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[. INTRODUCTION

For the last two decades, the elastic scattering between heavy-ions has
been studied by a number of people using a variety of theoretical methods,
some of which are given in Chan et al. (1981), Satchler (1983), Frahn (1985),
Brink (1985), Mermaz (1985), Vitturi et al. (1987), Charagi et al. (1990),
Broglia et al. (1991), and Frobrich et al. (1996). Usually, the heavy-ion
elastic scattering is dominated by strong absorption, with the implication that
the data are only sensitive to the surface of interaction region and the optical
potential required to describe the measurements is not uniquely determined.
However, the angular distribution for lighter heavy-ion elastic scattering, such
as “C + ¥C and MO + "0 systems, has shown the presence of strong
refractive  effects with a clear signature of a nuclear rainbow phenomena
(Brandan, 1988 ; Stiliaris et al., 1989). Such a behavior was identified as
being a typical refraction effect generated by the nuclear rainbow. The
nuclear rainbows seen in the elastic scattering angular distributions of lighter
heavy-ion systems unambiguously determine the major features of the
optical potential.

In recent, there has been a great deal of studies to describe the lighter
heavy-ion elastic scattering. Shallow imaginary potentials are found to be
essential to describe various sets of elastic scattering data for 2C + ®C and
%0 + C at intermediate energies (Brandan, 1988). The elastic scattering
data of 0 + 10 system at Elp = 250, 350 and 480 MeV has been measured
and analyzed within the optical model using the density-dependent folding
potential (Khoa et al., 1995). Brandan and McVoy (Brandan and McVoy,
1997) made a systematic study of the optical potentials for lighter heavy-ions.
They made several interesting observations, especially on the characteristics
of the ratios of the imaginary to real parts of the potentials and of the
imaginary to real parts of the phase shifts. Nicoli et al. (Nicoli et al., 1999)

16 16 . . . .
have measured the O + 7O elastic scattering at nine energies between Elap



= 75 and 124 MeV and described in terms of phenomenological and folding
model potentials which reproduce the main features observed.

The interpretation and description of scattering phenomena in heavy-ion
reactions have been greatly facilitated by the application of semiclassical
methods. The widely used method for the analysis of elastic scattering data
is the WKB approximation (Chan et al.,, 1981 ; Brink, 1985 ; Donnelly et al.,
1974). The eikonal phase shift is derived from the integral equation by
further approximating the WKB results. Over the past several years, the
eikonal approximation has been a useful tool to describe the heavy-ions
elastic scattering. A number of studies (Knoll Schaeffer, 1976 ; Waxman et
al., 1981 ; Silveira et al, 1987 ; Faldt et al, 1992 ; Aguiar et al., 1997 ; Cha
and Kim, 1995 ; Kim and Cha, 2000) have been made to describe elastic
scattering processes between heavy ions within the framework of the eikonal
model. The first- and second-order corrections to the zeroth-order eikonal
phase shifts for heavy-ion elastic scatterings based on Coulomb trajectories
of colliding nuclei are presented and it has been applied satisfactorily to the
%0 + “Ca and "0 + %7r systems at Eup =1503 MeV (Cha and Kim, 1995).
Eliseev and Hanna (Eliseev and Hanna, 1997) have developed first- and
third—order non-eikonal corrections to the Glauber model to know the
possibility of observing a bright interior in the nucleus “viewed” by
intermediate energy alpha particles (E,=172.5 MeV), as a probe for the ®Ni
nucleus. Aguiar et al. (Aguiar et al., 1997) have discussed different schemes
devised to extend the eikonal approximation to the regime of low bombarding
energies in heavy-ion collisions.

In recent, the 0 + 0 elastic scattering has been measured very
accurately, up to large angles exhibiting down to very small cross sections
and show the presence of strong refractive effects in the angular distributions
(Khoa et al., 1995). It is interesting to incorporate the first-order eikonal
model formalism to include refractive 0 + 'O elastic scattering. In this
study, we analyze the elastic scatterings of 0 + %0 system at Elp = 480

and 704 MeV by using the first-order eikonal phase shift based on Coulomb



trajectories of colliding nuclei. The presence of nuclear rainbow is examined
from the semiclassical deflection function. The near-side and far-side
decomposition of the elastic cross sections due to the Fuller relationship
(Fuller, 1975) are presented. Some features of effective phase shift and
effective potential are also investigated. In section II, we provide the theory
related with the first-order eikonal phase shift based on Coulomb trajectories
of colliding nuclei and its related effective optical potential. Section I
contains results and discussions for first-order eikonal phase shift analysis.

Finally, conclusions are presented in section IV.



II. THEORY

1. Scattering Amplitude

In the case of elastic scattering between two identical spinless nuclei, the
general expression of the differential cross section is given by the following

formula

Ao _ | £(0)+/(x— ). (1)

The elastic scattering amplitude for spin-zero particles via Coulomb and

short-range central forces is given by

F(0) =k 32 (L+5) (S~ DP(cos 0). 2)

Here, k:#ﬁL\/ 2pE is the wave number and the scattering function S, is

related to the phase shift for the ' p-th partial wave, and 4 is the reduced
mass.

Since the Coulomb interaction between heavy-ions 1is strong, it 1is
convenient to separate the Coulomb contribution by writing S, = SY exp(2i0;)
where o, =argl (L+1+i7) are the Coulomb phase shifts and
n=uZZ,e*/(n ) 1is the Sommerfeld parameter. Then, the scattering

amplitude f£(@4) can be separated into the Rutherford and the nuclear parts by
writing (Satchler, 1983 ; Brink, 1985)

F(0)=fr(0)+ fx(0) 3)
where the Rutherford scattering amplitude f£,(4) is given by

Fe(0)=— exp[2i0)— i7ln (sin>5)] 4)

. n
2ksin?(6/2)

and the nuclear scattering amplitude f£,(4) is expressed as

()=} B (L+T)exp (2i0,)(SY~DPy(cos 0). 5)



The nuclear scattering function §Y can be expressed by the nuclear phase

shifts ¢,

SY=exp(2i6;). 6)

2. WKB Formula for the Nuclear Phase Shift

Elastic scattering phase shifts for a partial wave [, are obtained by solving

the Schrodinger equation

fjjuL(V)+k2(r)uL(r)=O (7)
where,
B = 25 E-V () N
V() = U+ Ve(n+ LELED

2ur’
In Ea.(®), ©(#) is the nuclear potential acting between the target and the

projectile and V.(») is the Coulomb potential. —For large ,, the wave
function 4, (») has the asymptotic form (Brink, 1985)

u(v) = Sin(k?’*UlﬂZkT*éLﬂ+dL+5L). 9)

Suppose that there is one classical turning point at y,
and the region » ) », is allowed classically (E > V(»)) and » ¢ », is

classically forbidden ( E ¢ V(»)). The WKB wave function in the classically
allowed region is given (Brink, 1985)

wp(r) ~ (& () *1/Zsin(f:k(r)dr-l—i7r). (11)

The integral in WKB wave function can be rewritten as

f;k(r)dr = f;kc(r)err

[ kGrdr= [ ke(r1ar], (12)




where the first term is the Coulomb WKB integral and 5. is the Coulomb
turning point given by
1/2
re = o[t ). (13)
The nuclear phase shifts can be found by combining Eq.(9) and Eq.(11)

through the following relation,

sin (kr—%Ln—vankr—f— JL+6L) ~ sin(fyik(r)dr-l—iﬂ)
= sin(fyckc(r)dr+[fﬁk(r)dr* fyckc(r)dr +i7r). (14)
Using the following relation
sin(f:ckc(r)err%n) = sin(krf%Lnfﬂln2k1’+oL), (15)

Eq.(14) becomes

sin(f:clec(r)dr—f—lL 7r+[f2k(1’)a’r— f:ckc(r)dr

)

= sin(k%—% Lr—npin2kr+ o, + [ f yk(r)dr* f 7_kc(r)dr]). (16)

Therefore, WKB formula for the nuclear phase for » — oo is given by (Chan

et al, 1981 ; Brink, 1985)

5, ~ f:ok(r)dr— f:okc(r)dr a7
where,

i 9 1/2
(L+-=5) (18)

k(P = k 1—(34+422L)} ,

k k7
(L+-Ly v
_ 2, T 27 U

K») = kll bt~ t g (19)

3. Eikonal Phase Shift and its First-Order Correction

In the high energy limit, we can consider the nuclear potential as a

perturbation. Thus, the turning point », may be taken to be coincident with



7o and

(L+)*
KD —ke(n) = Rl1— (204 — 24 Uy

K7
(L+1)
—k[l—(ll 4L)]1/2
kr kA
9 1/2
= kc(r)(l—%ﬁ) —kc(p). (20)
Since wave number p is k:%\/ o2pE, Eq. (20) is arranged as
1/2
E(D—ke (D) = kc(r)(l—%) — ke (D
_ 7104 € Nl 0k € M7l 01 € N N
= ke I ) T () 2n () T ke
L wU LU LU
Rlke(r)  20'%L(D 2R %k.(») (21)
Thus, the nuclear phase shift §, in Eq. (17) can be rewritten
o = fmk(r)dr—fmkc(r)dr
>~ f%k(r)dr—fofkc(r)dr
— [Tk —ke()lar
_ fmi pU) PP LU (p) dr
Rke(D 20D 20°K-(P
__u Ulr) , _u U(r) , g U (r)
e k) TR LD T R L) &
(22)

with  »=V /A+2% The first term in the above equation is the ordinary

Coulomb-modified eikonal phase shift function and it can be written

o) = 5 [ ar

_ f U(r)
2k V2—2

u f U(V 7/Zc+2 )
h Zk 7c z

zdz



= —J‘; 2, OwU(v ret 28)dz. (23)

And the second term in Eq. (22) is the first-order correction to eikonal phase

shift and it may be written

1 —
Sulre) = =i f k3c(r)

2 2
2;4/@3 re (:ZU;/(Z??’/Z @

= 2h4k3 erZU(r)z dr

2h4k3 ﬁ(l‘l’jc)Uz(V)dZ

2h4k3 f(l-ki)Uz(r)dz

— W) [T A e, (24)

Summing up, the Coulomb-modified eikonal phase shift and its first-order

correction are expressed following as

8% (re) = —ﬁ'u*h 2, OOOU(V A+ 22 dz, (25)
2 ©
oulre) = — (it regr) [, v At e, (26)

The first-order eikonal correction term of the phase shift, §;(».) in Eq. (26),

can further be expressed as following

o (re) = 771”4% [T +roe) 28 e ©@7)

The closed expression of the effective phase shift function including up to the

first-order correction term may be written as

81(re) = Sure)+8hlre) = =4 [TU wnaz, (28)

where U (») is the effective optical potential given by

U w(r) = U{1+ [U+r r]} (29)

2 k2
We can see that the eikonal phase shift calculation including the first-order

correction is equivalent to a zeroth-order calculation with effective potential



U «(»). By taking U(r) as the squared Woods-Saxon forms given by

Vy . W,
B — -1 r— a, ’
(1+e(7 Rp)/az,)z (1+€( R,/ )2

Uy = (30)

with R, ,=7r, (A?+A}?), we can use the phase shifts, Eqs. (25)-(26) in

the general expression for the elastic scattering amplitude, Eqgs. (1) and (2).



II. RESULTS AND DISCUSSIONS

1. Elastic Scattering Cross Section

As in the preceding section, the Coulomb-modified eikonal phase shifts 49

and &' have been used to calculate the elastic differential cross sections for

0 + %0 system at Eu, = 480 and 704 MeV. Table 1 shows the parameters

of the fitted Woods-Saxon squared potential. The six potential parameters

are adjusted so as to minimize the »?/N given by

ZIN = Nzl

(o0%) and 2

Cd

(31)

EX
exp

In Eq. (3D), are the experimental (calculated) cross

O'exp exp
sections and uncertainties, respectively, and N is the number of data used in
the fitting. The calculated results of the “differential cross sections for the
elastic scattering of 20 + 00 system at Epp = 480 and 704 MeV are
presented in Figs.l and 2 together with those measured experimentally (Khoa
et al., 1995 ; Khoa et al, 2000). In Fig. 1 and Fig. 2, the solid curves are
the results for the first-order eikonal phase shifts, while the dashed curves
are the results of the zeroth—-order eikonal phase shifts. As seen in these
figures, there are the substantial differences between the dashed and solid
curves when compared to the experimental results. The first-order eikonal
model reproduce the characteristic  refractive  patterns  observed
experimentally. The calculated angular distributions are nearly identical at
forward angles but are qualitatively different at large angles. As a whole,

our calculations lead to reasonable predictions over the whole angular range

for the elastic scattering data in the %0 + %0 system at Eup = 480 and 704

MeV, respectively. Also, the reasonable 4?/N values are obtained in the %0

+ 150 system at Fiap = 480 and 704 MeV, respectively, as listed in table 1.

10



TABLE 1: Parameters of the fitted Woods-Saxon squared potential by using
the first-order eikonal phase shift analysis for the %0 + 0 elastic

scattering at Elap, = 480 and 704 MeV. 10% error bars are adopted to obtain

/N value.

Energy VO 7y a, VV() Y ay RS ORS Op ZZ/N

(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (m) (mb) (mb) " O+t

480 233 0897 1.299 554 1107 1275 7.04 1558 1626 1161 6.10

704 278 0894 1370 489 1186 0903 676 1437 1469 871 5.88

In order to understand the nature of angular distributions for 50 + %0
system at Eup = 480 and 704 MeV, the near- and far-side decompositions of
scattering amplitudes are also performed with the first-order correction to the
eikonal phase shifts by following Fuller's formalism (Fuller, 1975). The
contributions of the near- and far-side components to the elastic scattering
cross sections are shown in Fig. 3 along with the differential cross sections.
The differential cross section is not just a sum of the near- and far-side
cross sections but contains the interference between the near— and far-side
amplitudes as shown in Fig. 3. The oscillations observed on the elastic
scattering angular distributions of 50 + 150 system at Fap, = 480 and 704
MeV are due to the interferences between the near— and far-side components.
The magnitudes of the near— and far-side contributions are equal, crossing
point, at 9=8.4° for Eup = 480 MeV and g=4.8° for Eun, = 704 MeV,
respectively. Figure 3 shows the near-side dominance at angles less than
these values due to the long-range repulsive Coulomb interaction. However,
the far-side contributions to the cross sections have become dominant at the
regions greater than the crossing angles due to the short-range attractive

nuclear interaction.

11
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2. Deflection Function and Nuclear Rainbow

It is known that when the absorptive potential is weak and the real
potential is strong, the contributions to the scattering from the interior
region are large enough to be observed. In analogy to optics, these
contributions are called refractive, since the scattered particles have partially
penetrated the target nucleus. This situation is interpreted as "nuclear
rainbow scattering”, because the intensity maximum 1is built by many
trajectories being essentially deflected the same scattering angle; the nuclear

rainbow angle ¢,. The nuclear rainbow angle is obtained from the classical

deflection function given by

6, = 2--(o,+ Redy). (32)
This deflection angle is a semiclassical treatment of a trajectory with angular
momentum [, and calculated from the Coulomb phase ¢, and real nuclear
phase §;.

The term "nuclear rainbow” shows the differential cross section for
scattering to the negative angles from the far—-side component of the target.
In a rainbow situation, the strong nuclear force attracts the projectiles
towards the scattering center and deflects them to negative scattering angles,
which correspond to the region of the rainbow maximum. As shown in table
1, the absorption in O + O system is weak enough to allow refracted
projectiles to populate the elastic channel and typical nuclear rainbow effects
could be observed in the angular distribution. In Fig. 4, we can find the

nuclear rainbow angle values ¢, =—42.6° and ¢, =—32.7 ° for the 0 +

%0 system at Ewp = 480 and 704 MeV, respectively, which evidently prove a

presence of the nuclear rainbow with unambiguous clarity in this system. It
can be notice that the nuclear rainbow angle values decrease as the incident
energy increases. Such a behavior seems to correspond to the incident

energy and the ratio of the imaginary to real part of a scattering potential.

15



3. Transmission Function and Partial Wave Reaction Cross Section

The transmission function 7,=1-|S,|> is plotted versus the orbital
angular momentum in Fig. 5 along with the partial wave reaction cross
section ¢, for %0 + 150 system at Eup, = 480 and 704 MeV, respectively.
Transmission function can be explained using the imaginary part of the
effective optical potential. As shown Fig. 5(a), the lower partial waves are
totally absorbed and the 7, is decreased very rapidly in a narrow localized
angular momenta zone.

We can see in Fig. 5(b) that the values of the partial reaction cross section
increase linearly up to [= 55 for Eap = 480 MeV and [= 66 for Ep = 704
MeV, respectively. Beyond these [ -values, the partial reaction cross
sections decrease quadratically. A further investigation of the situation can
be gained by looking at the strong absorption radius ( Rg) and the reaction
cross section (GRS) given in table 1. , The strong absorption radius is defined
as the distance for which 7, =1/2, ie., the distance where the incident
particle has the same probability to be absorbed as to be reflected. The
strong absorption radius provides a good estimate of the reaction cross

section, Op.= nR%

16
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4. Effective Potential

In order to illustrate the differences between the effective and nominal
potentials, we plot the real and imaginary parts of these potentials in Fig. 6
and Fig.7. In these figures, the solid curves are the real and imaginary parts

of effective potentials {7 4 given in Eq. (29), while the dashed curves are the

real and imaginary parts of the nominal potentials {7() given in Eq. (30).
As shown in these figures, there is a dramatic difference between the two
potentials, especially for the imaginary part. We can see in Eq. (29) that the
effective imaginary potential with the first-order eikonal correction depends on
the product of the real and imaginary potentials and their derivatives. Thus
the effective imaginary potentials rapidly increase until they reach maximum
value in the central region of the nucleus, and then they reach minimum in
the surface region. A drastic increase of the imaginary potential for small
values of 5, corresponding to increased transmission i1s mainly due to the
correction term in Eq. (29). In the traditional eikonal model, it is assumed
that the imaginary part of the potential is responsible for the absorption
process in the nuclear reaction and its shape should not be affected by the
real part. Nevertheless, in the present eikonal model with the first-order
correction, we can find that the drastic increase on the absorptive potential in
the small , region are due to the larger real potential compared with
imaginary one.

In the small 4 region, the effective imaginary potential of the first—order
eikonal model is small compared with the effective real potential. Such a
small ratio makes it possible to interpenetrate each other between the
projectile and target nuclei. As a result, the projectile ion can penetrate the
nuclear surface barrier of the target, and the cross section becomes sensitive

to the value of the real potential in the central region.

19
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5. Effective Phase Shift

Such increase of the effective potential in the small 4 regions are also
reflected in the phase shift function. Fig. 8 and Fig. 9 show the angular
momentum dependence of the real and imaginary parts of zeroth- and
first-order eikonal phase shift. The solid curves are the phase shifts of
first-order eikonal model, while the dashed curves are the results of the
ordinary eikonal model. On the whole, the real phase shifts vanish nearly
quadratically as the [ increase. The real phase shifts of the first-order
eikonal corrections are less values than the results of zero-order eikonal
phase shifts at 7, ¢ 17 for Eu, = 480 MeV and [ < 21 for Eup, = 704 MeV,
however, are greater ones at these J values for Enp, = 480 and 704 MeV,
respectively. However, we can see that the real potential gives a drastic
change of the imaginary phase shifts. In Fig. 9, the dramatic variations of
imaginary phase shifts are found in the first-eikonal corrections, as expected.
We can also see in the imaginary phase shifts of the first-order eikonal
corrections are less values at [ ¢ 20 and [ < 27 compared to the results of
zeroth-order eikonal phase shifts, however greater ones at these ] values for
Eup = 480 and 704 MeV, respectively. The strong absorption in the nuclear
surface plays a dominant role to the scattering amplitude and thus to the
characteristic diffraction pattern of the angular distribution. The large angle
behavior is sensitive to the details of the real optical potential over a wide

radial region from the nuclear surface towards the interior.
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IV. CONCLUSIONS

In this study, we have analyzed the elastic scatterings of 50 + %0 system
at Ep = 480 and 704 MeV by using the first-order eikonal phase shift based
on the Coulomb trajectories of colliding nuclei and squared Woods-Saxon
potential.  We have found that the calculated results using the first-order
eikonal phase shift are reasonable agreements with the observed data in this
system. Through near- and far-side decompositions of the cross section, we
have shown that the oscillations of °0 + %0 system are due to the
interferences between the near— and far-side amplitudes. All of cases show
near-side dominance from the long-range repulsive Coulomb interaction at
forward angles and far-side dominance from the short-ranged attractive
nuclear interaction at large angles. We have obtained the nuclear rainbow
angle values ¢, =-—42.6° and ¢ ,=—32.7° for the %0 + %0 system at
Eun = 480 and 704 MeV, respectively, through a classical deflection function,
and they evidently prove a presence of the nuclear rainbow in this system.
The nuclear rainbow angle value decreases as the incident energy increases
in this system. The partial reaction cross section increase linearly up to
L=55 for Ewp = 480 and [ =66 for K = 704 MeV, respectively. Beyond
this 7 value, the partial reaction cross sections have decrease quadratically.

Furthermore, the strong absorption radius provides a good estimate of the
reaction cross section, ¢, = 7R% -

The strongly real and weakly imaginary optical potentials are found and
they support the presence of nuclear rainbows in the angular distribution of
this system. We have also found that the effect of first-order eikonal
correction on the imaginary potential is important in this case. The strongly
real potential give a drastic effect on the effective imaginary potential for °O
+ 160 system at FEu, = 480 and 704 MeV, respectively. The ratio of

imaginary to real part of effective potential is very small in the central region
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and such a small ratio value makes it possible to interpenetrate each other
between the projectile and target nuclei. The refractive part, dominated by
the far-side component of the scattering amplitude is sensitive to the real
heavy-ion optical potential at small radii. The imaginary effective potential
of first-order eikonal model have pronounced minimum between central and
surface regions of nucleus, while the nominal imaginary potential increase
monotonically. Such effective potentials are reflected in the phase shift
functions. The strongly real potential give a drastic effect on the imaginary
phase shifts for 0 + %0 system at Elp = 480 and 704 MeV, respectively.
We can also see in the imaginary phase shift calculated with the real
potential that an absorption of partial waves for large angular momentum
increases, whereas the absorption decreases for small angular momentum,
compared to the result without the real potential. The strong absorption in
the nuclear surface plays a dominant role to the scattering amplitude and
thus to the characteristic diffraction pattern of the angular distribution. The
large—angle behavior is sensitive 'to the details of the real optical potential

over a wide radial region from the nuclear surface towards the interior.
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