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< Abstract >

Eigenvalue estimates of the basic Dirac operator on

a Riemannian foliation

On a foliated Riemannian manifold with a transverse spin structure,
we give a lower bound for the square of the eigenvalues of the basic Dirac
operator in terms of the transversal scalar curvature and of the norm of
an appropriate endomorphism of the normal bundle @) of F. We study

the limiting case.



1 Introduction

The Dirac operator on a Riemannian spin manifold, which were in-
troduced by M.F. Atiyah and .M. Singer([2]), were studied by many
authors([3,4,7,9,10,15]).

In 1963, A. Lichnerowicz([17]) proved that on a Riemannian spin

manifold the square of the Dirac operator D is given by
R
D?* =V*V + 1

where V*V is the positive spinor Laplacian and R the scalar curvature.
In particular, the first sharp estimate for the eigenvalues A of the Dirac
operator D was proved by Th. Friedrich ([7]) in 1980. Using a suitable

Riemannian spin connection, he proved the inequality

2 TUR
i e
AT 2> TWeT 111\14fR (1.1)

on manifolds (M™,g) with positive scalar curvature R > 0. He also
proved, in the limiting case, that the manifold is an Einstein. The in-
equality (1.1) has been improved in several directions by many authors
([9,10,11,12]).

In 1988, J.Briining and F.W.Kamber([5]) introduced the transversal
spin structure on the normal bundle @ of the foliation F. Let S(F) be
a foliated spinor bundle on (M, F). Then the transversal Dirac operator

Dy, : S(F) — S(F) is defined by
1
D, = Ea Ey- VU= 3r- T, (1.2)

where k is a mean curvature form of F. If F is isoparametric and x is

divergence-free, i.e. 0k = 0, then the Lichnerowicz type formula is given
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by

1
D2V =V; V,U+ ZKU’ (1.3)

where K7 = oV + |k|?, 0V is the transversal scalar curvature of F.

In 2001, Jung([11]) studied the eigenvalue of the basic Dirac opera-
tor and the limiting foliation. Namely, let (M, gar, F) be a Riemannian
manifold with an isoparametric transverse spin folition F of codimension
g > 1 and bundle-like metric g); with respect to F. Assume that the
mean curvature k of F satisfies 0x = 0 and K7 > 0. Then the eigenvalue

A of the basic Dirac operator D, satisfies

N>l e (1.4)
4q—1 M

In the limiting case, it is proved that F is minimal, transversally Ein-
steinian with constant transversal scalar curvature.

In 2004, Jung et. al([12]) gave new lower bound for the eigenvalues
of Dy by the first eigenvalue of the basic Yamabe operator Y;,, which is
defined by

Y, :4;]_—;AB—|—O'V, (1.5)

where Ap is a basic Laplacian acting on basic functions. Namely, let
(M, grr, F) be a compact Riemannian manifold with a transverse spin
foliation F of codimension ¢ > 3 and bundle-like metric g, such that
k € QL(F) and 6k = 0. Then
q . 2
N> f 1.6

where p; is the first eigenvalue of Y.



In this thesis, we give a lower bound for the square of the eigenvalues
of the basic Dirac operator in terms of the transversal scalar curvature
and of the norm of an appropriate endomorphism of the normal bundle
Q of F.

This article is organized as followings. In Chapter 2, we review the
known fact on the foliated Riemannian manifold. In Chapter 3, we study
some basic properties of the transversal Dirac operator Dy,.. In Chapter
4, we estimate the conformal lower bound for the eigenvalues of the basic
Dirac operator by the modified new connection. We apply some tech-
niques and concerning conformal changes of the Riemannian metric to
get a sharper estimate than the theorem in terms of the first eigenvalues

of the Yamabe operator. Namely,

Theorem 1.1 Let (M, g, F) be a compact Riemannian manifold with a
transverse spin foliation F of codimension ¢ > 3 and a bundle-like metric
gn - Then, any eigenvalue \ of the basic Dirac operator corresponding

to the eigenspinor W € I'S(F) satisfies

N 2 < (g +inf [£]%) + inf |ly[* (1.7)

o |

where py is the first eigenvalue of the basic Yamabe operator'Y, of F and

ly is a symmetric endomorphism associated with Fy.

In Chapter 5, we prove, in the limiting case, that the foliation F is

minimal.

Theorem 1.2 Let (M, gy, F) be a compact Riemannian manifold with a

transverse spin foliation F of codimension ¢ > 3 and a bundle-like metric



gn- Assume that an eigenvalue \ of Dy, corresponding to the eigenspinor

U satisfies
1
2 4 : 2 | - 2
A= 4(,u1 +1A114f|/<;| )—Fl}\l/[f”\p’ :

Then |ly| is constant and the foliation F is minimal. Moreover

(divgle)(X) = (1 = q)go(le(X), grady (u)) (1.8)
for any X € T'Q.

Throughout this paper, we consider the bundle-like metric g, for (M, F)
such that the mean curvature form of F is basic-harmonic. The existence
of the bundle-like metric gy, for (M, F) such that x is basic, i.e. k €
QL(F), is proved in [6]. In [18,19], it is proved that for any bundle-like
metric gy with £ € Qp(F) there exists another bundle-like metric gy,

for which the mean curvature form is basic-harmonic.



2 Riemannian foliation

2.1 Definition of foliations

Let M be a smooth manifold of dimension p + q.

Definition 2.1 A codimension q foliation F on M is given by an open
cover U = (U;)ier and for each i, a diffeomorphism ¢; : RP? — U; such
that, on U; N U; # (0, the coordinate change goj_l o (U;NU;) —
¢; ' (U; NU;) has the form

w5t opi(r,y) = (0i(, ), 7 (1)) (2.1)

Equivalently, we have the following another definition. Let f; = prog; " :

U; — R? be a submersion, where pr: RPT% — R? is a projection.

Definition 2.2 A codimension ¢ foliation F on M is given by an open
cover U = (U;)ier, submersions f; : U; — N over ¢ dimensional model
manifold N and for U; N U; # 0, a diffeomorphism (transition function)
vij - filU;NU;) — f;(U; NU;) satisfying

fi(x) =ijo filr) forxeUNU;. (2.2)

From Definition 2.1(or 2.2), the manifold M is decomposed into con-
nected submanifolds of dimension p. Each of these submanifolds is called
a leaf of F. Coordinate patches (U;, ;) are said to be distinguished for
the foliation F. The tangent bundle L of a foliation is the subbundle

of T'M, consisting of all vectors tangent to the leaves of F. The normal



bundle @ of a codimension ¢ foliation F on M is the quotient bundle
Q = TM/L. Equivalently @) appears in the exact sequence of vector
bundles

0—-L—-TMZSQ—0. (2.3)
If (1,...,2p;91,-..,Y,) are local coordinates in a distinguished chart
U, the bundle Q|U is framed by the vector fields Waiyl, o ,Wa%q. For a

vector field Y € T'TM |, we denote also Y = 7Y € I'Q. A vector field
Y on U is projectable, if Y = 3", aia%i +>. ba% with %‘: = 0 for all
a=1,...,qgand i = 1,...,p. This means that the functions b, = b,(y)
are independent of z. Then Y = Y ba% with b, independent of x.
This property is preserved under change of distinguished charts, hence
makes intrinsic sense.

The transversal geometry of a foliation is the geometry infinitesimally

modeled by @), while the tangential geometry is infinitesimally modeled
by L. A key fact is the existence of the Bott connection in @) defined by

Vys = n([X,Y)]) for X € T'L, (2.4)

where Yy € TM is any vector field projecting to s under 7 : TM —
Q. It is a partial connection along L. The right hand side in (2.4)
is independent of the choice of Y,. Namely, the difference of two such
choices is a vector field X’ € I'L and [X, X'] € I'L so that 7[X, X'| = 0.

A Riemannian metric gg on the normal bundle @ of a foliation F is

holonomy invariant, if

0(X)go=0 foral X eI'L, (2.5)



where 0(X) is Lie derivative. Here we have by definition for s,t € I'Q,

(0(X)g0)(s,t) = Xgq(s,t) — go(0(X)s, 1) — go(s, 0(X)t).

Definition 2.3 A Riemannian foliation is a foliation F with a holonomy
invariant transversal metric gg. A metric gy is a bundle-like, if the

induced metric gg on () is holonomy invariant.

The study of Riemannian foliations was initiated by Reinhart in 1959([21]).
A simple example of a Riemannian foliation is given by a nonsingular
Killing vector field X on (M, gps). This means that 0(X)gy = 0.

An adapted connection in () is a connection restricting along L to
the partial Bott connection % To show that such connections exist,
consider a Riemannian metric gyy on M. Then T'M splits orthogonally
as TM = L & L*. This means that there is a bundle map o : Q — L+
splitting the exact sequence (2.3), i.e., satisfying m o o0 = identity. This

metric gy on T'M is then a direct sum

gum = gL D gr1.

With gg = 0*g,1, the splitting map o : (Q, gg) — (L*, gp1) is a metric
isomorphism. Let now V™ be the Levi-Civita connection associated to
the Riemannian metric gj;. Then the adapted connection V in @ is

defined by
Vxs=Vxs=mn([X,Y;]) for X € 'L, (26)
2.6
Vxs =n(VYY,) for X e L',
where s € I'Q and Y, € I'L* corresponding to s under the canonical

isomorphism Q = L*. For any connection V on @, there is a torsion Ty
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defined by
To(Y,2) = Vym(Z) - Vym(Y) - xlY, Z) 1)

for any Y, Z € I'T'M. Then we have the following proposition ([22]).

Proposition 2.4 For any metric gy on M, and the adapted connection

V on Q defined by (2.6), we have Ty = 0.
Proof. For X e I'L, Y € I'T'M we have 7(X) = 0 and
Ty(X,Y)=Vxn(Y)—n[X,Y]=0.
For Z, 7' € T L+ we have
(2,2 =n(VYZ)—n(VNyZ)—=n|Z2,7') = n(Tyu(Z,Z')) = 0,

where Ty is the (vanishing) torsion of VM. Finally the bilinearity and

skew symmetry of Ty imply the desired result. O

The curvature RY of V is defined by
RY(X,Y)=VxVy —VyVx —Vixy, for X, Y eTM.

From an adapted connection V in @ defined by (2.6), its curvature RY
coincides with R for XY € T'L, hence RV(X,Y) = 0 for X,Y € I'L.
And we have the following proposition ([13,14,22]).

Proposition 2.5 Let (M, gy, F) be a (p + q)-dimensional Riemannian
manifold with a foliation F of codimension q and bundle-like metric gy,
with respect to F. Let V be a connection defined by (2.6) in Q with
curvature RV . Then for X € T'L the following holds:

i(X)RY = 0(X)RY = 0. (2.8)



Proof. (i) Let Y € I'T'M and s € I'Q. Then

RV(X, Y)S = vays — VyVXS — V[X,y}s

= Q(X)Vys - Vy@(X)S - VQ(X)yS
= (0(X)V)ys =0.

(ii) Let Y, Z € I'TM and s € I'QQ. Then

(BCX)RV)(Y,Z)s = O(X)RV(Y,Z)s — B¥ (9(X)Y, 2)s

—RY(Y,0(X)Z)s — RV(Y, Z)0(X)s

= 0(X){VyVzs =V;Vys—Vizs}
_{VH(X)YVZS - VZVH(X)YS - V[H(X)Y,Z]S}
—{VyVox)zs — Vox1zVys — Vivex)z s}
—{VyVz0(X)s = VzVy0(X)s — Viy,70(X)s}

= Vy(0(X)Vzs) = Vz(0(X)Vys) — Vox)y,z)8
+VzVoxyys + Vipxyy,z15s — Vy Vex)zs
+Vivoxyzs — VyVz0(X)s + VzVy0(X)s

= —Vox)v,z15 + Viexy,z1s + Vivex)z)s

= (-Vixmz +Vixyz + Vyxz)s=0. O

By Proposition 2.5, we can define the (transversal) Ricci curvature p¥

I'Q — I'Q and the (transversal) scalar curvature o¥ of F by

where {E, }az1...

ZRV s, E,) ZQQ E.), E.), (2.9)

¢ 1s an orthonormal basis of ().



Definition 2.6 The foliation F is said to be (transversally) Einsteinian

if the model space N is Einsteinian, that is,
v_ 1 g .
pY =-0"-id (2.10)

with constant transversal scalar curvature oV.

2.2 Mean curvature form and basic Laplacian
The second fundamental form « of F is given by

a(X,Y) =7(VYY) for X,Y €T'L. (2.11)
Proposition 2.7 « is Q-valued, bilinear and symmetric.

Proof. By definition, it is trivial that « is ()-valued and bilinear. Next,

by torsion freeness of V¥, we have that for any X,Y € I'L,
a(X,Y) =n(VYY) = (V¥ X) — =n([X,Y]).
Since [X,Y] € I'L for any X,Y € 'L, we have
A X,Y)=7m(V¥X)=a(Y,X). O
Definition 2.8 The mean curvature vector field of F is then defined by

=Y a(B,E)=Y n(VEE), (2.12)

where {E;}i1... p is an orthonormal basis of L. The dual form s, the

mean curvature form for L, is then given by
K(X) =go(1,X) for X €T'Q. (2.13)
The foliation F is said to be minimal (or harmonic ) if k = 0.
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Definition 2.9 Let F be an arbitrary foliation on a manifold M. A

differential form w € Q"(M) is basic , if
i(X)w=0, 0(X)w=0, for X € 'L. (2.14)

In a distinguished chart (z1,...,2p;%1,...,y,) of F, a basic form w is

expressed by
W = Z Way-ar@Yay N+ N dYa,,

a1 <---<ar

where the functions wy, ..., are independent of x, i.e. %wal...ar = 0. Let
Q5(F) be the set of all basic r-forms on M. The exterior derivative d
preserves basic forms, since 0(X)dw = df(X)w =0, i(X)dw = (X )w —

di(X)w = 0 for a basic form w. Hence Q% (F) constitutes a subcomplex
d 1Q5(F) = QFHF)

of the De Rham complex Q*(M) and the restriction dp = d|oz (F) is well
defined. Its cohomology

Hp(F) = H(2(F),ds)

is the basic cohomology of F. 1t plays the role of the De Rham cohomology
of the leaf space M /F of the foliation. Let dp the formal adjoint operator
of dg. Then we have the following proposition ([1,11]).

Proposition 2.10 On a Riemannian foliation F, we have

dB = Zﬁa AN VEa, (SB = — ZZ(Ea)an -+ ?;(KB), (215)

a
where kg is the basic component of k, {FE,} is a local orthonormal basic

frame in Q and {0,} its gg-dual 1-form.

11



The foliation F is said to be isoparametric if k € QL (F). We already

know that « is closed, i.e., dk = 0 if F is isoparametric ([18]).
Definition 2.11 The basic Laplacian acting on Q5(F) is defined by
AB :dB(SB+5BdB- (216)

The following theorem is proved in the same way as the corresponding

usual result in De Rham-Hodge Theory.

Theorem 2.12 ([22]) Let F be a transversally oriented Riemannian fo-
liation on a closed oriented manifold (M, gyr). Assume gy to be bundle-

like metric with k € QR(F). Then
Hy(F) = Hp(F),
where H(F) = {w € Q"(M)|Apw = 0}.

If F is the foliation by points of M, the basic Laplacian is the ordinary
Laplacian. In the more general case, the basic Laplacian and its spectrum

provide information about the transverse geometry of (M, F)([16]).

2.3 Transversal divergence theorem

For the later use, we recall the divergence theorem on a foliated Rieman-

nian manifold ([23]).

Theorem 2.13 Let (M, gur, F) be a closed, oriented, connected Rieman-
nian manifold with a transversally orientable foliation F and a bundle-

like metric gy with respect to F. Then
/ d“)v(X) = / gQ(X, 7') (217)
M M

12



for all X € T'Q, where divg(X) denotes the transverse divergence of X
with respect to the connection V defined by (2.6).

Proof. Let {E;} and {E,} be orthonormal basis of L and @), respectively.
Then for any X € I'Q,

div(X) = gu(VEX, Ei) + gu(Vi, X, E,)
= —gu(X,7(VEE)) + gu(n(VE, X), Ea)
= _gQ<X7 7_) + gQ(VEaXv Ea)

- —gQ(X, T) —+ dZUv(X)

By Green’s Theorem on an ordinary manifold M, we have

0= /M div(X)dy = /M dive (X)dyr — /M go(X, 7).

This completes the proof of this Theorem. O

Corollary 2.14 If F is minimal, then we have that for any X € I'Q),

/ divg (X) = 0. (2.18)

13



3 'Transverse spin structure

3.1 Clifford algebras

Definition 3.1 Let V' be a vector space over a field K = {R,C} of
dimension n and g a non-degenerate bilinear form on V. The Clifford
algebra C1(V, g) associated to g on V' is the algebra over K generated by
V with the relation

veow4w-v=—2g(v,w)l (3.1)
for v,w € V. The product ”-” is called the Clifford multiplication.

Equivalently, the Clifford algebra of V' is given by the following universal
problem(for detail, see [15]).

Proposition 3.2 (Universal property) Let A be an associative algebra

with unit and f :V — A a linear map such that for allv eV

Then [ uniquely extends to a K-algebra homomorphism

~

f:CUV,g) — A
Remark. The Clifford algebra may be realized as the quotient
Cl(V,g) :=T(V)/I(V.9g)

where T'(V') is the tensor algebra of V', and I(V, g) the ideal generated
by all elements of the form v ® v + g(v,v)1, for v € V.

14



Remark. (1) If (Ey,--- E,) is a g-orthonormal basis of V', then

is a basis of CI(V, g) , thus dimCI(V, g) = 2".
(2) There is a canonical isomorphism of vector spaces, between the exte-

rior algebra and the Clifford algebra of (V, ¢) which is given by :
NV = ClU(V, g)

-
This isomorphism does not depend on the choice of the basis. Let us

denote Cl,, = CI(R™, < , >). Then we have the following proposition

([15]).

Proposition 3.3 Forallv € R" and all ¢ € Cl,, , we have

v~ A —i(v)p and @-v~(=1)P(vAp+i(v)p),

where A\ denotes the exterior, i(v) the interior product and ¢ € NPR"™ C

NR,, ~ Cl,.

Proof. Let v=FEjand p = E;, - ...  E; .
1. If there exists 7; such that j =i then v A ¢ = 0 and
i)y = (“)"'E,A...AE, [ ANE,  A...E

Thk—1 p

~ (-1)"'E,-...-Ey By ... B,
= (=D -v.

15



2. If j ¢ {ir,...,ip} then i(v)p =0 and

U/\QO = E]/\E“/\/\EZPZEJE“EZ

P

= (-1)Pp-v.

As the equalities of the assertion are bilinear, the proposition is proved.

|

Definition 3.4 The Pin group Pin(V') is defined by
Pin(V)={a e Cl(V)|la=ay---ag,||ai|| = 1}. (3.2)
The Spin group is defined by
Spin(V) = {a € Pin(V)|aa" = 1}, (3.3)

where a' = ay---a; for any a = ay---a,. Equivalently, Spin(V) =

{61"'€2k| |€z| = 1}

Let V' be a real vector space. Then Spin(V') is a compact and connected
Lie group, and for dim V' > 3, it is also simply connected. Thus, for

dim V' > 3, Spin(V) is the universal cover of SO(V') (for detail, see [15]).

3.2 Transversal Dirac operator

Let (M, g, F) be a Riemannian manifold with a transversally ori-
ented Riemannian foliation F of codimension ¢ and a bundle-like met-

ric gy with respect to F. Let SO(q) — Pso — M be the principal

16



bundle of (oriented) transverse orthonormal framings. Then a trans-
verse spin structure is a principal Spin(q)-bundle Ps,;, together with
two sheeted covering € : Pgpin, — Pso such that £(p - g) = £(p)&o(g) for
all p € Pspin, g € Spin(q), where & : Spin(q) — SO(q) is a covering.
In this case, the foliation F is called a transverse spin foliation. We then

define the foliated spinor bundle S(F) associated with Psy;;, by
S(F) = Pspin X Spin(q) Sq> (3.4)

where S, is the irreducible spinor space associated to (). The Hermitian

metric <,> on S(F) induced from gq satisfies the following relation:
<P >=<v-p,v-1P> (3.5)

for every v € Q, gg(v,v) = 1 and p,¢ € S,. And the Riemannian
connection V on Pgo defined by (2.6) can be lifted to one on Psy,, in

particular, to one on S(F), which will be denoted by the same letter.

Proposition 3.5 ([11, 15]) The spinorial covariant derivative on S(F)
15 given locally by:
1
Vo= Xb:gQ(VEa, Ey)E, - E,- U, (3.6)
where U, is an orthonormal basis of S,. And the curvature transform

R5 on S(F) is given as

1
RY(X,Y)® = 1 > 9o(RY(X,Y)E, E)E,-E,-® for X,Y € TM.
a,b
(3.7)

where {E,} is an orthonormal basis of the normal bundle Q.

17



Proposition 3.6 ([15]) (Compatibility of V with 7 -” and < -, - >)
(1) X <t,p>=<Vxt,p>+ <9, Vxp >, Xel'TM (3.8)
(2) Vx(Y-¢)=(VxY) 0+Y -Vxy, Y elQ. (3.9)

Theorem 3.7 ([11,12]) On the foliated spinor bundle S(F), we have

1

> E,-RS(X,E,)® = —épV(W(X)) - D, (3.10)
1

> E,-Ey,- R°(E, E,)® = Zavcp (3.11)

a<b

for X € TM.
Taking 7 to denote the projection
7:C®(IT"M @ S(F)) —» C(Q"® S(F)) =C(Q® S(F))
we define the transversal Dirac Operator D, ([5,8]) by
D;. =-ofoV.
If {E.}az1,.. 4 is taken to be a local orthonormal basic frame in (), then
D;,=> E. Vg,

In [5,8] it was shown that the formal adjoint D;." is given by D, * =
D, — k- and that therefore

1
Dtr = D;T - élf' (312)

is a symmetric, transversally elliptic differential operator, with symbol
op,. satisfying op,, (z,&) = £ for € € QF and op,, (z,£) = 0 for £ € L.
Then the transversal Dirac operator Dy, is locally defined by

1
DU => E, VpU-— S for U e TS(F), (3.13)

18



where {E,} is a local orthonormal basic frame of ). Then we have the

Lichnerowicz-type formula on F.

Theorem 3.8 On an isoparametric transverse spin foliation F with 0k =

0, it is well-known ([8,11]) that

1
D2V = ViV, U+ ZIKU\I:, (3.14)

where K° = oV + |k|* and

ViVel ==Y Vi 5 U+ V0 (3.15)

The operator V;.Vy, is non-negative and formally self-adjoint ([11]). In

fact, we have the following proposition.

Proposition 3.9 ([11]) Let (M, gu, F,S(F)) be a compact Riemannian
manifold with the transverse spin foliation F and a bundle-like metric
gnr with respect to F . Then
L ViV U >=< Vo, V,U >

for all ®, ¥ € T'E, where K &,V >= fM < ®, U > s the inner product
on S(F).
We define the subspace I'g(S(F)) of basic or holonomy invariant sections
of S(F) by

Ip(S(F))={Y el'S(F)|Vx¥ =0 for X e 'L}
Trivially, we see that Dy, leaves I'g(S(F)) invariant if and only if the
foliation F is isoparametric, i.e., k € Qp(F). Let Dy = Dylrysor) -
I'p(S(F)) — T'p(S(F)). This operator D, is called the basic Dirac op-

erator on (smooth) basic sections. It is well known that Dy, and D} have

a discrete spectrum, respectively.
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3.3 Transversal Dirac operators of transversally con-

formally related metrics

Now, we consider, for any real basic function v on M, the transversally
conformal metric gg = e*gg. Let Py, (F) be the principal bundle of gg
-orthogonal frames. Locally, the section 5 of P,,(F) corresponding a
section s = (Ey,---,E,) of Py(F) is § = (Ey,---, E,), where E, =
e “E, (a =1,---,q). This isometry will be denoted by I,. Thanks to
the isomorphism I, one can define a transverse spin structure ngm(]: )

on F in such a way that the diagram

commutes.

Let S(F) be the foliated spinor bundles associated with Py, (F). For
any section W of S(F), we write U = [,U. If <, >, and <, >, denote
respectively the natural Hermitian metrics on S(F) and S(F), then for
any ¢, U e I'S(F)

<P >, =< D,V >, (3.16)
and the Clifford multiplication in S(F) is given by
X"U=X.-VU for X clQ. (3.17)

Let V be the metric and torsion free connection corresponding to gg-

Then we have the following proposition([12]).
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Proposition 3.10 On the Riemannian foliation, we have that for X, Y €
r'rm

)

Var(Y) = Var(Y)+ X (w)r(Y)+Y (u)7(X) —go(n(X), 7(Y))grady (u),
(3.18)
where grady(u) = ) E.(u)E, is a transversal gradient of u and X (u)

1s the Lie derivative of the function u in the direction of X.

Proof. Since V is the metric and torsion free connection with respect

to gg on (), we have

20(Vxs,t) = Xgo(s,t) +Yio(n(X),t) — Zigo(n(X), s)

= gQ(ﬂ-[Xa Y:?]vt) + gQ(ﬂ-[ZtaX]? 5) - gQ(T‘-[YS? Zt]77T<X))a

where 7(Ys) = s and 7(Z;) = t. From this formula, the proof is com-
pleted. O

From (3.18), we have the following proposition([12]).

Proposition 3.11 The connection V and V acting repectively on the
sections of S(F) and S(F), are related, for any vector field X and any
spinor field ¥ by

vxwzvxw—%mm-mmwwyw—%%@mﬁmmﬂumw4am)

Proof. Let {E,} be an orthonormal basis of () and denote by w and w,
the connection forms corresponding to gg and gg. That is, for any vector

field X € TM,
VxEp = Zwa(W(X))Ea VxE, = Z@bc(W(X>)Ec- (3.20)
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From (3.18), we have

Buelm(X)) = we(7(X)) + g (m(X), B Ey(u) — go(m(X), Fy) e(u).
(3.21)
Let {U,}(A = 1,---,2)) be a local frame field of S(F). Then the
spinor covariant derivative of W4 is given ([12]) by

Vxly = %Zwa(W(X))Eb B, U, (3.22)

b<c

With respect to gg, we have

?X\IIA = = (Dbc(ﬂ'(X))E_'bTECT\I/A

= 3 D {wre(m(X)) + go(x(X), E.) Ey(u)

b<c

—90(m(X), Ey) Ee(u) } Ey Ec 4

—{71 M2
= Vx¥i—3 > 9o(m(X), Eo) Ey(u) E~Ey¥ 4
b#c

1 1
= VxVUy — §7T(X) cgrady (u) - Uy — égQ(gradv(u),w(X))\I/A.

O
Let Dy, be the transversal Dirac operator associated with the metric
Jo = €*“gg and acting on the sections of the foliated spinor bundle S(F).
Let {E,} be a local frame of Pso(F) and {E,} a local frame of Pgo(F).
Locally, D;, is expressed by

_ _ - - 1 -
D, U=> E, V5V - WAL (3.23)
where k5 is the mean curvature form associated with gg, which satisfies

kg = e *“k. Using (3.19), we have that for any U,

_ _ I D
Dy = e { D,V + a 5 grady(u) - ¥}. (3.24)
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Now, for any function f, we have D.(fV) = grady(f) -V + fD,;,WV.

Hence we have
Dy (f¥) = e “grady(f) - ¥ + fDy, . (3.25)
From (3.24) and (3.25), we have the following proposition.

Proposition 3.12 Let F be the transverse spin foliation of codimension

q. Then the transverse Dirac operators Dy, and D, satisfy

Dy(e "7 ") = e~ = "D, T (3.26)
for any spinor field V € S(F).

From Proposition 3.12, if D,, ¥ = 0, then D,,® = 0, where ® = e_q%l“\lf,

and conversely. So we have the following corollary.

Corollary 3.13 On the transverse spin foliation F, the dimension of
the space of the foliated harmonic spinors is a transversally conformal

mvariant.

Let the mean curvature form  of F be basic- harmonic, i.e., k € Qk(F)
and dgk = 0. Then by direct calculation, we have the Lichnerowicz type

formula.

Theorem 3.14 On the transverse spin foliation with the basic harmonic

mean curvature form k, we have on S(F)

DIV =V;iV,U+RY(V)+ KV, (3.27)
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where

?fr?tr‘if = — Z an?E‘a\I’ + ?Z @EGEQ\TJ + ?,{gi’, (3.28)
v 1 L 2
K = 2(g — 2)wglu) + 1 Al (3.20)
RY(U) =Y " E, By R%(E,, E,)V. (3.30)
a<b

Proof. Fix x € M and choose a local orthonormal basic frame {E,}

satisfying (VE,), = 0 at x € M. Then by definition,
_ _ N
D}V = Dy{) E." V37— WA

= — Z anan\I’ + Z Ea - Eb - RS(EM Eb)q]

a<b
—l—ZEa By ?[Em,;b]\ff = Z Ey - ?E‘bE_’a B ?anj
a<b a,b
1 e FREETEe e N
_EZEI) . (VEblig) \IJ—FVHQ\II—leig K/g \Ij
From Proposition 3.10, we have
Vi, By = e ?{Ey(u)E, — dapgrady(u)}. (3.31)
Hence we have
Z Ey~ By~ Vg, m¥ = e’"{z E, - grady(u) - Vg ¥+ vgmdv(u) 3%
a<b a

Z Eb - ?EbE_’a - ?anj = —e_“{q?m\ff + ZEG B gradv(u) B ?anf},
ab a

Y B, (Vikg) - U=e{> E, Vgr- ¥+ (2-q)k(u)l}.

24



From the above equations, we have

DET\I/ = —Z?Eaﬁga\ffqtﬁza%a,;aﬁur?@@
T 1, o
+§Ea By - RS(E,, B,V + 5 (1= 2)rg() ¥ + |A[*T.

This completes the proof. O

Lemma 3.15 ([12]) Let (M, g, F) be a compact Riemannian manifold
with a foliation F and a bundle-like metric gy with respect to F. Then

<< ?:r?ﬁ“qj7 é >>§Q:<< ?tr@, ?tré >>§Q (332)
for all®, ¥ € S(F), where < V, ¥, V,;, ® >00= Da < Vi, VU,V ® >50-

Proof. Fix x € M and choose an orthonormal basic frame {E,} such

that (VE,), = 0 for all @. Then we have that at «
Vi, By = e {Ey(v)E, — Sapgrady(u)}. (3.33)
Hence we have

<ViVeU,®>5, = =Y <VpVpU,o>,



where V' € TQ ® C are defined by go(V,2) =< V¥, ® >g, for all
Z € I'Q). The last line is proved as follows: At x € M,

divg(V) = 3 00(VaV.E) =Y Eugo(V.E.) — 3o(V. Y V5, Ed)

By the transversal divergence theorem on the foliated Riemannian man-

ifold([19,23])

/ dl'U@(V)Ug = / gQ(ﬁg, V)Ug = / < vﬁg\i[, é >§Q 'Ug,
M M M

where v; is the volume form associated to the metric gy = g1 + go. By

integrating, we obtain our result. O

26



4 Eigenvalue estimate of the basic Dirac

operator

4.1 Eigenvalue estimate I

Let (M, gar, F,S(F)) be a Riemannian manifold with a transverse spin
foliation F of codimension ¢ > 2. Let gy be the bundle-like metric
for which the mean curvature k is basic-harmonic, i.e., k € QL (F) and
opk = 0.

l
Now, we introduce a new connection V on S(F) as followings.

Definition 4.1 Let [ be a linear symmetric endomorphism of ). For

any tangent vector field X and any spinor field ¥, we define the modified
!

connection V on S(F) hy

!
Vx VUV =VxV¥+I(n(X))- V¥ (4.1)
where 7 : TM — (.

l
Proposition 4.2 The connection Y is a metric connection. For any

tangent vector field X, and any spinor fields ¥ and ®, one has
! !
XgQ(‘Ija (D) = QQ(VX \Ij, @) + gQ(‘Ija Vx CD)
Proof. By the direct calculation, we have

Xgo(¥,®) = go(VxV,®) + go(V,Vxd)
= (Vi ¥ —I(n(X)) - W, ®) + go(¥, Vx & — I(r(X)) - ©)
— go(Vx U, ®) +go(T,Vx @). O
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l l
We now define V*, V;,: I'S(F) — I['S(F) as

I ! !
V*tT’vtT V= Z sza,Ea \Il—i_ v.% v (42)

! 11 !
where V2, ,=V,Vw — Vv, for any v,w € TM. Then we have the

following lemma.

Lemma 4.3 Let (M, gy, F) be a compact Riemanian manifold with a

transverse spin foliation F and a bundle-like metric gy with respect to

F. Then
Lo ! l
<V'4 Vi @, ¥ >=<V,, @,V ¥ > (4.3)
for all ®,¥ € T'S(F), where < ©,¥ >= [, < ®, ¥ > is the (Complex

Hermitian) inner produet on S(F) -

Proof. Fix x € M and choose an orthonormal basic frame {E,} such
that (VE,), = 0 for all a. Then we have at the point x that for any
e, 0,

l l l l l
<V Ve ®U> = =3 <V Vg ®,0 >+ <V, 0,0 >

= Y B <V 00>+ <V, &,V U
+<CLVK<D,\IJ>+<Z(/1)-¢:L,\I/>

= =) E,<Vp®VU>-> E,<lE,) ®V>
+<CLV,§<I>,\IJ>+<Z(/~:)-¢>G,\I/>

l l
+3 <Vp, ®, Vg, U >.
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So,
l l l l
<V'% Ve ®,0 > = —divg(V) —divg(W)+ > <Vp, ®,V5, ¥ >
+ < V.0,V >+ < (k) DU >,

where V,IWW € I'QQ ® C are defined by the condition that go(V, Z) =<
Vz®, U > and go(W,Z) =< l(Z) - &,V > for all Z € I'Q. The last line

is proved as followings: At x € M,
divv(V) = Z gQ(VEaVv Ea) = Z EagQ(M Ea)

= ) E,<Vg® V>, (4.4)

Similarly, we have

LN T BIEHE TS (4.5)

By the transversal divergence theorem([19,23]) on the foliated Rieman-

nian manifold, we have
/ divg (V) =< K,V >=< VD, U >,
M

and

/ dive (W) =< 1(K) - B, T > |
M

By integrating,

l l
/ < V*tr Vir (I), U > = —/ dlUv(V) — / dM)v(W)
M M M

+/<VK<I>,\II>+/<Z(/1)-Q>,\IJ>
M M
l l
+/Z<VEQ<1>7VECL‘1’>-
M a
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Hence, we obtain our result. O

Proposition 4.4 For any linear symmetric endomorphism | of Q), and

for any spinor field VU | the following identity holds:

l l l
| Vi U :zz <Vp, ¥, Vg, ¥ >

(4.6)
=|V, T — QReZ <U(E,) Vg, U, U > +|I]2|T]2

Proof. Fix x € M and choose an orthonormal basic frame {F,} such

that (VE,), = 0 for all a. Then we have at the point x that for any ¥,
! %tr U2 o= Z <%Ea \I’,%Ea v >
= i < Vg V+IU(n(E)) ¥,V V+I(r(E,)) V>
= Z<VE\IJ VE\IJ>+Z<VEa\I/ WE,) U >
+Z<z \I/VE\I/>+Z<Z )- U U(E,) - ¥ >
= ]Vtrklsz Z{< (E,)VEY,V >+ <V, [(E,)VET >}
+i?| )

= |VuU? =2ReY < IU(E,) Vg ¥> 4]0P O

We now show that for an appropriate choice of the symmetric endomor-
phism [, one gets a sharp estimate of the first eigenvalue of the basic
Dirac operator on compact foliated Riemannian manifolds. For this, we

need the following:

Definition 4.5 On the complement of the set of zeroes of a spinor field

U € I'gS(F), define for any tangent vector fields X and Y, the symmetric
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bilinear tensor Fy by
1
Fy(X,Y) = §Re <7m(X) - VyU+7(Y) VxV, \I//|\Il\2 >, (4.7)
where m : TM — Q.

Let [y be a symmetric linear map associated to Fy. Namely, it follows

that for any X,Y € I'Q
Fy(X,Y) = goly(X),Y). (4.8)
Since < k- ¥, ¥ > is pure imaginary, we have
trly = » Re<E, VgV V/[T>
= Rae < DV, U/|U* >
It is trivial that if ¥ satisfies D, ¥ = AW, then
tr ly = A (4.9)

On the other hand, since [ is linear symmetric endomorphism, we have

ReZ<l Ve, U, >= Z<z ), Lo (E,) > |U)?

(4.10)
=<l lyg > |\I’|2
From (4.6) and (4.10), we have the following equation;
L 2 2 2
| Vor OIF = [V " = f(OIVF, (4.11)

where f(I) =2 < I,ly > —|l|*>. Note that f(I) has maximum value |ly|?
at [ = ly because [ is linear endomorphism. From (3.14) and (4.11), we

have that for any eigenspinor ¥ corresponding to an eigenvalue A

! 1
[ 1vewr = [ oo GRTEWPHE (@12)
M M

Hence we have the following theorem.
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Theorem 4.6 Let (M, gy, F) be a compact Riemannian manifold with a
transverse spin foliation F and a bundle-like metric gyr. Then any eigen-

value A of the basic Dirac operator D, corresponding to the eigenspinor
U e I'S(F) satisfies
1
2 > 3 _ (e 2 .
A > 1]r\14f(4K + lw|%), (4.13)

where K7 = oV + |k|%.
Moreover, by the Cauchy-Schwarz inequality we have

é(trlqz)Q = %(;UW(ELI%EG >)*

1

< g > N (Ea) P|Ea)”
= S ()P = ol
Hence from (4.9), we have
ly|* > %2 (4.14)

Hence we have the following corollary.

Corollary 4.7 (cf.[11]) Under the same conditions as in Theorem 4.0,
one has

L
~4(g—1)

inf K°. (4.15)
M

4.2 Eigenvalue estimate II

!
Now, we introduce a connection V on S(F), as

l

VX\I/:VX\I]‘l'Z(W(X))_\IJ fOl"XGTM, (416)
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where [ is a linear symmetric endomorphism on (). Trivially, the connec-
! 1

tion V is a metric connection and V*,,.V;, is positive definite.

Lemma 4.8 On the foliated spinor bundle S(F), we have

Lol Lo
KV 5V, U, 0 35, =<V, U,V & >5,

for all U, ® € I'S(F).
On the other hand, we obtain the following lemma.

Lemma 4.9 On the spinor bundle S(F) associated with the metric o =

€2qu
Fo(X,V) = e "Fp(X,Y) = e “Fy(X,Y) (4.17)

for any X,Y € I'Q, where & = e,

Proof. By definition, we have

_ 1 o
Fp(X,Y) = §Re < XVp® +YVi®, 0/|0f7 ) >,

1 - 1
= §€_uR€ < XHAVy® — §Y - grady (u) - @

~dalorads(u), Y))

_ 1
+YH{Vxd - §X - gradyg(u) - ®

1 I
—ng(gTCLdv(U),X)‘I)},(I)/‘(I)EQ >§Q :

From (3.16) and (3.17), we have

o 1
F3(X.Y) = Se"Re <X -Vy® 1Y Vx®

1
9o(X,Y)grady(u) - & — §gQ(gmdv(u), V)X -
1 - _
—§gQ(gradv(u), X)Y - o, CI>/|<P|§Q >50
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Since I, is isometry and < X - ¥, ¥ > is pure imaginary, it follows that
Fo(X,V) = %e‘“Re C X Vyd+Y-Vxd, d/|0 >
= e "Fp(X,Y)
On the other hand, since ® = e~ (@~ D*/2¥ by direct calculation we have
Fo(X,Y) = Fy(X,Y).
Hence the proof is completed. O
From (4.17), we have the following identity
lg =e “lp =e “ly. (4.18)

From (4.18), we have the following proposition (see [10] for the details).
Proposition 4.10 The following relations hold:

lal, = e llal” = e~ lul”, (4.19)

_g—1
where ® = e~ 2 YU,

lg
By using the connection V, we can obtain the following equation

g _ s _ e
| Vi @2, = Y <Vg, & Vg, © >4,

1 _ - I
= 5Re) | < EavViye)® +1a(E) 7 VE, P, @ >4,
=D Fa(Eala(Ba)|®L, = Y <la(Ed),la(Ed) >5, |,
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Summing up the above equations, we have
g _ _ _
| Vi @2, = Vi@ = [l5]2, P[5, (4.20)
Hence we have from (3.27), (3.32) and (4.20)

s _ 1 5~ = =
/M| Vi D2, / {< D70, >, @7 < KY®,® >4, —|l52,|®[5, }-
(4.21)
where KY = oV + 4KV,
Let DyW = A\¥(¥ # 0). From Proposition 3.12, we have

Dy® = \e @, (4.22)

where ® = ¢~ 2 0. From (4.19) and (4.22), we have that for any

eigenspinor W corresponding to the eigenvalue A
& 512 P P et 2\ 152
| Vir @[5, = [ &N = (e K7 +4[le[) }|®fg,

| (4.23)
g/eZ“{)\Q - Z—liﬂr}If(e2“K§+4|lq,\2)}]<I>]§Q

where ® = ¢~ "2 “W. From (4.23), we have that A2 > Linfy, (e KY +

4|ly|*). Hence we have the following theorem.

Theorem 4.11 Let (M, gy, F) be a compact Riemannian manifold with
a transverse spin foliation F of codimension q > 2 and bundle-like met-
ric gar. Assume that Ky > 0 for some transversally conformal metric
go = €*gg. Then any eigenvalue X of the basic Dirac operator Dy cor-
responding to the eigenspinor W € T'S(F) satisfies

1
> Zsuplnf( ' KY + 4|ly]?), (4.24)

where KY = oV + | + 2(q — 2)kz(u).
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From (4.14), we have the following corollary.

Corollary 4.12 (cf.[12]) Under the same assumption as in Theorem

4.11, we have

AT > =1 sgp 1]r\14f(e K)). (4.25)

The transversal Ricci curvature p@ of go = e*gg and the transversal
scalar curvature oV of go are related to the transversal Ricci curvature
p¥ of go and the transversal scalar curvature oV of gg by the following

lemma.

Lemma 4.13 On a Riemannian foliation F, we have that for any X €

Q.
e?pV(X) =p¥(X) + (2 — q)Vxgrady(u) + (2 — q)|grady (u)|* X
+ (¢ — 2)X (u)grady(u) + {Apu — k(u) } X.
(4.26)

e?oY = oV +(¢—1)(2 - q)|grady (v)|* +2(¢ — 1) {Apu — k(u)}. (4.27)

Proof. Let x € M and choose an orthonormal basic frame {£,} with

the property that (VE,), = 0 for all a. Then
pY(X) = Y RY(X,E,)E,
= Z VxVi,Eq - Z Ve VxE, — Z Vix.2. Fa-
By direct calculation, we have
Y VxVgE. = (1-q){Vxgrady(u) + |grads(u)|?X

—2X (u)grady(u)} + Z VxVg, E,.
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Similarly,
> Vi VxE, = Y Vg VxE,+ Y E.E(u)X
a :ngdv(u)X — Zag(VEaX, E,)grady(u)
—Vxgrady (u) —a|g7’adv(u)\2X — X (u)grady(u).
and
e Z Vixs Fa = Z Vix.g)Fa + X (u)(q — 1)grady (u)

_vgradv(u)X + Z g<anX7 Ea)gradv(u).

Since Apu = dpdpu = =), E,E,.(u) + i(k)dpu, the above equations
give (4.26).
On the other hand,

0¥ =3 900" (B, Ba) = > 900" (Ba), Ea).
From (4.26) we have
oY = Y go(e¢™pY(E), Ea)
= Uav +(2-9)) _ 9o(Vr,.grady(u), E,)
+(¢—1)(2- qa)lgmdv(U)I2 + q{Apu — r(u)}.
Since >, 9o(Vg,grady(u), E,) =Y, E,E.(u) = —Apu+ k(u), we have
0¥ =0V + (g —1)(2 — q)lgrady (u)|* + 2(q — D{Apu — £(u)},

which proves (4.27). O
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Since KY = oV + |&|? 4 2(q — 2)r5(u), from (4.27), we have

e KY = oV + [k]? + 2(g — )Apu + (¢ — 1)(2 — ¢)|grady (u)|* — 2k(u).
(4.28)
On the other hand, for ¢ > 3, if we choose the positive function h by

u= qi—Q In h, then we have
2
Apu = q_—Q{h_2|gmdv(h)]2 +h 'Apgh}, (4.29)

gradg (u)]? = <q%>2h2|gmdv<h>r? (4.30)

2
From (4.28), (4.29) and (4.30), we have

; ; 4
e KY = hi? KY = h™'Yh + ]2 — ——h " k(h), (4.31)
q

-2
where
2=} A
Y, = 1= &g £0©, (4.32)
q1=12
which is called a basic Yamabe operator of F.
Now we put K, = {u € Q%(F)|x(u) = 0}. If we choose u € K,, then
k(h) =0 = k(u). From (4.28) and (4.31), we have

' KY = K7+ 2(q— )Apu+ (g—1)(2 = q)|grady (u)|> = A Y,h + |s[?,
(4.33)
where K° = oV +|k|?. Assume that the transversal scalar curvature oV is

non-negative. Then the eigenfunction h; associated to the first eigenvalue

11 of Y, can be chosen to be positive and then pu; is non-negative. Thus
hi'Yyhy = py. (4.34)

Since supinf{h~'Y,h} > p;, we have from (4.24) in Theorem 4.11 the

following Theorem.
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Theorem 4.14 Let (M, gy, F) be a compact Riemannian manifold with
a transverse spin foliation F of codimension q > 3 and bundle-like metric
gnv - Then, any eigenvalue \ of the basic Dirac operator corresponding

to the eigenspinor W € I'S(F) satisfies

N> (i +il‘1}[f|/-@|2) +inf lw|? (4.35)

o |

where 1y is the first eigenvalue of the basic Yamabe operator of F
-1
Y, = 4q—2AB +oY (4.36)
q JE—

acting on functions, and ly s the field of symmetric endomorphism as-

sociated with Fy.
From (4.14), we have the following corollary.

Corollary 4.15 (cf.[12]) Let (M, gar, F) be a compact Riemannian man-
ifold with a transverse spin foliation F of codimension ¢ > 3 and bundle-
like metric gy;. If the transversal scalar curvature satisfies o¥ > 0, then
any eigenvalue X of Dy satisfies

)\2>L
~4(g—1)

(1 + inf |&[?). (4.37)
Remark. Since p; > inf oV, the inequality (4.37) is a sharper estimate
than the previous one (1.4). Moreover, Corollary 4.15 is a specialization

of the result on an ordinary manifold by O. Hijazi ([10]) to the case of

Riemannian foliations.

39



5 The limiting cases

In this chapter, we study the limiting foliations of (4.13) and (4.35).

5.1 The limiting case I

For any linear symmetric endomorphism [ of @, we define Rick : I'Q ®

S(F) — S(F) ([10,11]) by

Ricy(X ® W) = Y E,- R(X, E,)V, (5.1)

!
where R! is the curvature tensor with respect to V defined by (4.1).

Lemma 5.1 On the transverse spin foliation F, we have that for X €
I'Q and ¥ € T'S(F)
-l i
Ricg (X ®@W) = —p(X) Wity {EodI(X, Bo)+ B+ [1(X), U(Ea)]} ¥,
(5.2)
where [X,Y]=X-Y =Y - X and dI(X,Y) = (Vx)(Y) — (Vy)(X).
Proof. Fix x € M and choose an orthonormal basic frame {F,} such
that (VE,), =0 for all a. For X € T'Q), we have
Il !
VxVe, ¥V = Vx{VgV+I(E,)- ¥}
= VxVeV+VxI(E,) VY+IU(E,) VxV+I1(X) VgV
+H(X) - U(E,) - .
Similarly,

[ l
Ve, Vx VU = Vg, VxVU+ Ve l(X) V4+1(X) Vg, V+I1(E,) VxV¥
+U(E,) - 1(X) - V.
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From the above equations, we have
Ridy(X®¥) = > E,-R(X,E,)V
= Y E.ARY(X, E)V + (Vx))Es — (VE,1)X) - ¥
HUX) 1) ~ 1E) - 1(X)) - W)
= Y E,RI(X,E)V+> E,-d(X E,)-¥
+3 B, [1(X),1(E,)] - .
Hence Theorem 3.7 give: our proof. O

By the definition of Clifford multiplication, we have
Y E,-dl(X,E,) =Y E,Adl(X,E,) —{X(tr I) — (divgl)(X)}, (5.3)
W}fere (divgl)(X) = ZC; 9o((VE,)(X), E,)- Since [ is symmetric,
> E,-U(E) =Y I(E,)- Ea, (5.4)
and then ' '
> E.-l(E.)=—trl (5.5)
From (5.4) and (5.5), we haave
> B, [I(X),1(E)] - W = 2(tr DI(X) - ¥ —2%(X) - 0. (5.6)
From (561.2), (5.3) and (5.6), we have the following proposition.

Proposition 5.2 On the transverse spin foliation, we have

Ridy(X @) =— %pV(X) U+ Y (B, NdI(X,E,)) - U —20°(X) - ¥

X (tr ) — (divgl)(X)} - U + 2(tr DI(X) - .
(5.7)
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From (5.7), we have the following facts.

Proposition 5.3 If M admits a non-zero spinor field V € I'S(F) with
!
V VU =0, then |¥|? is constant and

grady (tr 1) = divyl, (5.8)
1
(tr 1)? = Zav + 1) (5.9)

l l
Proof. Since V is a metric connection, the condition ¥V ¥ = 0 imply
l
that [W|? is constant. If Vx ¥ = 0 for any X € I'Q , then Ricl, = 0.

Hence from (5.7), we have
{X(tr 1) — (divgl)(X)} ¥ = — %N(X) U+ (B, ANdI(X,E,)) - U

+ 2(tr DI(X) - W — 213(X) - ¥
(5.10)

Then we have that for any X € I'Q),
<A{X(trl) — (divgl)(X)} - ¥, ¥ >

—< {—%;N(X) £SO A dI(X, Ea)) + 20t DY) — 22(X)} 0,0 >

The left-hand side is real, but the right-hand side is pure imaginary
because ) | < E,Adl(X, E,) -V, ¥ > is pure imaginary. Therefore, both

sides are zeros. Hence we get that for any X € I'Q),

X(tr 1) = (divel)(X), (5.11)

%pV(X) 0 = {30 (Ba AdI(X, )+ 2(tx DIX) — 23(X)} - .

(5.12)
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Hence from (5.11) the equation (5.8) is proved. For the equation (5.9) ,
Clifford multiplication of (5.12) with Ej and for X = Ej, gives

leb'pv(Eb)'\Ij = ZEb-(Ea/\dl(Eb,Ea))-‘ll
2

a,b

2(tr 1) ZEb I(Ey) - —QZE,, (B, - 0.
From Theorem 3.7 and (5.5), we have

——aV\p ZE (Ey AN dl(E,, Ey)) - W — 2(tr 1)2¥ + 2|12, (5.13)

On the other hand7

ZE (Ey ANdI(E,, Ey)) - ZE AEyANdl(E,, Ey)) - W

(5.14)
—Z Y(Ey A dl(E,, Ey)) - 0.

The first term of the right-hand side of (5.14) is zero since [ is symmetric,
and the last term is the Clifford multiplication of ¥ with a vector field,
which gives an imaginary function when taking its scalar product with
V. Thus we have

1
—§O—V|\1f|2 = —2(tr 1)*| V| + 2|1)*|¥|?.

Hence the proof of (5.9) is completed. O
Let U, be the eigenspinor corresponding to the eigenvalue \? =
2 infy (K7 + 4|1y, [*). From (4.12), we have
lqlvl U, =0, K7 =constant, [ly,| = constant. (5.15)
From Proposition 5.3, we know that | W, | is constant and

1
/\% = ZUV + |l\1/1|2. (516)
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From (5.16), the transversal scalar curvature oV is constant and we have

inf |x|* = 0. (5.17)

Since oV and K° = oV + |k|? are constant, |x| is constant and then
|k| = infy; |k| = 0. This implies that F is minimal. Hence we have the

following theorem.

Theorem 5.4 Under the same assumption as in Theorem 4.6, if there
exists an eigenspinor W(#£ 0) of the basic Dirac operator Dy, for the eigen-
value \* = Yinfy (K7 + 4|ly|?), then |¥| is constant and F is minimal

with the constant transversal scalar curvature o¥ = 4(\? — |lg|?).

5.2 The limiting case II

Next, we study the limiting foliation of (4.35). Similarly, we have that
for any X € I'Q,

Ric2(X ® @) = — 1,F(X) S+ (EgAdlg(X,E,)) - @ = 205(X)- @

+2(tr I)lp(X) - @ — { X (trlg) — (divels)(X)} - .
(5.18)

From (5.18), we have that for any X € TM,

p¥ (r(X)) =Y E, Ndlg(n(X), E,) — 203 (n(X)) + 2(tr 1g)ls(w(X).
(5.19)

N | =

Hence we have the following proposition.

lg

Proposition 5.5 If M admits a non-zero spinor ¥ with V ® = 0, where
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o = e_%ullf, then |®| is constant and for any vector field X
1
VW = Sa(X) - grady (u) - ¥ + gX(u)\IJ lg(m(X) -0, (5.20)

X(tr lg) = (divels)(X), (trig)? = iav 1l (5.21)

lg lg

Proof. Since V is metrical, |®| is constant. Moreover, V & = 0 is

equivalent to
Vx® + lg(7(X))® = 0. (5.22)
From Proposition 3.11 and (5.22), we have that for & = e~ P
1 1
Vx® = §7r(X) -gradyg (u) - © + §X(u)<b —ly(m(X)) - D, (5.23)
which gives (5.20). The proof of (5.21) is similar to the one in Proposition
5.3. O
By direct calculation together with (3.18), we obtain the following

lemma.

Lemma 5.6 For any vector field X € I'Q and any isomorphism [, we

have
(divgl)(X) = (divgl)(X) + ¢ go(l(X), grady (u)) — X(u) tr I, (5.24)
where V is a Levi-Civita connection with respect to go = e*gq.
On the other hand, we have that for any ® = e~ and any X € I'Q
(divyls)(X) = e”*{(divole)(X) — go(lu(X), grady(u))}.  (5.25)
From (5.24) and (5.25), we have

(divgls)(X) =™ {(divele)(X) + (¢ — go(le(X), grady (u))}
—e " X(u) tr ly.

(5.26)

Comparing with (5.21) and (5.26), we have the following corollary.
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Corollary 5.7 If M admits a non-zero spinor ¥ with V ® = 0, where
b = e*q;zlulIJ, then for any X € I'Q

X(tr ly) = (divele)(X) + (¢ = Dgo(le(X), grady (u)).

Let D, W = AU with A\? = 1 (p1 +infy/ |&|?) +infyy |[lg]?. From (4.24) and
q—1

(4.35), we have that for & = e~ "2 “WU

1
4

p1 + i]r\14f |k|? + 41]1\}[f lw|? =sup i]r\14f(62“KUv + 41y ]?)
= sup inf(e**KY + 4|1y |?) (5.27)
uek, M

o 2u 1~V 2
—1]r\14f(e K} +4|ly]?).

By (4.23),

o

Vo=0, i]réf(e?“Kf) M eQqu, |ly| = constant. (5.28)
From (5.28), we have

sup inf(e?KY) = sup (e**KY). (5.29)
UGICu M 'U«EICu
From (5.29), we have
sup inf{h~'Y,h} +inf |k|? = sup {h"'Y,h} + |x|%. (5.30)
ueky, M M uEKy
From (5.27) and (5.30), we have
pp = sup inf{h"'Y;h}, |k|= constant. (5.31)
UEICu M

From (4.19) and (5.21), we have

p1 + i]r\14f Kk|? = e* o V. (5.32)
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From Lemma 4.13, we have that for u € K,

e*oV =0 +2(q— 1)Apu+ (¢ — 1)(2 — q)|grady (u)|?. (5.33)
From (4.33), (5.32) and (5.33), we have

; 2 _ : 2u, VY _ : -1 _
w1+ 1]r\14f |k|* = us;l%)u 1]r\14f(e oV) = us;l’a 1]‘n4f{h Yoh} = . (5.34)

From (5.34) we get
. 2
1]r\}[f k| = 0. (5.35)

This implies that |k| = 0, i.e. F is minimal. Hence we have the following

theorem.

Theorem 5.8 Let (M, gy, F) be a compact Riemannian manifold with
a transverse spin foliation F of codimension q > 3 and bundle-like metric

gri- Assume that an eigenvalue X of Dy, corresponding to the eigenspinor

U satisfies
1
2 1+ - 2y 2
N = 4(u1 +1]1\14f|/<a| )+1]I\l/[f|l\p| :

Then |ly| is constant and the foliation F is minimal. Moreover

(dively)(X) = (1 = q)gq(lv(X), grady (u)) (5.36)
for any X € I'Q.

Proof. The equation (5.36) is trivial from corollary 5.7. O
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