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〈Abstract〉

Extreme Preservers of Matrix

Rank Inequalities

In this thesis, we construct the sets of real matrix pairs. These sets are naturally occurred

at the extreme cases for the real rank inequalities relative to the sums and products of real

matrices. These sets were constructed with real matrix pairs which are related with the ranks of

the sums and products of two real matrices. For a given square matrixA of ordern, we denote

the real rank ofA by ρ(A). Then forn × n matricesA, B andC, we construct the following

sets;

∑
1 = {(A,B) | ρ(A + B) = ρ(A) + ρ(B)};

∑
2 = {(A,B) | ρ(A + B) = |ρ(A)− ρ(B)|};

M3 = {(A,B) | ρ(AB) = min{ρ(A), ρ(B)}};

M4 = {(A,B) | ρ(AB) = ρ(A) + ρ(B)− n};

M5 = {(A,B,C) | ρ(AB) + ρ(BC) = ρ(ABC) + ρ(B)}.

For these sets of real matrix pairs, we consider the linear operators that preserve them. We

characterize those linear operators asT : Mn(R) → Mn(R) by T (X) = αPXP−1 with

appropriate invertible matrixP and scalarα. We also prove that these linear operators preserve

above sets of matrix pairs.



1 Introduction and Preliminaries

During the last century, there are many research works on linear operators

on matrices that leave certain properties or relations of subsets invariant. Such

questions are usually called ”Linear Preserver Problems”. The earliest papers in

our reference list are Frobenius(1897)and Kantor(1897). Since much effort has

been devoted to this type of problem, there have been several excellent survey

papers. For survey of these types of problems, we refer to the article of Song([8])

and the papers in [7]. The specified frame of problems is of interest both for

matrices with entries from a field and for matrices with entries from an arbitrary

semiring such as Boolean algebra, nonnegative integers, and fuzzy sets. There

are some results on the inequalities for the rank function of matrices([1,2,3,5,6]).

Beasley and his colleagues investigated the rank inequalities of matrices over

semirings, and they characterized the equality cases for some rank inequalities

in [2,3,5]. The investigation of linear preserver problems of extreme cases of the

rank inequalities of matrices over fields was obtained in [2]. The structure of

matrix varieties which arise as extremal cases in the inequalities is far from being

understood over fields, as well as semirings. A usual way to generate elements of

such a variety is to find a matrix pairs which belongs to it and to act on this set

by various linear operators that preserve this variety. Song an his colleagues([3])

characterized the linear operators that preserve the extreme cases of column rank

inequalities over semirings.

In this thesis, we characterize linear operators that preserve the sets of matrix

pairs which satisfy extreme cases for the rank inequalities for the product of

matrices over real fields.

The matrix In is the n × n identity matrix, Om,n is the m × n zero matrix.

We omit the subscripts when the order is obvious from the context and we write

I and O, respectively. The matrix Ei,j, called a cell, denotes the matrix with

exactly one nonzero entry, that being a 1 in the (i, j) entry.

Let Mn(R) denote the set of all n×n matrices with entries in the reals R. Let

ρ(A) denote the real rank of A ∈ Mn(R). If T : Mn(R) →Mn(R) is a linear

operator, we say that T is a (U, V ) − operator provided there exist nonsingular

matrices U and V in Mn(R) such that either
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(1) T (X) = UXV for all X ∈Mn(R) or

(2) T (X) = UX tV for all X ∈Mn(R),

where X t denotes the transpose of X

Some classical inequalities concerning the rank of sums and products of A,B

and C in Mn(R) are :

The rank-sum inequalities:

|ρ(A)− ρ(B)| ≤ ρ(A + B) ≤ ρ(A) + ρ(B)

Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)}

Frobenius inequality:

ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρ(B).

In this paper we shall investigated linear operators which preserve pairs or

triples of matrices which attain one of the extremes of the inequalities above.

Let
∑

1 = {(A,B) | ρ(A + B) = ρ(A) + ρ(B)};
∑

2 = {(A,B) | ρ(A + B) = |ρ(A)− ρ(B)|};
M3 = {(A,B) | ρ(AB) = min{ρ(A), ρ(B)}};
M4 = {(A,B) | ρ(AB) = ρ(A) + ρ(B)− n};
M5 = {(A,B, C) | ρ(AB) + ρ(BC) = ρ(ABC) + ρ(B)}.

It was shown in [1,2,3] that linear operators that preserve
∑

1 or
∑

2 are

(U, V )-operators. Here we investigate linear operators that preserve M3, M4 or

M5. In order to characterize linear preservers for these extreme rank conditions

some results on rank preservers are vital: The following lemma is Lemma from

Beasley and Laffey [4].

Lemma 1.1. [4] Let Mn(R) → Mn(R) be an invertible linear operator that

preserves the set of rank-n matrices, or the set of rank-1 matrices. Then T is a

(U, V )-operator.

We use this Lemma 1.1 in order to show our main results.
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2 Preservers of the set of matrix pairs in the

upper extreme rank of matrix product.

In this section, we study the linear operator that preserve M3 = {(A,B) | ρ(AB) =

min{ρ(A), ρ(B)}}, the set of matrix pairs in the upper extreme rank of two matrix

product. We begin with an example that preserve M3.

Example 2.1. Let T : M2(R) →M2(R) be defined by T (X) = 2X = 2IXI−1.

If

A =

[
1 1

0 1

]
and B =

[
0 0

0 1

]
,

then AB =

[
0 1

0 1

]
and so (A,B) ∈ M3 because ρ(AB) = 1 = min{2, 1} =

min{ρ(A), ρ(B)}. Also, we have (T (A), T (B)) ∈ M3 because ρ(T (A)T (B)) =

ρ(4AB) = 1 = min{ρ(T (A)), ρ(T (B))}. Therefore T preserves M3 in M2(R).

We need two Lemmas in order to obtain the linear preservers of M3.

Lemma 2.2. If T : Mn(R) →Mn(R) preserves the set M3 and T is invertible,

then T preserves the set of rank-1 matrices.

Proof. Suppose that T−1 does not preserve matrices of rank 1. Then there is

a matrix A such that ρ(A) = k and ρ(T (A)) = 1. Since similarity operators

preserve M3, we may assume without loss of generality that

A =

[
A1

O

]
,

where A1 is a k × n matrix of rank k, and

T (A) =

[
at

O

]
,

where at is a certain nonzero row of T (A).

Now, if H is a space of matrices such that for each nonzero H ∈ H, HT (A) 6=
O, we must have that dimH ≤ n. (The dimension of the complement of H is

greater than or equal to n(n − 1) since all matrices with zero first column and

arbitrary columns from 2nd till nth annihilate T (A)).

3



Let K = {B = [B1 O] ∈ Mn(R) | B1 is n× k}. Then dimK = kn. If B ∈ K
then ρ(BA) = ρ(B) = min{(ρ(A), ρ(B)} and so (B, A) ∈ M3. It follows that

(T (B), T (A)) ∈ M3 so that ρ(T (B)T (A)) = min{ρ(T (B)), ρ(T (A))} = 1. Thus

for each C ∈ T (K), we have ρ(CT (A)) = 1 or CT (A) 6= O. It follows from the

above observation that dim T (K) ≤ n. But T is invertible so that dimT (K) = nk,

a contradiction. Thus T−1, and hence T preserves the set of rank-1 matrices.

Lemma 2.3. Let T : Mn(R) → Mn(R) be defined by T (X) = UXV for some

invertible matrices U and V . Then T preserves the set M3 if and only if T (X) =

αPXP−1 for some invertible matrix P ∈Mn(R) and for some nonzero real α.

Proof. (⇐=) It is easy to check that the transformation T (X) = αPXP−1 pre-

serves the set M3.

(=⇒) It is enough to consider transformations of the form X → XD, where

D is an arbitrary invertible matrix, instead of T (X) = UXV since the similarity

transformation preserves M3 and U−1T (X)U = XV U = XD. To prove the

lemma we need to show that the matrix D = [dij] is a scalar matrix.

Step 1. First, we show that dii 6= 0 for all i = 1, . . . , n. For arbitrary i, we

consider the matrices A1 = Ei,i and B1 = Ei,j for some j 6= i. Then (A1, B1) ∈ M3

because ρ(A1B1) = 1 = ρ(A1) = ρ(B1). Since D is invertible, we have that

ρ(A1D) = 1, ρ(B1D) = 1 and ρ(A1DB1D) = ρ(A1DB1). Hence A1DB1 6= 0. On

the other hand, A1D = di1Ei,1 + · · ·+ dinEi,n. Thus A1DB1 = diiEi,j. Therefore,

dii 6= 0 for all i = 1, . . . , n.

Step 2. Now we will show that dij = 0 for all i and j with i 6= j. Suppose that

dij 6= 0 for some i 6= j. Consider the matrices A2 = Ej,j − djj

dij
Ej,i and B2 = Ej,i.

Then A2B2 = Ej,i and so ρ(A2) = ρ(B2) = ρ(A2B2) = 1. Hence (A2, B2) ∈ M3.

Therefore, (A2D,B2D) ∈ M3. Since D is invertible, we have ρ(A2D) = 1 and

ρ(B2D) = 1. Then ρ(A2DB2D) = 1 and hence ρ(A2DB2D) = ρ(A2DB2) = 1.
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On the other hand,

A2DB2 =

(
Ej,j − djj

dij

Ej,i

)
DEj,i

= Ej,jDEj,i − djj

dij

Ej,iDEj,i

= djjEj,i − djj

dij

(di1Ej, 1 + ..... + dinEj,n)Ej,i

= djjEj,i − djj

dij

dijEj,jEj,i

= djjEj,i − djjEj,i

= 0.

Thus ρ(A2DB2) = 0, a contradiction. Thus D is a diagonal matrix.

Step 3. It remains to check that D = diag(d11, . . . , dnn) is indeed a scalar matrix.

Assume that D is not scalar. Then there is an index i such that dii 6= di+1i+1.

Consider the block-diagonal matrices

A3 =




Ii−1 O O

O L O

O O Ln−i−1


 and B3 =




Ii−1 O O

O M O

O O Ln−i−1


 ,

where L and M are 2× 2 matrices of the following form:

L =

[
di+1i+1 dii

0 0

]
and M =

[
1 0

−1 0

]
,

and Ik denotes the identity matrix of size k.

Thus we have ρ(A3) = n− 1, ρ(B3) = n− 1,

ρ(A3B3) = n−1 if and only if dii 6= di+1i+1, Thus (A3B3) ∈ M3. On the other

hand,

A3DB3 =




d11

. . .

di−1i−1

0 0

0 0

di+2i+2

. . .

dnn



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It means that ρ(A3DB3D) = n− 2.

Since D is invertible thus (T (A3), T (B3)) /∈ M3.

Hence, (A3D, B3D) /∈ M3. This is a contradiction. to the assumption that T

preserves M3.

Therefore D is scalar matrix since similarity operator preserves rank and

T
′
(X) = XD implies D = αI : Scalar matrix,

We have T (X) = UT
′
(x)U−1 = UXDU−1 = UX(αI)U−1 = αUXU−1. Thus

there exists an invertible matrix U such that T (X) = αUXU−1

We obtain the characterization of linear operators that preserve M3.

Theorem 2.4. If T : Mn(R) →Mn(R) is invertible linear transformation then

T preserves the set M3 if and only if T (X) = αPXP−1 for some invertible matrix

P ∈Mn(R) and non-zero real α.

Proof. (=⇒) Assume that T is invertible and T preserves M3. Then by Lemma

2.2, T preserves the set of rank-1 matrix. By lemma 1.1, T is a (U, V )−operator.

If T (X) = UXV, by lemma 2.3, we have T (X) = αPXP−1. If T (X) = UX tV,

then consider three cell matrices Ei,j, Ej,k, Ei,k with k 6= i 6= j. Let T1(X) =

UXV, T2(X) = X t for all X ∈ Mn(R). Since (Eij, Ejk) ∈ M3, but ρ(T2(Eij) ·
T2(Ejk)) = ρ(Et

ij · Et
jk) = ρ(Eji · Ekj) = ρ(0) = 0. Hence T2 does not preserve

M3. Hence T = T1 ◦ T2 does not preserve M3. Therefore T (X) = αPXP−1.

(⇐=) It was proved in Lemma 2.3

Finally we remark that linear preservers of M3 may be singular and non-trivial

even over algebraically closed fields.

Example 2.5. Let T : M3(R) →M3(R) be defined by T (E1,1) = E1,1, T (E1,2) =

E1,2 + E2,1, and T (Ei,j) = O for all (i, j) 6= (1, 1) or (1, 2). Let A,B ∈ M3(R),

with ρ(A) = ρ(B) = ρ(AB) = 1 such that

A =




a b 0

0 0 0

0 0 0




and

B =




c d 0

0 0 0

0 0 0


 ,
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where abcd 6= 0. Then

AB =




ac ad 0

0 0 0

0 0 0


 .

Thus (A,B) ∈ M3 and

T (A)T (B) =




a b 0

b 0 0

0 0 0







c d 0

d 0 0

0 0 0


 =




ac + bd ad 0

bc bd 0

0 0 0


 .

Hence ρ(T (A)) = ρ(T (B)) = ρ(T (A)T (B)) = 2, that is, (T (A), T (B)) ∈ M3.

But

T (I3) =




1 0 0

0 0 0

0 0 0


 6= I3.

Thus T is not invertible.

Thus in this section, we obtained the characterizations of the linear operator

that preserve the set of matrix pairs in the upper extreme rank of matrix product.
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3 Preservers of the set of matrix pairs in the

lower extreme rank of matrix product.

In this section, we study the linear operators that preserve M4 = {(A,B) | ρ(AB) =

ρ(A)+ρ(B)−n}, the set of matrix pairs in the lower extreme rank of two matrix

product. We begin with an example that preserve M4.

Example 3.1. Let T : M2(R) →M2(R) be defined by T (X) = 3X = 3IXI−1.

If

A =

[
1 1

1 0

]
and B =

[
1 0

0 0

]
,

then AB =

[
1 0

1 0

]
and so (A,B) ∈ M4 because ρ(AB) = 1 = ρ(A) + ρ(B) − 2.

Also, we have (T (A), T (B)) ∈ M4 because ρ(T (A)T (B)) = ρ(9AB) = 1 =

ρ(T (A)) + ρ(T (B))− 2. Therefore T preserves M4 in M2(R).

We begin with two Lemmas in order to obtain the linear preservers of M4.

Lemma 3.2. If T : Mn(R) → Mn(R) preserves the set M4 then T preserves

the set of rank-n matrices.

Proof. Let A = O and let B be any nonsingular matrix. Thus r(B) = n. Then,

ρ(A) = 0 and ρ(B) = n so that ρ(AB) = ρ(A) + ρ(B) − n. Therefore (A,B) ∈
M4 and (T (A), T (B)) ∈ M4 by assumption. Hence ρ(T (A)T (B)) = ρ(T (A)) +

ρ(T (B)) − n. That is, 0 = 0 + ρ(T (B)) − n. Therefore ρ(T (B)) = n. Hence T

preserves rank-n matrices.

Lemma 3.3. Let T : Mn(R) → Mn(R) be defined by T (X) = UXV for some

invertible matrices U and V . Then T preserves the set M4 if and only if T (X) =

αPXP−1 for some invertible matrix P and non-zero real α.

Proof. (⇐=) Let T (X) = αPXP−1. For any (A, B) ∈ M4, ρ(AB) = ρ(A) +

ρ(B) − n. Consider T (A)T (B) = αPAP−1 · αPBP−1 = α2PABP−1. Therefore

ρ(T (A)T (B)) = ρ(α2PABP−1) = ρ(PABP−1) = ρ(AB). Similarly ρ(T (A)) =

8



ρ(A) and ρ(T (B)) = ρ(B). Hence ρ(T (A)T (B)) = ρ(AB) = ρ(A) + ρ(B) − n =

ρ(T (A)) + ρ(T (B))− n. Therefore (T (A), T (B)) ∈ M4.

(=⇒) Similarity preserves rank of any matrix in Mn(R) Hence similarity

preserves M4. Since T (X) = UXV, we denote T ′(X) = U−1T (X)U = XV U =

XD. Then T ′ preserves M4.

Claim : D : scalar matrix.

1. Claim D : diagonal matrix.

For any 1 ≤ i ≤ n, we denote Ji = I − Eii. Let us take Ai = Ei,i, Bi = Ji.

We denote

Di = BiD =




d1

d2

...

di−1

0

di+1

...

dn




=




d11 d12 · · · · · · · · · d1n

d21 d22 · · · · · · · · · d2n

. . .

0 · · · · · · · · · · · · 0

· · · · · · · · · · · · · · · · · ·
dn1 dn2 · · · · · · · · · dnn




. (∗)

Consider

AiBi =




O O

1

O O







1
. . . O

1

0

1

O
. . .

1




=




0

0

0 · · · 0 · · · 0

0

0




= O

Then ρ(AiBi) = 0 = ρ(Ai) + ρ(Bi) − n. Therefore (Ai, Bi) ∈ M4 and

hence (T ′(Ai), T
′(Bi)) ∈ M4, by assumption. Then ρ(AiDBi) = 0. Therefore

(T ′(Ai), T
′(Bi)) ∈ M4, by assumption. Hence ρ(AiD ·BiD) = ρ(AiD)+ρ(BiD)−

n = 0. Therefore AiD · BiD = O. Since diDi is the ith row of AiDBiD, we have

diDi = 0. Hence di is perpendicular to all columns of Di. That can only happen

9



if dij = 0 for all j 6= i. Since D is nonsingular we have that di,i 6= 0. That is D is

a nonsingular diagonal matrix.

2. Claim: D is a scalar matrix.

A′
i = Eii + Ei,i+1 =




1 1




,

B′
i = E1,1 + · · ·+ Ei,i + Ei+2,i+2 + · · ·+ En,n =




1

1
. . .

1 1

1 0

1




.

Then A′
iB

′
i = Ei,i − Ei,i = O, ρ(A′

i) + ρ(B′
i) = 1 + (n− 1) = n. So ρ(A′

i · B′
i) =

ρ(A′
i)+ρ(B′

i)−n = 0. Hence (A′
i, B

′
i) ∈ M4. By assumption, (T ′(A′

i), T
′(B′

i)) ∈ M4

That is (A′
iD, B′

iD) ∈ M4. Thus ρ(A′
iD) = ρ(A′

i), ρ(B′
iD) = ρ(B′

i) since D is

nonsingular. And hence

ρ(A′
iDB′

iD) = ρ(A′
iD) + ρ(B′

iD)− n

= ρ(A′
i) + ρ(B′

i)− n

= 1 + (n− 1)− n

= 0.

Therefore A′
iDB′

iD = 0. On the other hand, one has A′
iDB′

i = (Ei,i +
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Ei,i+1)(d11E1,1 + · · ·+ dnnEn,n) = (E1,1 + · · ·+Ei,i−Ei+1,i +Ei+2,i+2 + · · ·+En,n)

=




0 · · · 1 1 0 · · ·







d11

. . .

dii

di+1,i+1

. . .
. . .

dnn







1
. . .

1 0

−1 0

1
. . .

1




=




0 · · · dii, di+1,i+1 0 0 · · · 0







1
. . .

1 0

−1 0

1
. . .

1




= (diiEi,i + di+1i+1Ei,i+1)(E1,1 + · · ·+ Ei,i − Ei+1,i + Ei+2,i+2 + · · ·+ En,n)

=




0 · · · 0 dii − di+1,i+1 0 · · · 0




= (dii − di + 1i + 1)Eii. Therefore dii = di+1i+1 for all i = 1......n− 1.
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Thus D is a scalar matrix, say αI as we claimed.

Now T ′(X) = XD = XαI = αXI. From T (X) = UXV, we have U−1T (X)U =

XV U = XD = X(αI). Now T (X) = U(U−1T (X)U)U−1 = U(XD)U−1 =

U(X(αI))U−1 = αUXU−1. If we take U = P, then we have T (X) = αPXP−1

for some invertible matrix P and nonzero real α.

Now, we obtain the characterization of linear operators that preserve M4.

Theorem 3.4. The bijective linear transformation T : Mn(R) → Mn(R) pre-

serves the set M4 if and only if T (X) = αPXP−1 for some invertible matrix

P ∈Mn(R) and non-zero real α.

Proof. (⇐=) It is similar to the proof of lemma 3.3. That is, if T (X) = αPXP−1

for some invertible P ∈Mn(R) then T preserves M4.

(=⇒)By Lemma 3.2, T preserves the set of rank-n matrices. By Lemma 1.1,

T is a (U, V )-operator since we assume T is invertible. That is, T is a composition

of operators of the form:

T (X) = UXV for some nonsingular matrices U and V ; or

T (X) = X t where X t denotes the transpose of X.

If T (X) = UXV, then U−1T (X)U = XV U = XD for some nonsingular scalar

matrix D.

Note that

J t
j = (I − Ei,i)

t =




1
. . .

1

0
. . .

1




= Jj

for all j = 1, ....., n. Consider of pair of matrices (Eij, Jj). We have ρ(Eij · Jj) =

ρ(0) = 0, ρ(Eij) = 1 and ρ(Jj) = n − 1. Hence (Eij, Jj) ∈ M4. But (Et
ij, J

t
j) =

(Eji, Jj) satisfies that ρ(Eji·Jj) = ρ(Eji) = 1, ρ(Eji) = 1 and ρ(Jj) = n−1. Hence

(Et
ij, J

t
j) /∈ M4. This shows that T (X) = X t does not preserve M4. Hence T (X)

has the form UXV only. By Lemma 3.3 T (X) = αPXP−1 for some invertible

matrix P and nonzero real α.
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Thus in this section, we obtained the characterizations of the linear operator

that preserve the set of matrix pairs in the lower extreme rank of two matrix

product.

13



4 Preservers of the set of matrix triples in the

extreme rank of matrix product.

In this section, we study the linear operators that preserve M5 = {(A,B,C) | ρ(AB)+

ρ(BC) = ρ(ABC) + ρ(B)}, the set of matrix triples in the extreme rank of three

matrix product. We begin with an example that preserve M5.

Example 4.1. Let T : M2(R) →M2(R) be defined by T (X) = 2X = 2IXI−1.

If

A =

[
1 1

0 1

]
and B =

[
0 0

0 1

]
, C =

[
0 1

0 0

]

then

AB =

[
0 1

0 1

]
and BC =

[
0 0

0 0

]
, ABC =

[
0 0

0 0

]

and so ρ(AB) + ρ(BC) = ρ(ABC) + ρ(B). Thus (A,B, C) ∈ M5.

Also, we have (T (A), T (B), T (C)) ∈ M5. because ρ(T (A)T (B))+ρ(T (B)T (C)) =

ρ(T (A)T (B)T (C)) + ρ(T (B)). Therefore T preserves M5 in M2(R).

We begin with five Lemmas in order to obtain the linear preservers of M5.

Lemma 4.2. Let T : Mn(R) →Mn(R) be a bijective linear transformation that

maps M5 into M5. Then T preserves invertible matrices.

Proof. Consider the triple (A, B, C) ∈Mn(R)3 where A = O, B is arbitrary and

C is invertible. Then ρ(AB) = ρ(0) = 0, ρ(BC) = ρ(B) and ρ(ABC) = ρ(0) =

0. Hence we have (A, B, C) ∈ M5. Then (T (A), T (C)) ∈ M5 by assumption.

That is ρ(T (A)T (B)) + ρ(T (B)T (C)) = ρ(T (A)T (B)T (C)) + ρ(T (B)).

However, T (A) = O since A = O and T is linear. Thus one has ρ(T (B)T (C)) =

ρ(T (B)) for all matrices B. Since T is bijective, it follows that T (C) is invertible.

Indeed, T (B) runs through all Mn(R) as for as B does. If T (C) is singular, then

there is a nonzero B such that T (B)T (C) = O and ρ(T (B)T (C)) 6= ρ(T (B)),

which is a contradiction. Thus T (C) is invertible, that is, T preserves invertible

matrices.

Our next lemmas will show that preservers of M5 are indeed invertible.
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Lemma 4.3. If T : Mn(R) →Mn(R) is a linear transformation which preserves

the set M5 then there are no rank-n matrices in kernel T if T is not zero map.

Proof. Suppose to the contrary T preserves M5 and T (A) = O for some A with

ρ(A) = n. Then ρ(AB) + ρ(BA) = ρ(ABA) + ρ(B) for any B ∈ Mn(R). Thus

(A,B,A) ∈ M5, and hence (T (A), T (B), T (C)) ∈ M5. Thus (O, T (B), O) ∈ M5.

Hence ρ(O · T (B)) + ρ(T (B) ·O) = ρ(O · T (B) ·O) + ρ(T (B)) and ρ(T (B)) = 0.

Thus T (B) = O. This implies T = 0, the zero map, a contradiction. Thus there

are no rank-n matrices in kernel of T .

Lemma 4.4. If A is an n × n matrix of rank-k then for some positive integers

k1 and k2 such that k1 + k2 = k, A is similar to a matrix of the form



X O

Ok−k1,k O

Y O

Om−k−k2,k O




where X is k1 × k and Y is k2 × k. Necessarily, ρ(X) = k1 and ρ(Y ) = k2.

Proof. Let Q be the matrix such that QtAt is in reduced row echelon form. Then

QtAt has all zeros in rows k+1, ...., n. Thus AQ has all zeros in column k+1, ...., n.

Then B = Q−1AQ has all zeros in columns k + 1, ..., n. So

B =

[
B1 0

B2 0

]
,

where B1 is k × k, B2 is (n − k) × k. Let P be the k × k matrix such that PB1

is in reduced row echelon form. Let R be the (n− k)× k matrix such that
[

Ik O

R Ik

] [
P O

O In−k

] [
B1 O

B2 O

]
= C =

[
C1

C2

]
.

Hence
[

P O

RP In−k

] [
B1 O

B2 O

]
=




PB1 O

RPB1 + B2 O


 ,

so that if j is a pivot column of PB1, then the jth column of RPB1 + B2 has all

zero entrices.
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Finally, let S be the (n− k)× (n− k) matrix such that SC2 is in reduced row

echelon form. Then

(Ik

⊕
S)C =




Ik

S







C1 0
...

C2 0


 =




D1 0

Ok−k1,k 0

D2 0

On−k+k2,k 0




,

where D1 is k1 × k and D2 is k2 × k for some nonnegative integers k1 and k2 (k1

is the rank of B1).

Now,

(Ik

⊕
S)

[
Ik O

R In−k

]
(P

⊕
In−k)Q

−1AQ(P
⊕

In−k)
−1

[
Ik O

R In−k

]−1

(Ik

⊕
S)−1

= D(P−1
⊕

In−k)

[
Ik O

−R In−k

]
(Ik

⊕
S−1) =




D1P
−1 O

Ok−k1,k O

D2P
−1 O

On−k−k2,k O




,

has the desired form where X = D1P
−1 and Y = D2P

−1.

Lemma 4.5. If T : Mn(R) →Mn(R) is a linear transformation which preserves

M5. then either T is a zero map or T is invertible.

Proof. If T is a zero map then it is satisfied. Suppose T is not a zero map and

A ∈ kerT = {A|T (A) = 0} and ρ(A) ≥ ρ(Z) for all Z ∈ kerT.

Let ρ(A) = k and k 6= 0.

By Lemma 4.2, k < n. Then

ρ(U−1AUU−1BU) + ρ(U−1BUU−1CU) = ρ(U−1ABU) + ρ(U−1BCU)

= ρ(AB) + ρ(BC)

= ρ(ABC) + ρ(B)

= ρ(U−1AUU−1BUU−1CU) + ρ(U−1BU)

= ρ(U−1ABCU) + ρ(U−1BU).

Hence (U−1AU,U−1BU,U−1CU) ∈ M5. Since T (A) = U−1AU preserves M5, we

have

16



U−1AU =




A1 A2 O O

O O O O

A3 A4 O O

O O O O




by Lemma 4.3 .

Hence we may assume that

A =




A1 A2

O O

A3 A4

O O




,

where A1 is k1 × k1, A4 is k2 × k2, k1 + k2 = k and k + k2 ≤ n.

Case 1, k1 = k. Here

A =

[
A1 O

O O

]
.

Let (i, j) be a pair such that det A[{1, · · · , k}\{i} | {1, · · · , k}\{j}] 6= 0.

Let B = Ek+1,j + Ei,k+1. Then ρ(AB) = ρ(BA) = 1 and ρ(ABA) = 0,

so that (A,B,A) ∈ M5. Thus, T (B) = O. But det(xA + B)[{1, · · · , k +

1} | {1, · · · , k + 1}] is a polynomial of degree k − 1 in x, and since R has at

least n + 1 elements, for some x, ρ(xA + B) > k and T (xA + B) = O, a

contradiction to the choice of A.

Case 2, k1 < k. Here

A =




A1 A2 O O

O O O O

A3 A4 O O

O O O O




and A1 is k1 × k1. Let B = Ek,k + Ek,k+1 + Ek+1,k + Ek+1,k+1 and C = Ek,k +

Ek,k+1 + Ek+1,k+1. Then AB = AC and BA = CA. Further ρ(AB) = ρ(BA) =

ρ(AC) = ρ(CA) = 1, and ρ(ABA) = ρ(ACA) ≤ 1.

If ABA = ACA 6= O, (A,B, A) ∈ M5 and consequently T (B) = O.

But, det(xA + B)[{1, · · · , k1, k, · · · , k + k2} | {1, · · · , k + 1}] is a polynomial in
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x of degree k, and since R has at least n + 1 elements, for some x, ρ(xA +

B) > k and T (xA + B) = O, a contradiction to the choice of A. If ABA =

ACA = O, (A, C, A) ∈ M5 and consequently T (C) = O. But, det(xA +

C)[{1, · · · , k1, k, · · · , k + k2|1, · · · , k + 1}] is polynomial in x of degree k, and

since R has at least n+1 elements, for some x, ρ(xA+C) > k and T (xA+C) =

O, again a contradiction to the choice of A.

Since we have reached a contradiction in each case we conclude that k = 0

and the lemma follows.

Lemma 4.6. Let T : Mn(R) →Mn(R) and T (X) = UXV for some invertible

matrices U and V . Then T preserves the set M5 if and only if T (X) = αPXP−1

for some invertible matrix P ∈ Mn(R) and a non-zero real α.

Proof. Let us consider arbitrary (Y, Z) ∈ M3. If ρ(Y ) ≤ ρ(Z), then ρ(Y Z) =

ρ(Y ). Thus ρ(OY ) + ρ(Y Z) = ρ(OY Z) + ρ(Y ), so that (O, Y, Z) ∈ M5.

Thus ρ(T (O)T (Y )) + ρ(T (Y )T (Z)) = ρ(T (O)T (Y )T (Z)) + ρ(T (Y )). That is

ρ(T (Y )T (Z)) = ρ(T (Y )), and since T (X) = UXV, we have ρ(T (Y )) ≤ ρ(T (Z)).

Thus, (T (Y ), T (Z)) ∈ M3. If ρ(Z) ≤ ρ(Y ), (Y, Z, O) ∈ M5, and similar to the

above argument, (T (Y ), T (Z)) ∈ M3. Thus, T preserves M3. By Theorem 2.3

the lemma follows.

We obtain the characterization of linear operators that preserve M5.

Theorem 4.7. Let T : Mn(R) → Mn(R) be a bijective linear transformation.

Then T preserves the set M5 if and only if T (X) = αPXP−1 for some invertible

matrix P ∈Mn(R) and non-zero real α.

Proof. (⇐=) If T (X) = αPXP−1 for some invertible P ∈ Mn(R), and α 6= 0,

then T preserves M5. by the proof in Lemma 4.6.

(=⇒) By Lemma 4.2 T preserves the set of nonsingular matrices. By Lemma

1.1, T is a (U, V )-operator. Therefore T is a composition of operators of the form

T (X) = UXV for some U and V nonsingular; or

T (X) = X t where X tdenotes the transpose of X.

Suppose T (X) = X t and Jj = I −Ej,j. Then EijIJj = 0 but EjiIJj = Eji.

Thus (Ei,j, I, Jj) ∈ M5 but (Ej,i, I, Ij) /∈ M5. Hence T (X) = X t dose not

preserve M5.
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Therefore T (X) = UXV for some invertible U, V. By Lemma 4.6, T (X) =

αPXP−1 for some invertible matrix P and nonzero real α.

Thus in this section, we obtained the characterizations of the linear operator

that preserve the set of matrix triples in the extreme rank of three matrix product.
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