniformly asymptotically stable.

r2. Then

Proof. Consider the function v(t,r) =

o=

v£3.7)(t,1'(t)) = zx' = x(—|sint|z")

= —|sint|c”*!.

Let n(t) = |sint|, W;(t) = §t2,W2(t) = 12 and Wi(t) = %t"“. Then all
conditions in Theorem 3.2.5 are satisfied. Hence the zero solution of (3.7) 1s

globally uniformly asymptotically stable.
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< Abstract >

Globally Asymptotic Stability For Ordinary Differential Equations

In this thesis, we consider a system of differential equations &' = f(¢,r)
and obtain conditions on a Liapunov function v(f,r) to ensure the globally

asymptotic stability and the globally uniform asymptotic stability of the zero

solution of =’ = f(t.r).
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