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Computed tomography
Complete electrode model
Electrical impedance tomography
Extended Kalman filter
Expectation maximization

Finite element method
Interacting multiple model
Kalman filter

Kinematic model

Linearized Kalman filter
Multi-layered neural network
Magnetic resonance imaging
Norm distinguishability

Power distinguishability
Gauss-Newton UKF

Gaussian random variable

Root mean square error
Unscented Kalman filter
Unscented transform

Ultrasound tomography
Weighted multi-layered neural network
Parameters in FEM
Regularization parameter

Scaling parameters in UKF
Conductivity

Resistivity

Basis function for 7'th node in FEM

Truncated Fourier coefficients to be estimated (& =x,y)
Unit normal

Frequency

Permittivity

Permeability

Model transition probability between 7th and 7’th model.
Model probability

Mixing probability between 'th and j'th model
Basis function in Fourier coefficients approach
Parameter for generation of trigonometric current patterns

Cost functional

Object to be imaged

Boundary of the object

Total number of front points to be estimated
Characteristic function of the subregion A,
Sigma points

Augmented measurement noise covariance matrix



A Magnetic vector potential, Stiffness matrix

A k regions in the domain Q

b Unknowns to be solved in FEM

B Magnetic induction, Component of stiffness matrix

C Component of stiffness matrix, Open boundary

c Augmented covatiance matrix

C, Boundary of £-th region in the domain Q , Error covariance matrix
d, Front points to be estimated

D Electric displacement, Component of stiffness matrix

e /th electrode

E Electric field, Measurement pattern

f Force vector containing current patterns

F State transition matrix

I Current through the /th electrode at p'th pattern

J Jacobian, Current densitity

Ao Components of current density

K, Kalman gain

L Total number of electrodes

L. Characteristic distance

L, Likelihood function

Ly Regularization matrix

M Measurement matrix, Total number of FEM elements

N Sparse matrix used in FEM, Total number of variables to be estimated
N, Number of nodes in FEM

N, Number of regions in the domain Q

N, Number of models

N, Number of sigma points

Ny Order of Fourier series

P Number of current patterns

P (X;,Y) Discrete front points located on the boundary

O, R, Process and measurement noise covariance matrices

R Radius of pipe

R Pseudo-resistance matrix

S Number of phase boundaries

u(x),u Potential distribution inside an object

u" Finite element approximation of the potential distribution
u" Finite element approximation of the voltages on the electrodes
U Boundary voltages calculated from the forward solver

U, (d), U (%) Forward solver

Wyes Vi White Gaussian process and measurement noises

w w© Weighting matrices for mean and covariance

% Vector of measured voltages on all electrodes

x* Augmented state vector

Z Contact impedance between electrolyte and /th electrode
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Introduction

INTRODUCTION

Flow of a mixture of two fluids in pipes is of great interest to researchers. The liquid-gas or
liquid-vapor mixtures are encountered in condensers and evaporators, gas-liquid reactors,
and combustion systems (Holand and Bragg 1995, Perry ef a/ 1997). In some cases, the
transport of materials is accomplished by making a slurry of the solid particles in a liquid and
pumping the mixture through a pipe. Liquid-liquid mixtures are encountered when dealing
with emulsions as well as in liquid-liquid extraction. An example could be two-phase flow
that can occur under normal and accidental conditions in various processes such as heat

exchange, steam power generation, and oil or natural gas pumping systems.

@] O O O C ) ( G D)
O o WOt
Bubble Flow Plug Flow
/\/_\
Stratified Flow Wavy Stratified Flow
_/\J oy Ol=r of 40, O
06°0%°0°%0
Slug Flow Annular Mist Flow

Figure i. Different flow regimes observed with varying velocities in
liquid-gas flow.

Another example is the flow of two immiscible liquids in pipelines that are of particular
interest in many engineering applications. As a typical example, liquid hydrocarbons
transported in pipelines over a long distance (for example, crude oil, gasoline, diesel) often
contain free water (Fairuzov 2000). Knowledge of the binary mixture flow is important in the
design and operation of such systems. As the heterogeneous phase affects the safety, control,
operation, and optimization of the process, it is important to know the phase boundaries
online without disturbing the flow fields. For the visualization of two-phase flow, various

tomography techniques with noninvasive and nonintrusive characteristics have been
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developed, for example, gamma densitometry (Shollenberger e¢f a/. 1997), ultrasonic imaging
(Xu et al. 1997) and nuclear magnetic resonance imaging (Gladden and Alexander, 1996).
Electrical impedance tomography (EIT) has been used quite often in the medical field as an
alternative to X-ray imaging, computetrized tomography (CT), gamma camera, magnetic
resonance imaging (MRI) and ultrasound tomography (UST). Some of these techniques are
expensive and even cause adverse health effects. EIT, therefore, has been employed to
investigate two-phase flow phenomena (Jones ¢f a/. 1993) because it is relatively inexpensive
and has good temporal resolution. However, it suffers from poor spatial resolution as it has
diffusive and soft-field characteristics and this needs to be improved. At the same time, the

data acquisition time in EIT is fast which makes it more suitable for fast transient processes.

In EIT, an image of the conductivity or permittivity of part of the body is inferred from
surface electrical measurements. Typically, conducting electrodes are attached to the
periphery of the subject and small alternating currents are applied to some or all of the
electrodes. The resulting electrical potentials are measured and the process is repeated for
numerous configurations of applied current. Image reconstruction in EIT is a kind of
nonlinear optimization problem in which the solution is obtained iteratively through forward
and inverse solvers. The physical relationship between the internal conductivity and surface
voltages is governed by a partial differential equation with an appropriate boundary
condition. It is, in most cases, impossible to obtain an analytical solution for the forward
problem so a numerical technique such as the finite element method (FEM) is employed.
Reconstruction algorithms for EIT can be classified into two categories. Hirstly, the so-called
static imaging techniques are used for the case where the internal conductivity of the body is time
invariant within the time taken to acquire a full set of measurement data (Yorkey ¢f a/. 1988).
Therefore, these static imaging techniques often fail where there are fast impedance changes.
In the other category, there are the so-called dynamic imaging technigues, which have been
introduced to enhance the temporal resolution for situations where the conductivity
distribution inside the body changes rapidly. In these dynamic approaches, the temporal
resolution can be improved by a factor of p (p is the number of current patterns in a
conventional frame). The reduction in current patterns is also made possible by the analysis
of current patterns to use only the optimal current patterns in a dynamic scenario. With
regard to optimal current patterns, Isaacson (1988) showed that the best current patterns to

distinguish a central concentric inhomogeneity inside an otherwise homogeneous circular
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conductor are trigonometric current patterns. Gisser ¢ 4l (1988) compared the
distinguishabilities by using adjacent, opposite and cosine current patterns on a circular
conductor model without a centered circular target and showed that the maximum cosine
current equal to the current injected with the opposite or the adjacent electrode is the
optimum current pattern. Newell ez 2/ (1988) showed that cosine current patterns can
distinguish smaller inhomogeneities as compared to when opposite and adjacent current
patterns are used. It is generally known that opposite current patterns are optimal if the total
current (sum of the amplitude of the injected currents) is kept constant. With or without
using the optimal current patterns (usually the first two modes of cosine and sine patterns),
many dynamic techniques were developed in which the inverse problem is treated as a
nonlinear state estimation problem and the time-varying state is estimated with the aid of a

linearized Kalman filter (LKF) (Vauhkonen 1997, Vauhkonen e a/. 1998a).

Related work on phase boundary estimation using electrical impedance tomography

Having laid the foundation for two-phase flow estimation and dynamic imaging, a special
class of EIT inverse problems is discussed hereafter in which the position and shape of the
objects in the domains are unknown and to be identified, while the conductivities of these
objects are known « priori. There are two types of such problems for binary mixtures
according to the topology of the boundary to be estimated: open boundary problems in
which the object domain can be divided into two disjoint regions which are separated by an
open boundary and closed boundary problems, in which the anomalies are enclosed by the

background substance and which are used in this study.

Open boundary estimation problems with EIT have been examined by Butler and
Bonnecaze (2000) and by the Kuopio group (Tossavainen e a/. 2004, 2006). In Butler and
Bonnecaze (2000), an open channel filled with conducting liquid was considered and open
boundary was imaged with EIT data measured by an array of electrodes at the bottom of the
channel. In a two dimensional domain, the height of the liquid and the boundary shape are
variable with respect to the horizontal Cartesian coordinate. The boundary was
parameterized with Chebyshev polynomials, whose coefficients are the unknowns to be
estimated and are embedded implicitly in the coordinate transform from the irregular domain
to a square grid. In Tossavainen e a/. (2004), a pipe which is partially filled with water is
considered and has a void region with zero conductivity. The unknown open boundary is

parameterized using the mesh nodes and through the coefficients of a Bézier curve. The void
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region is excluded from the computational domain and the domain boundary varies during
the run of iterative inverse solutions. As a consequence, the mesh nodes have to be
recalculated at the end of every iteration. It was further assumed that the outermost nodes,
excluding those that were present in the free surface, were fixed. Furthermore, the end points
of the open boundary are fixed which is not desirable. Recently, Tossavainen ez 4/ (2006)
proposed improved method for the free surface and admittivity (both conductivity and
permittivity) estimation. They used a fixed computational domain without excluding the void
region and introduced a constraint to enforce the open boundary to be confined within the
object domain. By using this constraint they can eliminate the undesirable fixed-ends

assumptions.

—
|
=]
B ]
=
N I . . (
O R
Figure ii. Desired phase boundary estimation system using

electrical impedance tomography.

As for closed boundary problems, Han and Prosperetti (1999) considered a shape
decomposition technique based on the boundary element method where the boundary of
cach target was represented in terms of Fourier coefficients rather than a point-wise
discretization. Kolehmainen e @/ (1999) developed an algorithm to recover the region
boundaries of piece-wise constant coefficients of an elliptic partial differential equation
(PDE) from boundary data for the application to optical tomography, which is also
applicable to EIT (Kim e# /. 2004). For an optimal solution of the Fourier coefficients, a
Newton-type method is employed, which is usually time consuming although it shows good
performance in many optimization problems. However, its limitation is the slow convergence
rate which has an adverse effect on mixture flows undergoing fast transient changes. Jeon e#

al. (2005) estimated the Fourier coefficients with the use of a multi-layered neural network
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(MNN) because of its conceptual simplicity, fast online calculation, ease of implementation,
ability to control the compromise between the noise treatment and spatial resolution and
most importantly, it does not require linearization of the problem (use of first derivative i.e,
Jacobian). The neural network used was backpropagation neural network which is regarded
as a universal approximator. At the same time, Kim ez 2/ (2005) used the exact expression of
Jacobian and tested it successfully with experimental data. Kim ez /. (2006a) improves the
performance by considering weighted multilayered neural networks (WMNN), each working
together with a different sigmoid function. Since the higher modes of Fourier coefficients are
more sensitive to noise so Kim ez 2/ (2006b) proposed the use of front points in polar
coordinates to estimate the closed boundary. The proposed scheme lacked analytical Jacobian
and, therefore, perturbation method was used to estimate the Jacobian matrix. Because of a

lack of Jacobian, Kim ¢# a/. (2006¢) used the WMNN to estimate the front points.

Overview of the thesis

In this thesis, the 2D circular geometry in EIT is considered and Kalman-type reconstruction
algorithms are applied to estimate dynamic changes in phase boundaries. The Kalman filter is
an efficient recursive filter that estimates the sfae (see Gelb, 1974) of a dynamic system from
a series of incomplete and noisy measurements. Kalman filtering is an important topic in
control theory and control systems engineering and is modelled on a Markov chain,
traditionally built on linear operators perturbed by Gaussian noise. In this thesis, the state of
the system is represented as a vector of real numbers and represents the variables that model
the phase boundary. In order to use the Kalman filter to estimate the internal state of a
process given only a sequence of noisy observations (voltage data in this case), one must
model the process in accordance with the framework of the Kalman filter. Therefore, in this
thesis, finite element method is used to model the process. To date, there exist many
variations of the basic Kalman filter (which was essentially based on a linear assumption).
However, since most nontrivial systems are nonlinear, therefore, the nonlinearity is adopted
in Kalman filter (either in the process model or with the observation model or with both)
and hence many implementations appeared over the years. Therefore, in this thesis different
types of Kalman-type filters have been investigated that can be used as inverse solvers for
phase boundary estimation in electrical impedance tomography. These different
implementations are evaluated based on simulated and experimental data. The thesis consists

of six chapters.
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In Chapter 1, the FEM solution of forward problem using complete electrode model is
discussed. After the derivation of FEM solution, the forward solver is modified as a set of
coefficients representing the boundary shapes. Two different region boundary
representations are used: representation of closed boundary with truncated Fourtier
coefficients; and representation of open boundary with discrete front points. The Jacobian
matrices are derived for both cases. In Chapter 2, the extended Kalman filter is used to
recover the front points that represent the interfacial boundary in stratified flows of two
immiscible liquids. The results are shown with varying measurement noises, front points and
contrast ratio. Additionally, an analysis of current injection protocol is given which is helpful
in limiting the number of current patterns to be used in the inverse solver. Chapter 3
introduces interacting multiple model scheme as an inverse algorithm for the recovery of
front points and consists of banks of extended Kalman filter each using different process
noise covariance model. Chapter 4 discusses different kinematic models for extended
Kalman filter. These kinematic models are constructed using first- and second-order Markov
models. Four different kinematic models are considered to estimate the shape of air bubbles
in conducting medium. Chapter 5 introduces unscented Kalman filter as an improvement
over extended Kalman filter. The unscented Kalman filter is based on the unscented
transform which is used as a method to propagate mean and covariance information through
a nonlinear transformation thus precluding the need to use the jacobian. Chapter 6 considers
the Gauss-Newton measurement update in the unscented Kalman filter which improves the

performance due to iterative nature of the measurement update.
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Chapter 1

1 FORWARD PROBLEM
1.1  Complete electrode model

The behavior of the electromagnetic fields in the domain Q c R? is described with

Maxwell’s equations. The equation can be written in the form

VxE:—a—B (1.1)
ot

VxH:J+ég (1.2)
ot

where E is the electric field, H is magnetic field, B is magnetic induction, D is electric

displacement, and | is electric current density.

If the injected currents are time-harmonic with frequency w, the electric and magnetic field

can be written in the form
E=FEe™ | B=Be™ (1.3)

In addition, it is assumed that the domain € consists of linear and isotropic medium, and so

the following relationships hold

D=¢E (1.4)
B=uH (1.5)
J=0E (1.6)

where € is permittivity, # is permeability, and O is the conductivity of the medium.

Using the relations (1.4), (1.5), and (1.6), assuming that the injected currents are time
harmonic and canceling out the oscillatory exponential, the equations (1.1) and (1.2) can be

written in the form
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VXE=—-iouH (1.7)
VxH =J+iweE (1.8)

Furthermore, the current density is divided into two components J=J’+J’ where

J°=0FE is the so-called ohmic current and J® denotes the current sources. Thus,

equations (1.7) and (1.8) can be written in the form
VXE =—-iouH (1.9)
VxH =(c+iwe)+J* (1.10)

In EIT some simplifications for these equations are made. The first one is the assumption of

static conditions. This means that from the exact detivation of E |

A
E=-Vu-> 1.1
== )

where u is the electric potential and A is the magnetic vector potential, the later is neglected

if it holds that (Nunez 1981)
wuoL, (HEEJ <1 (1.12)
o

which means that the effect of magnetic induction that causes the induced electric field is

neglected. Here, L. is a characteristic distance over which E varies significantly. Another

approximation quite often used in EIT is that the capacitive effects iWEE in (1.8) is

neglected using the approximation (Nunez 1981)

E<<1 (1.13)

With the above approximations the modified Maxwell’s equations in linear, isotropic medium

under quasistatic conditions are

E=-Vu (1.14)
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VxH=GE+]* (1.15)

Taking the divergence on both sides of equation (1.15) and substituting (1.14) into (1.15) the

equation

V.(oVu)=0, xe Q (1.16)

for EIT inside the body is obtained. This is true since in the frequency range in EIT J* =0
inside the body.

There are variety of boundary conditions that can be used in EIT. The most successful of
them has been the complete electrode model (CEM) in which the boundary conditions take
into account both the shunting effect of the electrodes and the contact impedances between

the electrodes and the medium. The boundary conditions for the model can be written as

M+Z,Ga—u=V1,xee,,l=1,2,...,L (1.17)
v
Ju
ja—dS:I,,xee,,l=1,2,...,L (1.18)
o Qv
L
aa—”=0, xe dQ\( Je (1.19)
dv I=1

where e, is the /th electrode, z; is the effective contact impedance between the /th electrode

and medium, V, are the potentials on the electrodes, /, are the injected currents, V is the

outward unit normal, and L denotes the number of electrodes. Additionally, in order to
ensure the existence and uniqueness of the solution u, the following two conditions for the

injected currents and measured voltages are needed

>1,=0 (1.20)

—_

3V, =0 (1.21)

10
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1.2 Finite element discretization of the complete electrode model
In this study, the solution of the forward model is based on FEM. Hereafter, the FEM
approximation shown for the model has been derived based on Vauhkonen ¢z 4/ (1998b) and

considering Somersalo ¢f a/. (1992).

Figure 1.1. The FEM mesh with location of electrodes marked
with darkened elements

The variational (Galerkin) formulation of the problem is used in the FEM which is also called
the weak form of the problem. Using this approach, the continuous form of the problem is
turned into a discrete formulation using the method of finite elements. In the FEM, the

solution domain Q is first divided into small elements which in this study are triangles
(Figure 1.1). The vertices of the triangles are called nodes. Let N, be the number of nodes in

the finite element mesh. The potential # within the object is approximated as
Ny
u=u"(x)=) a@,x) (1.22)
i=1
and the potential on the electrodes represented as

L-1
U'=> pBn, (1.23)
Jj=1

11
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where the function @, is the two-dimensional first-order basis function and the bases for the

measurement are 7, =[l,—1,0,...,O]T , N, =[l,0,—l,...,0]T, .. € R", etc. That is, the

potentials U] on the electrodes are obtained as

P L-1
U1 = Zﬂl
=1
Ué’ = _,Bl
Ut =-p, (1.24)
U[}f = _,31471

This can be written in the matrix form as

U'=NB (1.25)
where Ne R”“™ is a sparse matrix such that
1 3 F
=1~ 0 0
N=(n,ny,...,n; _)=| 0 -1 0 (1.26)
O P72

The choice for n;’s ensures that the condition of equation (1.21) is fulfilled. The linear

equation obtained from the finite element formulation Ab = f is constructed such that

o
b= RNJ+L—1 1.27
5 -
_ B ) (T:N c RWar LN+ (1.28)
(CN)’ N DN
5 0
e e Mot (1.29)
N'I

12
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where 0=(0,...,0) e R™ , [=(, ~I,,], - I,....I, - 1,) e R, a=(a,....at, ) and

B=(B,.... 5, )" . The elements of the system matrix A (Vauhkonen, 1997) are

L
. 1 .
B(z,J):J.QoV(pi.V(pjdr+]Z;Z—Ll pedS, i,j=L2,...,N, (1.30)
=1 £
1 1 i=12,..,N,
Ci,j)=—|—| @dS— ds |, 1.31
j (Zle .. j PR (1.31)

|
D, jy= 2~ ()i(n)),ds
] 1

=1

le, | 2
~ 4 l?f]
2
= 1 i, j=12,...,L—1 (1.32)
|el| |ej+1| r
_+ S :]
4 Zj+|

where | e, | is the measure (length) of the /'th electrode.

1.3 Representation of region boundaries

In this study the recovery of sufficiently smooth region boundaries is considered. The
assumption made is that the conductivity profile is known @ priori, but the information about
the geometry and shape is missing. This leads to a nonlinear and ill-posed inverse problem in
which the coefficients representing the boundary shape are the unknowns to be estimated.
Therefore, the forward solver has to be modified as a set of coefficients representing the
boundary shapes to the data on dQ . Two types of boundary regions are considered: closed
boundary and open boundary (also known as free surface) as illustrated in Figure 1.2.

Lets assume that the region € is divided into disjoint, simply connected domains A,

a=|]A (1.33)

13
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@ ()

Figure 1.2. Examples of smooth region boundaries: (a) regions
with closed boundaries; and (b) open boundary between regions.

where k=0,1 for open boundary representation and up to N, regions exist in closed
boundary representation. Assuming the region boundaries in closed boundary strategy is

represented by C, and in open boundary by C , denoting by g, (r) the characteristic

function of subregion A, , we can write

=Y 0.2 (1.34)

k=0

By substituting (1.34) into (1.30), we obtain

N, L
: 1
[ 7)) = VoVo. == XoR .
CUDED N WAL pidr+3 |, 208 (1.35)

k=0

where supp(¢,¢;) is the part of domain Q where both the basis function ¢, and ¢; are non-

zero. The implementation of the integrals of the form (1.35) has been desctibed previously

in Kolehmainen ez a/. (1999) and Tossavainen e al. (20006).

In the first step, the mesh elements Q,, are classified to sets of elements inside the region
A, (k=0,1) and to the set of elements intercepted by the boundary C, . For the elements that

lie in the region A, they are assigned their corresponding conductivity values o, , however

14
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for the elements that lie on the boundary C,, the area weighted conductivity values are

assigned as (IKolehmainen ¢f a/. 1999)

Figure 1.3. A schematic representation of FEM element £,

intercepted by the phase boundary C;(s) .

_ 0,5, +t0,8S,

i e (1.36)

1.3.1  Phase boundary representation with discrete front points
Let us suppose a stratified flow of two immiscible liquids through a circular pipe of radius R
as shown in Figure 1.4. The open boundary between two immiscible liquids is approximated

as an interpolation with discrete front points P;, A=1,2,...,A, located on the boundary. The
total number of the front points is A. P, and P, are the leftmost and rightmost front points,

respectively, ie., they are on the outer boundary of the object. The front point is

parameterized in terms of d, . For the front points inside the object (1=2,..,A-1), d, is
simply defined as the vertical distance from the corresponding reference point (x;,0) located
on the central horizon and the cootrdinate of P, is (X,,Y;)=(x;,d;), where the reference
points are predetermined and known. For the end front points, on the other hand, d,
cannot be defined in the same manner. Instead, d, and d, are defined as the path lengths

along the outer boundary from the reference points (x,0)=(-R,0) and (x,,0)=(R,0),

15
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respectively. With this definition, both end front points are confined to the outer boundary.

In essence, the front points are expressed in terms of d, , the parameter to be estimated:

(X..Y)= —Rcosﬁ,Rsini
R R

(XZ’Y/l):(‘x/l’d/l)) 122,...,/\—1 (1.37)
(X,.Y)) :(Rcos%\,Rsind?Aj

The unknown parameter is then written in the form
d=(d,.dy,...d\)" e R™ (1.38)

1.3.1.1  Calenlation of Jacobian

In order to complete the procedure to estimate the unknown state variables d, ,
(A=1,2,...,A), the Jacobian should be formulated. In some cases, the voltages are measured
only at some selected electrodes, not every electrode. Also, the selected electrodes may be

different at each current pattern. The measured voltages at the measurement electrodes U

can thus be obtained as
U=M"U"=M"NBe R (1.39)

where E is the number of the measurement electrodes, P is the number of current patterns,

and M e RYF is the measurement matrix. The element M (I, p) is set to ‘1’ if the /th

electrode is measured at the p'th current pattern and otherwise set to zero. Furthermore, U”"

can be extracted directly from b by introducing the extended maping matrix N,
N =(0,N)e RPMe* ™D and U" = Nb (1.40)
where 0e R Therefore, we have

U=M"U"=M"Nb=Mb=MA"I (1.41)

16
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where the extended measurement matrix is defined as
M =M"N e REWNarLD) (1.42)
If the pseudo-resistance matrix defined as
R=A""M" e RNHDE or AR=MT (1.43)

is given we can calculate the Jacobian matrix. The pseudo-resistance matrix can be easily

obtained by the solution of the system equation
A(R b)=(M" T (1.44)

or

A@z Z] B [NSM N(;f] (149
where
R, =R(:N,,))e RY*E and
R, =R(N;,+1:N, +L~1,)e REDE (1.46)

The Jacobian 9U /ad; (A=1,2,..,A) will be

W g A - 94, (1.47)
o, o, 2,

due to the symmetry of the stiffness matrix A. In A, the matrix B is the only term

dependent on d; and the Jacobian will be

a 5 R r a_B 0 a_Ba
_Uz—(J] ad, [“j:—(é{ R} od,
ad; R, 0 0 s 0

17
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(1.48)

__f 9B,
ad,

W front points
d, parameters to be estimated
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Figure 1.4. Problem representation: (a) description of interface
with front points; (b) mesh elements above the interface are

assigned O, ; (c) mesh elements below the interface are assigned

0, ; (d) mesh elements lying on the interface are assigned area
average conductivity values assigned using equation (1.36); and (e)
final conductivity values at the end of assignment.

From (1.37) the derivative dB/dd, is written as

9B 0B 3X, OB Y, Y, 9B X, 9B
R 9V,

dd, 09X, ad, Y, ad, R oX,
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9B _ OB

— =, A=2,.,A-1 1.49
od, oY’ (1.49)

9B _ Y, OB X, 0B

ad, ROIX, R oY,

Since we are considering a stratified flow of two immiscible liquids with distinct electrical

properties, so the matrix B will be

L
. 1 .
B, )=, ar‘[ArV(pi.V(pde+;Z—lLlgoi(pde, i,j=12....N, (1.50)

r=lu

where the subscripts / and u denote the lower and the upper region, respectively (see Figure

1.4). The derivative dB/dd; can then be obtained as

OB _ . B(X;+0X,.Y,+8Y))~B(X;.,)

ad, " 6d -0 od,
. (0-1 -0,)
= lim — 2 Vo.V.dQ .
g 3 Y Jonea, VOV (1.51)

miQ, csupp(¢,9;)

Assuming that the interface C is represented by a set of piecewise linear interpolation

functions:

A
Cx)= S,(0xxX,,,X,), xe[X;,X,] (1.52)
i

where

Y,-Y . .
Sl(x)=ﬁ(x—Xl_l)+Yl_l, A=2,...A and g(x,X,,,X,;) is a unit pulse defined for
2~ X
xe[X,,X,;]. An arbitrary small perturbation of dd; results in a small perturbation 6X,; in

X, and 6Y; in Y, , which will cause a small change in the interface for xe[X; ;, X ;1.

3Cy(x) =88, () 7(x, X1, X,) +O0(5?)
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5C(x) =88, ()1, X ;1. X ) +88 1, ()X 2(x, X ;. X ;) +0(5%), A=2,...A-1

(1.53)
SC\(x) =S\ () (X, X ;. X 4)+0(5%)
where
551()6):[_M§X1+§Yl]x_—xll’ xel[X, .X,]

1~ X4 X;—X4

Y,.,—Y X;.1—x
88 =|-——&L_2 §x 46y, | 2L X, X 1.54
241 (X) [ XX, 27t AJ /1+1—X,1’XE[ 2> X 41l ( )

Now let us consider the evaluation of expression (1.51) for interface-crossing meshes Q,,

such that Q,, < supp(9,)):

_f £(x)dQ (1.55)

lim
8d; =0 0d y #5ANR,

Figure 1.5. Perturbation in the interface when the interface-
crossing mesh does not contain any front points (left) and when

the mesh contains (X ;,Y;) (right).

where f(x,y)=V@,.Vg,;. For a small perturbation in d;, only P;(x) and P, (x) will change

(see Figure 1.5) and the above expression will be
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lim —— , y)dQ
5[11;20 od, I A, NQ, FGxy)

. 1 X4, CH+oC,
lim — j
8d;—»0d, 2 X5 IC

J (x, y)dydx (1.56)

The function f(x,y) can be expanded about the interface C(x),

Flx.y) =f<x,c>+gi (y=C)+0(5) (1.57)

y=C

Inserting (1.57) into (1.50), finally we have

lim — ,y)dQ
5dlﬂm—>0 od, J.rFAmﬂm Fx)

:_1{Y2 h )’1+ij f(xC) X dx, for A=1

R X, X,

X; X4 i —X
- o md + 2O gy for =2, ALT
J.Xﬂflf( ) X)—X4 I & )X/m X,

1 Y/\ YA 1 } /\ 1
——| AT Ay 4 x S C).—dx for A=A (1.58)
R(XA XA 1 a J. A XA 1

There are five types of interface-crossing elements when Y, is perturbed by an arbitrarily
small perturbation of dY,;. Assume that there are only two intersections of the interface and
the mesh faces and the intersections are denoted as (x,y) and (x,,y,) where x <x, .
Recalling that f(x,y)=V¢; -V, is constant in a certain mesh, the integration for each type

will be evaluated as

Xom o &0 (n-X,)
Type 1. f(x,0) [ =241 gy = 1.59
” XJ;I =X 2 X=Xy (%
Dpez f(x C)J' ;l dx = f(J;,C) (X2 _Xxl—l ;jl__)iﬂ—l)(x2 _xl) (160)
1 -1
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X, X
o)l | =Xt gy [ Kan =X
SX, Xy Xpu—Xy
Type s 1 : (1.61)
_f(xO (Xa =X +5-X,)(X;-x) N (Xap1 =X+ X 00— X,) (x5, —X,)
2 X;=X4 X=X,
: - X=X+ X0 — -
’lj/pe 4. f(x, C)J‘ Xﬂﬁ-l X dx = f(x9 C) ( A+l T X2 + A+l xl)(XZ xl) (l62)
y Xan—Xa 2 X=X,
X a1 _ X, . - 2
Dpe 5 f(x, C) I Xﬂ+l X dx = f(x’c) ( A+l xl) (163)
X=Xy 2 Xpu—X

(X .Y, +6Y))

Pra ()
Pi(x)

Figure 1.6. Five types of interface-crossing elements in case of an

arbitrarily small perturbation of 0Y, in ¥ .

1.3.2 Phase boundary representation with truncated Fourier coefficients
In the case where a sufficiently smooth inhomogeneity is enclosed by a surrounding medium,

truncated Fourier series can be used to represent the phase boundaries {C;,/=1,2,...,S} as

n=1

xl(s)] & 726, (5)
C(s) = = ,1=12,..5 1.64
/(9) (YI(S) Z(yny, &) (1.64)

where Ny and S denote the order of truncated Fourier series and the number of phase
boundaties, respectively, and 6,(s) is the periodic and smooth basis function. In this thesis

we express both coordinates of the curve as the truncated Fourier series with respect to the

curve parameter s, that is, we use basis function of the form
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%

05 _, =sin(2nxs),, n=1,2,...

05 =cos(2nzs) , n=1,2,...

=1

(1.65)

where se[0,1], and & denotes either x or y. Furthermore, using the expansion of equations

(1.64) and (1.65), the boundaries {C;} can be identified with the vector y of the shape

coefficients, that is,

1.3.2.1  Calenlation of Jacobian

X, y 3 y 3 ), 2AN,
7:(7,1,...,7,{,'5,;/{‘,...,71{/;,...,;/N;,;/,>A,...,7[{,2)eR o

(1.66)

The Jacobian is defined as the relative change of the measured voltage at the /th

measurement electrode at the pth current pattern (U/) with respect to the change of the #'th

coefficient of the £'th boundaty (7%, =x,y), thatis

oU;
J@pa,{n Zﬁ (167)
ot in the matrix form
U} ou!  aU! oU! oU} Ul aU! U,
N’ iy, N 7N, Ik 97 IR~ I
U}, UL aUL UL, UL, UL UL UL,
ot a7y, N 97y, ayx 97 9K~ 7
J=| E ' I ' E ' : (1.68)
our our oaut our our our Ut our
ont a7y, N 97y, ayx 97 9K~ 7
U’ Ul ouf ou? ou? Ul oUf U’
K" o7y, 9%’ 97N, anx 7N, On* I

The Jacobian matrix can be obtained from the derivative of the system of equation
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5 -1
8U :M Bb :M 8 (A_li)_MBA i
ah aym gy P
-1
A LA oA
oy oy oy
v :_MA—la_Ab:_((A—l)TMT)Ta_Ab:_(A—lMT)Ta_Ab
oy Iy oy oy

(1.69)

In the last equality, (A™")" =A™ is used because of the symmetry of the stiffness matrix. If

the pseudo-resistance matrix defined as

R=A"'"M" e RWHIXE or AR=M"

(1.70)

is given, we can calculate the Jacobian matrix. The pseudo-resistance matrix can be easily

obtained during the solution of the system equation

or

where

R =R(:N,;,)e RYF and R, =R(N, +1: N, + L—1,)e REE

The derivative of the system matrix with respect to the coefficients is

(28
aA = o
7 Lo o

(1.71)

(1.72)

(1.73)

(1.74)
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Figure 1.7. Perturbation in the interface.

where
0B _ B(x, + €7, vi) — B, vi)
o &% e
1
T limy O'oj(‘)dQJFUkI(')dQ—UOJ.(')dQ_UkI(')dQ
205 A A 4 A
1
=lim ;| % [ (ae+o, [ ()d@-0, [ ()d@-0, [ (-)d0
207 | A+oA A +SAF Ay+SAF A +SAL
(o, —0y) (o, —0y,)
“lim— [ (4)dQ=jim——== > [ (a0
£->0 SAF—SA; £-0 mlQ,, €supp(4,¢;) SANQ,,

T lim > j V4, -V,dQ (1.75)
Va0 miQ, €supp(6,8;) 54, NQ,,

where supp(¢¢;) denotes the part of the domain © where both basis functions ¢, and ¢; are

non-zero. That is, > 0A, NQ, 1s the union of the elements crossing the
mlQ,, € supp(¢,9;)

boundary of 4,. A, and C, denote the £'th region and its boundary after the perturbation
(see Figure 1.7), respectively. Also, A, =4, NA, , SA =A —A, , SAf =A —A, and

JA=5A -5A.
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In order to obtain the Jacobian, let us consider the evaluation of the expression

im~ | feyde (1.76)

20 54,nQ,

We define a new coordinate system (s, p) where s is the positively oriented coordinate along

the closed cutve C,,and p is the coordinate outward normal from the region A,

m . Exk(s>j+ p£§<s>j _ (m)J 177
S Yk (S) 77(S) y(s)
The perturbed boundary C, will be
%, () f(s)] [fck (s)) -
- =C, (s 1.78
~ [ykm]”[n(s) 5e(sy) =+ (79

Figure 1.8. Coordinate transformation.

Therefore,

a(x,y)

. 1 . 1 ¢s, £
lim- | f(x,y)dQ:hI}(f)l; L:SIJP:O f(xy) dpds (1.79)

-0 SA MR, £

a(p,s)

The Jacobian for the transformation of the coordinates will be
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a.x ax é& dx df
v 2 ax, pde
a(x.y) _|9p s ds ds . . . .
) - =¢(i+pi)-n(i+ 1.80
ap os ds ds

The dot denotes the derivative with respective to s . The function f(x,y) can be expanded

about the boundary C,

P
Fix y)=f(p,s):f(0,s)+£ p+0(p?) (1.81)

p=0

We have

.1 '
lim= | fxydQ

-0 0A,NQ,,

S2 £ . af
y jp_ol £(0,s) +$

|
=lim— ).
-0 £ L p=0

p+0(p2)][§(y+ pﬁ)—n(ﬂpg’)}dpds (1.82)

=J':;1 £O,5)(Ey—nx)ds

In this, f(0,s) is evaluated at the boundary C,. When differentiating with respect to 7 ,
that is perturbing 6;(s) , we have £=6,(s) and 7=0 . On the other hand, when

differentiating with respect to 7,*, we have £ =0 and 7 =8] (s). Finally, the derivative of the

matrix with respect to the coefficients becomes

oB

= —(0,-0y) J’;‘vawjl e T (98, (s)ds (1.83)
el miQ, e B(COnsup p(g) " Bk
aB 5 . y
—=—(0, —0)) > [ve-v9| _ 58 (s (1.84)
97" mig, € BICnsup p(dig) ! Fy=
where
B(C,)={9Q,,1Q, nC, #0} (1.85)
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denotes the set of elements crossing C;. If V@,-Vg;, %, (s) and j, (s) are ¢
mesh, we have

onstant in each

oB

Iyt

oB
a ka

n
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Figure 1.9. Fourier coefficients mapping to conductivity profile:

©

®

(a) FEM discretization of the domain; (b) boundary represented by
Fourier coefficients; (c) mesh elements belonging to target are

assigned 0 ; (d) mesh elements belonging to the background are

assigned O, ; () mesh elements lying on the interface are assigned

area average conductivity values assigned using equation (1.30);
and (f) final conductivity values at the end of assignment.
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Finally, from (1.69) and (1.70), the Jacobian will be obtained as

0 (R[22 0 L 3B

o ~ ~ ~
=—| 1| | oy [ ]:—RT Ry )| oy* |=-R/ o 1.88
e (RJ s (& &) ' '3 (1.88)

where R € RVe | Be ®RVoNe and ave RV,

1.4  Current injection methods

In all the EIT systems, the currents are injected and voltages are measured instead of the
other way around due to the fact that the contact impedance has negligible effect on voltage
measurements since voltmeters have a large input impedance whereas ammeters have very
small input impedance (Vauhkonen 1996). There are different types of cutrent injection
protocols that produce the most uniform sensitivity and therefore the most accurate images
(discussed in Chapter 2). Perhaps the most widely used data collection method is the so-
called adjacent method in which the current is injected through two adjacent electrodes and the
voltage differences are measured from all other pair of electrodes. The adjacent method
produces nonuniform current densitiy since most of the injected currents travels near the
boundary. This has a low sensitivity in the center of the object. Another method is the gpposite
method in which current is injected through diametrically opposed electrodes. The voltages are
measured with respect to one reference electrode adjacent to the current electrode. The
advantage of the opposite method is the more uniform current density and hence good
sensitivity. A combination of the above two methods is called eross method. In the context of
this thesis, the so-called #rzgonometric current patterns (Isaacson 19806) are used most of the time

in which the current through the /th electrode at p'th pattern is

- _{10 cos(pg), p=12,.,L/2 (1.89)

| Iysin(pg),  1,2,..,L/2-1

where ¢, =2z1/L . These are the best current patterns to distinguish a central circular

inhomogeneity inside an otherwise homogeneous circular conductor.

1.5 Performance evaluation criteria
In this thesis, root mean square error (RMSE) is used to evaluate the performance of

different approaches. It is a frequently-used measure of the difference between values
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predicted by a model or an estimator and the values actually observed from the thing being

modeled or estimated. The RMSE for the parameter o, RMSE, , is defined as

RMS, Ed — I destimated — dtrue (190>

Wd,,.

true

The RMSE for the parameter y, RMSE, , is defined as

RMSE7 - I Vestimated ~ Virue I (191)
|

The RMSE for the boundary voltages, RMSE,, , is defined as

nu,.. _
RMSE, = emlnlu;}gd

lﬁmeas ” (1.92>

meas
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Chapter 2

2 DYNAMIC INTERFACIAL BOUNDARY ESTIMATION USING
EXTENDED KALMAN FILTER

2.1 Optimization problem for boundary parameter estimation

In this chapter, we lay down the foundation for open boundary estimation problem to find
the parameter d minimizing the measured and the calculated boundary voltages in a
minimum least square sense. The EIT problem needs regularization due to its ill-posedness
and hence the objective functional to be minimized is expressed as

1

e=_IU ~U(d)IP +a—2RIILR(d—d*)I|2 2.1

meas

where U,,,, denotes the measured boundary voltage data, a is a regularization parameter,

meas

Ly is a regularization operator, and d* denotes the referenced parameter vector.

2.2 Extended Kalman filter model

The estimation of the interfacial boundary in stratified flows of two immiscible liquids is
considered and it is natural that the interfacial boundary varies continuously during the time
taken to collect a full set of independent EIT measurement data. If the interface deforms
significantly within the data collection time for a single frame of image, the image
reconstruction performance will deteriorate and the conventional static image reconstruction
will not be applicable. In order to enhance the temporal resolution of EIT, Kalman filter
approaches have been widely accepted (Vauhkonen ¢f o/ 1998a, Kim e# al. 2001, Trigo et al.
2004). The unknown conductivity distribution or boundary shape is regarded as state
variables, and then the EIT problem is transformed into a state estimation problem. In this

work, the front point locations are treated as state variables, which are tracked by EKT.

We are considering the estimation of the parameter d € R*' of a discrete-time controlled

process that is governed by the linear stochastic difference equation
dy = Fydiy + vy 2.2

with a measured voltage V e RE that is
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V, =U,(d)+v, 2.3)

where the subscript k is the state index, F, € R™* is the state transition model and U, is the
observation model. E is the number of measurement electrodes. The random variables
w, € R and v, e R® denote the process and the measurement noise, respectively. They

are assumed to be independent of each other, white and with normal probability distribution
pw) ~ N(O,Qy) 2.4
p(v) ~N(QO.R) (2.5)

where Q, e R™* and R, e R¥** are the process and the measurement noise covariances,

respectively. We linearize the observation model about a prior: state estimate at step k, dyy_;:

U,
V, =Up ) ¥ =5 (dy, —dyp_y) +v, + HOT
ad, J
klk—1
=Vipa T+ (dy —dyy ) +v + HOT (2.6)

where Vi_, =U, (dy) is the a priori measurement estimate. The higher order terms are

denoted by ‘HOT". The Jacobians J, € R¥** will be defined as

=2k @7)
kg,
Let us define the pseudo measurement equation y, € R
Vi =Vi U (dpp) + iy = Jidy +vy (2.8)
where ¥, € R” is the pseudo measurement noise
vy =v, + HOT 2.9

with zero mean and known covariance R, € R®*
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E[v,1=0 and R, =cov(v, + HOT) (2.10)

The second equality in equation (2.8) is from equation (2.6). The a priori state estimate at step

£ given knowledge of the process up to step £-7, dy;_;, and the pseudo measurement

estimate at step £, y, will be

dyg = Eld V yi 1= ELF L diy + Wi Ly 1= F L Eldg 1y ]

=Fdi i &
Vi = Elyp Vdi 1= ELdi +V, Vdi 1= idyyy 212
The predicted error e, , € R" and its covariance Cy,_, € RV will be
€1 = Ay —dyy = B + Wiy (2.13)
Crit = COV(ey) = By G iy + Qi (2.14)

Let the updated state estimate d;, be the state maximizing the probability density d, given

Yk >
P(dklyk)'“p(dklyk—l)p(ykldk) (2.15)

or can also be represented by minimizing the following functional that corresponds to the

exponent of the probability density function

1 _
D(dy) = E(dk —dy ) Coia (dy —dygyy)
1 ~_
+2 00 =dd) R O =iy (2.16)

= %"dk —dy "CQL +%"Yk —Jid "15[1

where |x, =x"Rx. In this, regularization should be considered in the construction of the

functional as given in (2.1)
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1 1
@(d;) = E"dk — "CQL +5")’k —Jydy ",};1 +a_2R||LR (dy —d™) @17)

If we define the augmented pseudo measurement y, € RET and the augmented pseudo
gm p Yk gim p

XA

observation matrix H, € RE* a5

(2.18)

. Yk
Y N Lpd *

Jd
H, :{ k( k|k—1)] 2.19)

Jarty

then the cost functional can be arranged as
1 |
¢(d/():E”dk _dk|k*l ”C[J;I(,] +E“ Vi _de/( ”1—‘;1 (2.20)

The augmented measurement model can be written as
Vi = Hid + 7 2.21)

R(E+A)><l

where the augmented measurement noise ¥, € is assumed to be zero-mean and its

covariance [y e RE™*EY s 3 block diagonal matrix defined by
T, = Blockdiag[R, 1, ] (2.22)

if R, is a diagonal matrix. Then, by differentiating ®(d,) with respect to d, and setting it to
zero the procedure to estimate the state variable is established and the procedure is

summarized as follows:
Step 1. Predicted (a priori) state

dyi1 = Feadiiea (223)

Step 2. Predicted (a priori) error covariance
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Crtkmr = OV(€yr) = Fioy Compmr Fiy + Qi (2.24)
Step 3. Predicted measurement error
& = Vi = Yk = Ve —Hpdpy (2.25)
Step 4. Predicted measurement error covariance
S, =cov(g,)=H,Cy,_ H] +T, (2.26)
Step 5. Kalman gain
K= Cklk—lHkTSl:l 2.27)
Step 6. Updated (a posteriori) state
A = dppy + K& = dpyy + Ky (3 =Hypdyyy) (2.28)
Step 7. Updated (a posteriori) error covariance
Crn = (I — Ky Hy )Cklk—l (2.29)

2.3 Numerical results for front points

For the verification of the proposed model, numerical experiments have been conducted. It
is assumed that a stratified flow of two conducting immiscible liquids with distinct electrical
properties flows through a cylindrical pipe of diameter 28cm. The pipe is equipped with 16
electrodes of width 2.5cm each around its periphery. The conductivity of each region is

assumed to be known and initially set to 1/(600Qcm) for the upper region and 1/(300Qcm) for

the lower region.

As for the regularization, we simply use the standard Tikhonov method where L =17e R™
and d*=0. Proper choice of the regularization parameter a; is a very difficult problem.

While there are rational ways to choose the regularization parameter (e.g. L-curve), the so-

called trial-and-error method may have practical significance (Lionheart 2004). In this work
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ay is chosen a posteriori by trial-and-error method. The regularization parameter depends on

the noise level of the measured boundary voltages.

The state transition model equation (2.2), F, in the Kalman filter approach should be
deduced from the dynamics of the state variables, the shape of the interfacial boundary in the
present problem. In general, however, prior knowledge on the flow dynamics is often
unknown unless flow variables are sufficiently available to estimate the flow dynamics.
Therefore, this work adopts the so-called random-walk model in which F, =1, € R™* . In the
simulations, the covariance matrices of the process noise Q0 and the measurement noise R
should be predetermined and are listed in Table 2.1. Also the initial covariance of the
predicted error Cyoe R is set to I, e RM* . If the process model is known, then the
covariance Q can be estimated. However, the true process model is not known « priori and
this parameter should be determined by trial and error. The measurement noise covatiance
R can be estimated if the measurement noise and the discretization error in the FEM model
are given. Furthermore, the linearization error should also be included in the pseudo
measurement noise covariance R in equation (2.10). So, it does not seem to be possible to
determine R quantitatively. The usual way to select the magnitude of R is the trial-and-etror
method. Quantitatively, however, the magnitude of R depends on the boundary voltages,
namely the system resistance, so that the covariance R tends to increase as the system

resistance increases.

The data collection method plays an important role in better image reconstruction. A multi-
referenced current injection pattern is recommended to achieve good sensitivity for arbitrary
unknown conductivity distribution (Webster 1990). In this context, a detailed design of the
data collection method for stratified flows would be an interesting topic. As reported in
Tossavainen ¢ al. (2000), the use of reference electrode located near the interfacial boundary
and the concentration of electric currents on the boundary will enhance the sensitivity
significantly. Since this work is concerned with the reconstruction of a moving boundary, it is
assumed that the boundary varies significantly within the time taken to acquire the full set of
current-voltage data to obtain a single image in the framework of the conventional static
EIT. In the case of trigonometric current injection with 16 electrodes, 15 current injections
and voltage measurements are used for a single static image. The present simulation assumes

that only four current injections and voltage measurements are available when there is no
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change in the shape of the interfacial boundary, whereas for static image reconstruction, the
entire independent current patterns of 15 should be used. In the trigonometric pattern (1.89),

the sensitivity decreases as p increases, therefore, only the first two patterns each of sine and
cosine patterns (p=1,2) are used for better sensitivity. Here, it is worth mentioning that an

optimal design of the data collection method for the estimation of the interfacial boundary in

stratified flows under transient is an interesting topic which we will discuss shortly.

In the numerical experiments, two different types of mesh structures are used to avoid the
inverse crime. The simulated experimental data are calculated by discretizing the cross-
section of the flow area into 2088 triangular meshes with 1109 nodes, while for the image
reconstruction a slightly coarser mesh structure with 1968 triangular elements and 1049
nodes is used. When the synthesized data are generated, on the other hand, the interfacial
boundary is described with the cubic spline. In the image reconstruction, the interfacial
boundary is approximated with piecewise linear interpolation functions. The use of different

descriptions of the interface will support the freedom from the inverse crime.

Table 2.1. Parameters for the extended Kalman filter for scenatio
1 when the contrast ratio is 2:1.

Noise
1% white Gaussian 2% white Gaussian 3% white Gaussian
Parameters . , )
Noise Noise Noise
0 0.011, 0.011, 0.011,
7 2001, 4001, 6001 ;
Cono Iy Iy Iy
(273 0.0001 0.01 0.01
Table 2.2. Parameters for the extended Kalman filter for scenario
1 for various contrast ratios with 1% noise.
Contrast Ratio
Parameters 5:1 10:1 100:1 1000:1
(0] 0.011, 0.011, 0.017, 0.017,
R 5001 3x10°1, 4x10°1,;  5x10°1,
Cop I, I I, 1501,
ag 0.0001 0.0001 0.0001 0.0001
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Table 2.3. Parameters for the extended Kalman filter for scenario
2 when the constrast ratio is 100.

Noise
1% white Gaussian 2% white Gaussian 3% white Gaussian
Parameters . . .

Noise Noise Noise
0 0.011, 0.017, 0.017,

R 9x10*1,, 10x10%1, 11x10%1,,
Coo 0.017, 0.017, 0.017,
(27 0.00001 0.0001 0.0001

We consider a scenario (scenario 1) in which the interface fairly flat in the beginning varies
with time and becomes wavy eventually. The left and right end points of the interfacial
boundary are not fixed and should be estimated by the inverse solver. The interface is
estimated with seven front points. Numerical experiments have been conducted with various
number of front points: five onwards and increasing by two. It was found that front points
not less than 11 tend to deteriorate the image reconstruction performance and that seven is a
good choice. Scenario 1 consists of 30 frames of images and the evolution of the interface is

depicted in Figure 2.1.

Figure 2.1. Description of the interfacial boundary movement in
scenario 1 where the left part of the interface is moving up and the
other part is moving down. The left profile describes the true
(solid line) and the guessed (dotted line) initial boundary,
respectively. The right profile shows the evolution of the interface.

The reconstructed interfacial boundaries are obtained with synthesized data contaminated by
white Gaussian noise of levels 1%, 2%, and 3%, respectively. The numerical values used in
the simulation are reported in Table 2.1. It is assumed that the interface is stationary during
the time taken to inject four current patterns and to measure resultant boundary voltages.
However, in the reconstruction, five states per single frame of image are used. The additional
fifth state is updated based on the first cosine pattern in (1.89), and is repeated in the
reconstruction. Namely, five consecutive states are estimated with five current patterns

cos(g;), cos(2g)), sin(g;), sin(2¢;), and again cos(s;). In the present numerical experiments,
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the scenario consists of 30 frames of images, which means that 120 current patterns are
injected and 120 boundary voltage sets are measured. So the number of states evolved for

each scenario is 150.

Figure 2.2. Description of the interfacial boundary movement in
scenario 2 where the interface is initially neatly flat and two ripples
grow with time. The left profile describes the true (solid line) and
the guessed (dotted line) initial boundary, respectively. The right
profile shows the evolution of the interface.

In terms of the temporal resolution, the presented image reconstruction algorithm is very
advantageous. The temporal resolution of the process tomography depends on the number
of measurements required to get a single frame of image and the measuring time for each
measurement. For example, in static imaging with a 16-electrode system, a trigonometric
method using all modes of sine and cosine functions injects 15 patterns and then the time
resolution is 157, where 7 is the time taken to inject the currents and measure the induced

boundary voltages.

Figures 2.3-2.5 show the reconstructed interfacial boundary for scenario 1, in which 1%, 2%,
and 3% white Gaussian noises are added to the simulated voltage measurement. As can be
observed in the figures, the reconstruction performance of the proposed algorithm is fairly
reasonable except in eatly states corresponding to the first and the second frames of the
image where the improper initial guess affects the reconstruction performance. In fact, it is
highly unlikely to guess the initial interface and hence higher RMSE values for the parameter
d in the case of the early states are quite probable. The RMSE values as states evolve are
plotted in Figure 2.6. The RMSE for the boundary voltages, RMSE;, , is presented in Figure
2.6 as well. The reconstructed images of Figures 2.3-2.5 and the RMSE values of Figure 1.4
indicate that as the level of measurement error increases the reconstruction performance
worsens. In the above scenario, the resistivity constrast is set to 2:1. Higher contrast might be

adverse to the reconstruction performance and would be more probable in real applications.
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Figures 2.7-2.10 show the reconstructed results with the contrast ratios of 5:1, 10:1, 100:1,
and 1000:1. The contrast ratio of 1000:1 may be considered as a binary flow of conducting
and non-conducting liquids (Tossavainen ¢f /. 2006). The measurement noise is set to 1%.
The reconstruction performance for higher resistivity contrasts is similar to the case of
contrast ratio of 2:1 although the RMSE values for the contrast ratio of 1000:1 are some
what greater than those for lower contrasts especially during the early evolution states as
reported in Figure 2.10. It should be noted that the pseudo measurement error covariance R
should be increased to obtain converged results as listed in Table 2.2 since the system

resistance increases with the contrast ratio, while other parameters remain unchanged.

For the second scenario (scenario 2) a rippled interface is considered. The contrast ratio is set
to 100:1. The scenario considers a more complex interface and higher contrast ratio than
scenario 1. The movement of the interfacial boundary is depicted in Figure 2.2. The interface,
initially flat, is continuously varying with time and two ripples grow. Finally, the interface
becomes double humped. Since the shape of the interface is much wavier compared to
scenario 1, more front points are required to descrbe the interface and 10 evenly spaced
front points are used. Also, the whole evolution is segmented into 280 image frames to
ensure convergence. The image reconstruction with 30 frames adopted for scenario 1 was
unsatisfactory and in order to determine the convergence was checked by increasing the
number of frames. The increase in the number of image frames means that the interface
should change less during two consecutive data collections. This may be ascribed to the
increase in the number of front points to be estimated. The parameters used for the EKF
model are listed in Table 2.3. Compared with scenario 1 with contrast ratio of 2:1 (see Table
2.1), larger pseudo measurement noise covariance matrices are used since the contrast ratio is

increased to 100:1.

The reconstructed images are successfully compared with the true interfaces in Figures 2.12-
2.14, in which the images are reconstructed every four frames. It should be noted that more
deviation in the interface estimation is observed near the centre. Such deviation may explain
why the centre region is less sensitive than the periphery for the usual EIT image
reconstruction. Figure 19 shows the comparison of RMSE values. For the RMSE for
boundary voltages, the trend according to the change of noise level is similar to that of

scenario 1 with the contrast ratio of 2:1. However, the RMSE, for scenario 2 tends to be
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somewhat smaller than that for scenario 1. Recalling that the parameter 4 is measured from

the centre, this difference is due to the definition of RMSE, . In scenario 1 the interface is

near the centre while for scenario 2 the interface is rather remote from the centre.

2.3.1  Optimal current injection protocol

In the dynamic EIT, one or only a few current injections are available and a proper selection
of the cutrent injection pattern is very important to obtain better reconstruction
performance. In the conventional ERT, it has been known that the opposite method is
effective in reconstructing the target near the center, while the adjacent method is good for
the target near the periphery (Webster 1990). Also, the multi-referenced method like the
trigonometric pattern is widely accepted as a good choice for an arbitrarily located target. In
case of the estimation of the open free boundary, however, since the interface where the
conductivity change occurs is located across the domain it is required that the conventional
current patterns are compared and optimal current injection protocols should be designed.
Therefore, the focus of this paper is to reduce the number of current injections in the inverse
problem. Since, EKI is used as an inverse solver, therefore, it is also suggested to repeat the

measurements in the iterative process to have a better estimate of open free boundary.

In order to find which current pattern is more sensitive to detect the interface, the
distinguishability analysis is presented. Distinguishability can be defined as a measurement
ability to differentiate between homogeneous and inhomogeneous conductivities inside the
domain (Isaacson 1988). The distinguishability can be described in terms of norm and power.
Power distinguishability is defined as the measured power change between the homogeneous
and inhomogeneous cases, divided by the power applied in homogeneous case (Cheney and
Isaacson 1988). The expression for norm distingusihability (N.D.) and power

distinguishability (P.D.) in mean square sense is given by

2

- |
E U -U
— meas,| homo,l
D.= | ==

ZIL=1|II|2

(2.30)

L L
5 Vit =3 Ul
_ 1=1" homo,l"1 1=1 "~ meas,[ "1
P.D.= . (2.3D)
zlzluhamo,lll ‘
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Figure 2.3. Reconstructed images for scenario 1 with 1% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.4. Reconstructed images for scenario 1 with 2% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.5. Reconstructed images for scenario 1 with 3% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.6. Comparison of (a) RMSE, and (b) RMSE;; with
1%, 2% and 3% of noise.
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Figure 2.7. Reconstructed images for contrast ratio of 5:1 with 1%
noise. The solid line represents the true interface and the dotted
line represents the estimated interface.
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Figure 2.8. Reconstructed images for contrast ratio of 10:1 with
1% noise. The solid line represents the true interface and the
dotted line represents the estimated interface.
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Figure 2.9. Reconstructed images for contrast ratio of 100:1 with
1% noise. The solid line represents the true interface and the
dotted line represents the estimated interface.
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Figure 2.10. Reconstructed images for contrast ratio of 1000:1
with 1% noise. The solid line represents the true interface and the
dotted line represents the estimated interface.
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Figure 2.11. Comparison of (a) RMSE,; and (b) RMSE;, for
scenario 1 with contrast ratios of 5:1, 10:1, 100:1, and 1000:1.
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Figure 2.12. Reconstructed images for scenario 2 with 1% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.13. Reconstructed images for scenario 2 with 2% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.14. Reconstructed images for scenario 2 with 3% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.15. Comparison of (a) RMSE,; and (b) RMSE;, for

scenario 2 with 1%, 2% and 3% noise.
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where U Ujomos and I, denotes the /th measured voltage in the inhomogeneous

meas,l >
phantom with target, /th measured voltage when current density j, is applied in the

homogeneous phantom with no target, /th current applied at the /th electrode, respectively.

For the assessment of different current patterns, numerical experiments have been
conducted. It is assumed that a stratified flow of two conducting immiscible liquids with
distinct electrical properties flows through a cylindrical pipe of diameter 28cm like in the
previous section. The pipe is equipped with 76 electrodes of width 2.5¢m each around its
periphery. The conductivity of each region is assumed to be known and initially set to

1/(10000Qcm) for the upper region and 1/(100Qcm) for the lower region. We consider a

movement of the interfacial boundary of a stratified two-phase flow shown in Figure 2.16.
The interface is approximated with 10 front points. It is assumed that the movement is
snapshot with 120 frames of images and a few current injections are available during each
frame. The relative noise level is set to 1% in terms of white Gaussian noise. The
reconstructed images are shown in Figure 2.17 with various current injection protocols
presented in Table 2.4. From the visual evaluation of the reconstructed images given in
Figure 2.17, it can be noticed that trigonometric method with first 2 modes of cosine and
sine show better reconstruction performance compared with other current patterns. The
comparison of RMSE values for voltage and front points 4 are shown in Figure 2.18. Based
on the comparison, trigonometric method with first 2 modes of cosine and sine has better
performance than the other current patterns. Comparison of norm distinguishability and
power distinguishability is given in Figure 2.19. Trigonometric method with first 2 modes has
higher distinguishability throughout the domain in comparison to the other current injection
protocols. From the Figure 2.19, it can be established that triconometric method with first 2
modes of cosine and sine current patterns and cross method with electrodes near the

interface are the most appropriate current injection protocols for front point approach.
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Figure 2.16. Description of the interfacial boundary movement
where the interface is initially nearly flat and two ripples grow with
time. The left profile describes the true (solid line) and the guessed
(dotted line) initial boundary, respectively. Location of electrodes
are also shown. The right profile shows the evolution of the
interface.

Table 2.4. Current injection protocols used

Current Injection

Protocol No. Ty

1 Trigonometric method with first 2 modes of cosine and sine
(4 injections; 5 BEKF states with repeated use of the first cosine)

2 Opposite method with el-e9 and e5-¢13 pairs (2 injections; 5 states with
repeated use of el-e9, e5-¢13, el-¢9)

3 Cross method with e3-e7, e5-el3 pairs (2 injections; 5 states with
repeated use of e3-¢7, e5-¢13, e3-¢7)

4 Opposite method with e3-el1, e7-el5 pairs (2 injections; 5 states with
repeated use of e3-el1, e7-e15, e3-ell)

5 Opposite method with e3-el1, e7-e15, e5-e13 pairs (3 injections; 5 states

with repeated use of e3-ell, e7-el5)
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Figure 2.17. Reconstructed images for scenario 3 with 1% noise.
The solid line represents the true interface and the dotted line
represents the estimated interface.
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Figure 2.18. Comparison of (a) RMSE,; and (b) RMSE,, for

scenario 3 with different current patterns.
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Figure 2.19. Comparison of (a) N.D. and (b) P.D. for scenario 3
with different current patterns.
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Chapter 3

3 NONSTATIONARY PHASE BOUNDARY ESTIMATION USING
INTERACTING MULTIPLE MODEL SCHEME

For application of interacting multiple model scheme (IMM), we consider the undetlying
inverse problem as a state estimation problem to estimate the nonstationary phase
boundaties in the domain. It is assumed that the conductivity values of the objects are known
constants. It is also assumed that the problem has been discretized with respect to the time
variable. In the state estimation problem, we need the so-called dynamic model which
constists of the state equation, that is, the evolution of the boundaries, and the observation

equation, that is, the relationship between the boundary vector and measured voltages.

Firstly, consider the state evolution model. In general the evolution of the boundary vector

for front points d is related by the following nonlinear mapping:
diy1 = & () +wy (3.1

where d, is the state vector (the boundary representation) at the time kT, g, is a function
(g :R* > R") defining the state transition from time kT to (k+DT , where T is the
sampling period (measurement interval between successive patterns), and w; is assumed to

be white Gaussian noise to compensate for the modelling uncertainties. Here, the state

equation is assumed to be of linear form with different process noise:
di = Fe iy vy (3-2)

where F, e R™ is the state transition matrix at time kT and i=1,2,...,M , where M is the
number of different models. Here, we take F, =1, (the identity matrix). Then equation (3.2)

becomes the random-walk model in which the rate of time evolution is governed by the

different covariance matrices, defined by
0} = E[w, w)"] (3.3)

Next, consider the observation model. Let V, € R” | as defined as
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V.=V V2. vET (3.4)

be the actual surface measurement voltages induced by the £&'th cutrent pattern. Then the
relationship between the boundary vector and measured voltages can be described by the

following nonlinear mapping with a measurement error:
Vi =U(dy) +v; (3.5

where U, is a function (U, :R* - R*) defining the relationship between the boundary

vector and measured voltages for the £'th current pattern. The measurement error v, € R” is

assumed to be white Gaussian noise with covariance
R, = Elvy1{ | (3.6)

Linearizing (3.6) about the predicted (time-updated) states of the 7th model d},_,, which will

be described later, we obtain
Vi = U (diyy) + i (i) -(dy, —djyy) + HOT +, 3.7)

where ‘HOT’ represent the higher order terms which are assumed to be additional white

Gaussian noise and J; (dj,_;)€ R is the Jacobian matrix defined by

Y / U
JACT A ) 2= ts h
k Qi1 od d=d}y_,

Then the following linearized measurement equation is obtained:
Ve =i @) i + 9 3.9)

where v, € R” is composed of the measurement error and linearization error with known

covariances as
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R, = Evv/ ] (3.10)

3.1 Extended Kalman filter
In Kalman filtering we estimate the state vector d; for each model based on all the

measurements taken up to the time k7 . With the Gaussian assumptions, the required
estimate is obtained by minimizing the cost functional which is formulated based on the
above state and measurement equations (3.2) and (3.9), respectively. The cost functional for

the extended Kalman filter (EKF) is of the form

P 1 i i i i i i
D' (dy) = E[” di —dpo “(c;;‘,{,l L W yie =T (dyy1)-di ”EE] (3.11)

+a | Ly (dy —d*) 1]

where Il xIl, denotes x" Ax, ap and Ly e R are the regularization parameter and matrix,
respectively, d* is an a priori guess for the boundary representation and Cjy,_, € R™ is the

time-updated error covariance matrix, which is defined by
Cetkr = ENdj ~diy)(dy = diy)" ] (3.12)

The first two norms in equation (3.11) refer to the weighted norms, having as weighting
matrices the inverse of the covariances. The third them on the right-hand side of equation
(3.11) is the regularization term which is included to mitigate the ill-posedness of the givern
inverse problem. We used the generalized Tikhonov regularization under a smoothness
assumption in constructing the regularization matrix (Lg), with the regularization parameter

o chosen empirically.

c R<E+A)

If we define the augmented pseudo-measurement 3 and measurement matrix

H,i c RE+HAXA

y Vi

= 3.13

Yk [MLRCI’* ( )
i ]Ii(dll;lk—l)

H, = 3.14
; [ 2Ly (3.14)
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then the cost function (3.11) can be rearranged as
i g0 1 i i ~i i gi
@' (d}) =S ldf ~djyy gy o + 155~ Hidf ] (3.15)

where T, e RE™XEY s 3 block diagonal matrix defined by
T, = Blockdiag[R; 1] (3.16)

Minimizing the cost functional equation (3.15) and solving for the updates of the associated
covariance matrices, we obtain the recursive extended Kalman filter algorithm for each

model, which consists of the following two steps (Gelb 1974):
® time update (prediction)
dioye = Fedjy (3.17)
Cromn = FClue (F)" + Q4 (3.18)

® measurement update (filtering)

KIiH = C£+1|k (H£+1 )T[HII;HCII;H (Hli+l toocr Ly I 3.19)
di i = Do * Kios Gt — Hindis i) (3.20)
Cli+1|k+1 =, - Gli+1H1i+l)Cli+llk (321)

Hence, we can find the estimated state d}, for model i fork =0,1,2,...,K ( K =rp), where K
is the final step for iteration, p is the number of independent current patterns and r is the
number of classical frames. The most striking feature is that the Kalman filtering technique is
an online recursive form in place of the offline batch form of the back projection or
modified Netwon-Raphson algorithm. Therefore, there is no need to store the past

measurements in order to estimate the present state.
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3.2 Phase boundary estimation with IMM algorithm

The particular behaviour of the IMM algorithm demonstrated in this application also sets it
apart from other applications. Although the general idea underlying the IMM algorithm is to
combine multiple models in order to decide which model gives the best fit with the
measurements, what is specific to this application is that these models only differ in their rate

of evolution (different process noise covariance matrices are considered here).
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Figure 3.1. One-cycle flow diagram of the inverse solver with the
IMM algorithm.

The IMM algorithm is composed of an estimate mixer at the input of each model-
conditioned filter, a bank of the EKFs running simultaneously, a model probability evaluator
and an estimate combiner at the output of the filters. The flow diagram of the IMM
algorithm for 1 cycle is depicted in Figure 3.1. The multiple models interact through the
mixing to estimate the time-varying boundary representation. With the assumption that the
model transition is governed by an underlying Markov chain, the mixed estimate to each
filter is obtained based on the model probabilities and the model transition probabilities. In
the filtering stage, each EKF uses a mixed estimate and a voltage measurement to compute a

new estimate. The model probabilities are evaluated based on the model transition
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probabilities. Finally, the overall state estimate is computed in the form of the weighted sum
of the new estimates and their model probabilities. The mathematical details of the procedure

are as follows (More details are given in Blom and Bar-Schalom (1998), Mazor ¢f a/. (1998))
Step 1. set the initial condition for dyy, Ciyo, 4y, 7, Q'(G,j=1.2....N,) and R.

Step 2. mixing (interaction) of the estimates

The mixed initial condition for the /th filter can be computed as

® mixing estimate
NWI
o @ i ilj
dyjf =2 i (3.22)
i=1
®  mixing covariance

Nm . . ! 9 s oo
Cﬂi — z[cllclk +(d?|i —dyy )(dﬂ{, —dyy )T]ﬂilj (3.23)

i=1

where d)) and C}/ represent the mixed state and etror covariance, respectively. For the

input of the jth model-conditioned EKF. 2/ in equations (3.22) and (3.23) is the mixing

probability (the weight with which the estimates from the previous circle are given to each

filter at the beginning of the current cycle), defined by

1 _ 1 i
W ==mh (3.24)

J

where the normalizing constant ¢; is calculated by

Ny .
¢j = 2Tt (3.25)
i=1

where 7; is the assumed Markovian transition probability from model i to model j, which

is defined by
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ﬂ_ij EPI’{Mij |M;(}, VMi,Mj eM?’ (326)

whete Pr{.} is probability and M is the event that the i th mode is in effect at sampling time

k and M* is the set of all possible modal states at all times.
Step 3. model-conditioned filtering

Two states of the model-conditioned EKF can be summarized as
® time update (prediction)

di iy = Fedyi (3.27)
Lo = FCol (B +0] (3.29)

® measurement update (filtering)

Kkj+l I kj+llk (HIZH )T(Skjﬂ )-1 (329)
1 1 O R N (3.30)
Clg+llk+1 - (I/{ - Glg+1H1£+l)CI{+llk (3-31)

RAXE+A)

where G/, € is the Kalman gain at time (k+1)T . The residuals and their covariances

are defined as

el =Vl —Hludl 3.32)

4 o -
St =H{ L, Claw (H) +Ty (3.33)

where pseudo-measurement j/,, and covariance matrix T, are given by equations (3.13)

and (3.10), respectively.

Step 4. model probability evaluation
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e likelihood function

. 1 1 o
L =—===expl-5 (e.) (S{)e] (3.34)
J271S)
® model probability update
il g 3.35
His _;Lk+lcj 3.35)
where
Nm 0
=Y LT (3.36)
i=l1
Step 5. combination of estimates
® overall state estimates
Ny - v
dpsen = de]+uk+1ﬂif+1 3.37)
=
e overall error covariance estimate
NIYI
. . . .
Ck+||k+| = Z[Clg+llk+l +(dk+llk+l _d1g+llk+l)(dk+llk+l _dl\{+llk+l) J/u/g+l (338)

J=1

3.3 Numerical results for front points

In order to evaluate the estimation performance of the IMM scheme, computer simulations
were carried out for the front points approach with the evolution model shown in Figure 3.2.
Here the circular domain of diameter 28cm is considered around which 16 electrodes of
width 2.5¢m are mounted. While generating the data, the conductivity of each region is
assumed to be known and is set to 1/(10000Qcm) for the upper region and 1/(100Qcm) for
the lower region. The standard Tikhonov method is used as regularion method with

regulatization matrix Ly =7e R™* and ay =0.01, respectively.
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Figure 3.2. Evolution of the boundary interface.

The FEM mesh and current injection patterns are same as considered in the previous
chapter. The only difference is a faster evolution model. We have considered a total of 200
patterns whereas in the previous chapter a total of 1400 patterns are considered for 10 front

points. A faster evolution model will affect the reconstruction performance and that is where

IMM algorithm will become handy.

In the design of the IMM algorithm, three (N, ) extended Kalman filters with different

process noise covariances were used. For simplicity, the covariance matrices were assumed to

be time invariant and diagonal; the process noise covariance matrices for EKF1, EKF2 and
EKF3 were set to Qp =0.051,, Of =0.031,, and Q} =0.01/, , respectively. Two simulations
were considered with varying measurement noise. The covariance matrices for the
measurement noise R, for all EKFs were set to 8x10*I, when there is 1% white Gaussian
noise and 9x10*7, when there is 2% white Gaussian noise. For comparison purposes, the
same measurement data that is used with IMM is then separately used with each EKF. The
initial values of the error covariance matrices (Cgyp,i=1,2,3) were set to be 0.017, . In the
IMM, the Markov chain transition probabilities 7; are assumed to be 0.8 for i=; and 0.1

for i # j. In general, the final results were not vey sensitive to these parameters (e.g., 7; can

be between 0.8 and 0.99). As can be expected, the lower (higher) values will yield less (more)

error during transient intervals but more (less) error during quiescent periods. The initial

model probabilities ( 4, =1,2,3) were set to % .

The reconstruction results for 1% noise are shown in Figures 3.3-3.5. From these

reconstructed phase boundaries, it should be pointed out that estimation performance of the
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single EKF depends heavily on the magnitude of the process noise covariance in the
random-walk model. It is difficult to choose an appropriate process noise covariance mattix «
priori in EKF since we have no information on the evolution of the phase boundary. The
fourth column in Figure 3.3 shows the reconstructed phase boundaries obtained by the
proposed IMM-based scheme. As can be seen, the IMM yields better estimates than the
individual EKFs. Although three dynamic models were used in the design of the IMM, one
can have flexibility in choosing the number and parameters of the dynamic models. The
model probability (z,i=1,2,3) of each single EKF employed in the IMM is depicted in
Figure 3.4. As can be seen, the model probabilities of the IMM scheme switch rapidly since
each EKF has its own dominant interval and the IMM decides which model gives the best fit
with the measurements. In this case the EKI2 is dominant throughout, while the EKF1 is
significant for some intervals. The reconstruction results for 2% noise are shown in Figures
3.6-3.8. The results are similar to the first simulation and the visual quality of the
reconstructed boundaries from the IMM approach (4th column of Figure 3.7) is enhanced as
compared to that of the boundaries of each of the EKFs. Also, EKF2 is dominant in all the
intervals. Another advantage of IMM approach can be seen by analyzing the RMSE,
comparison in Figures 3.5 and 3.8. It can be seen that RMSE, is significantly lower for IMM
scheme as compared to individual EKFs. An interesting thing to note here is that even
though IMM favors EKF1 over EKF3 (Figure 3.7), RMSE, is lower for EKF3 than EKF1
when run separately (Figure 3.8). This can happen because in IMM the input to each EKF is
obtained as a result of mixing of state and covariance estimates, therefore, the performance
of EKF1 is different when embedded in IMM and when used separately. However, on the
average, IMM performs better than the individual EKTs.
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@ () © (d)

Figure 3.3. The reconstructed phase boundaries for 1% noise. The
true boundaries are solid lines and the reconstructed boundaries
are dotted lines: (a) boundaries reconstructed by the EKF1; (b)
boundaries reconstructed by the EKF2; (c) boundaries
reconstructed by the EKF3; and (d) boundariers reconstructed by
the IMM.
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@ () © C)

Figure 3.6. The reconstructed phase boundaries for 2% noise. The
true boundaries are solid lines and the reconstructed boundaries
are dotted lines: (a) boundaries reconstructed by the EKF1; (b)
boundaries reconstructed by the EKF2; (c) boundaries
reconstructed by the EKF3; and (d) boundariers reconstructed by
the IMM.
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Chapter 4

4 KINEMATIC MODELS FOR NONSTATIONARY ELLIPTIC
REGION BOUNDARIES

In this chapter, kinematic models for dynamic electrical impedance tomography shape
estimation of regions of known conductivities based on extended Kalman filter. The interest

lies in the estimation of shape of air bubbles and conductive liquid in the industrial pipelines.

A\ @

Figure 4.1. Scenarios for kinematic model: (a) bubble is moving
with constant velocity; (b) bubble is expanding with constant
velocity; (c) bubble is moving with constant acceleration; and (d)
bubble is expanding with constant acceleration. Transient
boundaries are superimposed onto each other.

At the bare minimum, four different types of scenarios are identified as shown in Figure 4.1.
The elliptic object undergoes a transient change in circular domain (15cm in diameter) after
each current pattern (Ar=0.01). The trigonometric current patterns were injected into the
domain. Readings for 3 frames were acquired (93 current injections). In all scenarios, the
object and background conductivities were set to 1/(250x10°Qcm) and  1/(250Qcm)
respectively. The reason behind taking such a high contrast is to visualize the boundaries of

air filled bubbles that have infinite resistivities.

Here, the kinematic model (KM) for the state equation (3.2) , which takes into account the

first- and the second-order derivatives of y of the shape coefficients. Originally the KMs
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were developed in the target tracking field (Bar-Shalom and Li 1993) to estimate the
maneuvering target, in which the acceleration and the jerk are considered as white Gaussian

noise for the first- and second- order kinematic models, respectively.

4.1 Kinematic models for movement and expansion
Let us consider the state equation and linearized measurement equation (with Tikhonov
regularization included and derived in the same manner as the one for front points, i.e.,

equation (2.21)) as

Vw1 = B 7 +wy “.1)

Ve = Hy ¥ vy (“4.2)

For a bubble moving with constant velocity (Figure 4.1(a)), the required state vector, state

matrix and measurement matrix are as follows:

7, — [7/1\’1 7‘/|\’1 },I}'] 7‘,1}'1 ] 2 7,1}'2 7/1(2 }/Iy; JT (43)
(1 A+ 0 0 0 0 0 O]
01 00 0O0O0O0
0 01 A 00 00
0001 0000
F = (4.4
00 00O 1000
0000 0100
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& OROF O B0 0D A
J}EU) 0 JIEI,Z) 0 JIEI,S) J]EIA) JIEI,S) Jlgl,ﬁ)
2,1 2,2 2,3 2,4 2,5 2,6
P R A @)

11532,1) 0 11532,2) 0 11532,3) J]E32,4) 11532,5) 11532,6)

For a bubble expanding with constant velocity (Figure 4.1(b)), the required state vector, state

matrix and measurement matrix are as follows:

VA A e /e T A A 7 eh 4.6)
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For a bubble moving with constant acceleration (Figure 4.1(c)), the required state vector,

state matrix and measurement matrix are as follows:
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For a bubble expanding with constant acceleration (Figure 4.1(d)), the required state vector,

state matrix and measurement matrix are as follows:
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Figure 4.2. Reconstructed boundaries with kinematic model for
bubble moving with constant velocity. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.3. Reconstructed boundaries with random-walk model for
bubble moving with constant velocity. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.4. Reconstructed boundaries with kinematic model for
bubble expanding with constant velocity. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.5. Reconstructed boundaries with random-walk model for
bubble expanding with constant velocity. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.6. Reconstructed boundaries with kinematic model for
bubble moving with constant acceleration. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.7. Reconstructed boundaries with random-walk model for
bubble moving with constant acceleration. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.8. Reconstructed boundaries with kinematic model for
bubble expanding with constant acceleration. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.9. Reconstructed boundaries with random-walk model for
bubble expanding with constant acceleration. True boundary is
represented by solid line and estimated boundary is represented by
dotted line.
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Figure 4.10. RMSE comparison with Monte-Carlo simulation of
10 runs: (a) bubble is moving with constant velocity; (b) bubble is
expanding with constant velocity; (c) bubble is moving with
constant velocity; and (d) bubble is expanding with constant
acceleration. Solid line represents the RMSE with KM whereas
dotted line represents the RMSE with random-walk model.
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=yt AR R R R R W R R (4.12)
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Table 4.1. Extended Kalman filter parameters used in the
simulations.
Simulation 1 Simulation 2 Simulation 3 Simulation 4
O Iy Iy Iy Iy
R, 2001 2001 2001 2001
Cono Iy Iy Iy Iy

4.2 Numerical Results for Fourier Coefficients

The EKF parameters used in the simulation are shown in Table 4.1. The regularization
parameter @ is set to 0.1 as the contrast ratio between the background and target is very
high. Furthermore, in all simulations, zero-mean white Gaussian noise was added to the
calculated voltages to generate noisy measurements; the noise level was set to be 1% of the
corresponding calculated voltages. The reconstruction results are shown in Figures 4.2-4.9.
Here, it should be noted that the profile changes after every current injection, however in the
figures, the temporal profile is shown after 3 current patterns with the first image as the initial
guess. It can be seen that the estimation quality is quite good especially for the cases when
the bubble is moving with constant velocity and when it is expanding with constant

acceleration. The RMSE comparison for region boundaries is done between KM and
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random-walk model for a Monte-Carlo simulations of 10 runs for each scenatio (shown in
Figure 4.10). From the results, it should be pointed out that the estimation performance of
EKF with KM is better than random-walk model in most cases. For the case when the
bubble is moving with constant velocity, there is a significant difference in RMSE values of
KM and random-walk model between 40th and 80th current patterns and for the bubble
expanding with constant acceleration, there is a significant difference between the 35th and
75th current patterns. It is anticipated that the simulation results with KM set the necessary
grounds for IMM scheme in which EKFs with different evolution models( kinematic

models) can be used to give the best estimates of all models.
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Chapter 5

5 NONSTATIONARY PHASE BOUNDARY ESTIMATION USING
UNSCENTED KALMAN FILTER

The EKF has become a standard technique used in a number of nonlinear estimation and
machine learning applications, e.g., estimating the state of nonlinear dynamic system,
estimating parameters for nonlinear system identification (learning weights of a neural
network) and dual estimation (Expectation Maximization (EM) algorithm) where both states
and parameters are estimated simultaneously. However, in EKF, the state distribution is
approximated by a Gaussian random variable (GRV), which is then propagated analytically
through the first-order linearization of the nonlinear system. This can introduce large etrrors
in the true posterior mean and covariance of the transformed GRV, which may lead to
suboptimal performance and sometimes divergence of the filter. To overcome these
difficulties, the unscented transform (UT) was developed by Julier and Uhlmann (1997) and
subsequently in Julier and Uhlmann (2004) as a method to propagate mean and covariance
information through a nonlinear transformation. It is more accurate, easier to implement,
and uses the same order of calculations as linearization. The unscented Kalman filter (UKF)
addresses this problem by carefully choosing sample points instead of GRV, and which when
propagated through the true nonlinear system, captures the posterior mean and covariance
accurately to the 3rd order (Taylor series expansion) for any nonlinearity. The EKF, in
contrast, only achieves first-order accuracy. Also, the linearization in EKF is possible only if
the Jacobian matrix exists. However, this is not always the case. Some systems contain
discontinuities in process model, and in another case, the Jacobian matrices can be very
difficult and error-prone process and in most cases introduce human coding errors that
undermine the performance. Remarkably, the computational complexity of the UKF is the

same order as that of EKF as mentioned in Julier and Uhlmann (2004).

5.1 Unscented Kalman filter

In order to derive UKF, the linear state and nonlinear measurement equations are as follows:

X = B X + Wi 6.1

Ve =U (%) + v, 5.2
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where w, e R"! and V, e R¥ are assumed to be white Gaussian noise with covariance
O, =Elw,w;1 and R, =E[v,vj ] respectively. Here x, is a generalized representation
employing either of the front points d;, and the Fourier coefficients y, . Also, U, (x;) is the

forward solver to obtain boundary voltages. Given the stochastic nonlinear state-space

model, the unscented Kalman filter algorithm (Julier and Uhlmann 2004) is as follows:

Initialize with:

%, = Elx,] (5-3)
Cy = El(x — %) (xg = )" ] 54
% =Elx1=[% 0 oI (5.5)
G, 0 0
CS = E[(4§ <53 =x) =00, 0 (5.6)
0 0 R,
for ke {l,...,00}
Calculate sigma points:

i =[3 L0 aCE s A | 6.7

Time Update:
Xior = P o + 205 (GR)
2N.T
X = 2 W e (5.9
i=0
2,
=2, W L o = X W — % I (5.10)
i=0
Vik—1 = U Q- + Zia (5.11)
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2N,
Ui = 2 W g (5.12)
i=0
Measurement Update:
w, ) -
Co0, = Z VVI'(L)[‘//i,ka—l “U ¥ k1 = Ui 1 (5.13)
i=0
2N, .
Cov, = 2 U =5 W i = U ] (5.14)
i=0
K¢ =Cy0,Cp, (5.15)
%, =5 +K, (v, —Up) (5.16)
af :C;—chUkUkK{ (5.17)

where

=Wt VT =1 ) )T, A =a (N +k)-N, is composite scaling
parameter, ¢, determines the spread of sigma points (is usually set to a small positive value
e.g, 107 <@, <1). The &, is secondary scaling parameter (is usually set to 0 or 3—N,) and

B, is used to incorporate prior knowledge of the distribution of x (for Gaussian distribution,

B, =2 is optimal). Weights W, are given by
Wo™ = A 1N, + 4) (5:18)
Wy = AN, + A)+ (=0 + B,) (519)

W™ =W 12N+ 4}, i=1,..2N (5.20)

s

where N, =2N+E, N is the dimension of Fourier coefficients or Front Points and E is the

total number of electrodes. The above mentioned computational procedure to compute the

Fourier coefficients is also explained in block diagram in Figure 5.2. Here, the augmented

state vector X and the augmented covariance matrix C* is updated when the voltage
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measurement V, becomes available at 4th iteration. Two significant covariance matrices
shown in Figure 5.2 are C; and C,;, . During the iterative process Cp; will be reduced so

that the transformed sigma points (also putting Figure 5.1 in perspective) move towards the
cluster mean. With the introduction of the measurement data V, , the cluster mean will then
move further towards the true mean and as a consequence C,, will be reduced. Here, it
should be noted that if the target is static during the application of some current patterns
then the transformed sigma points will move towards the true mean and then spread again
whenever the target changes its position. Therefore, the trade-off from performance
standpoint is how many current patterns should be used and how fast should be the dynamic

changes for UKF to capture them.

This method significantly differs from general Monte-Carlo sampling methods which require
more sample points in an attempt to propagate an accurate (possibly non-Gaussian)
distribution of state. The UKF results in approximations that are accurate to the 3rd order
for Gaussian inputs for all nonlinearities. For non-Gaussian inputs, approximations are
accurate to at least the 2nd order, with the accuracy of third and higher order moments
determined by the choice of a, and B, in equation (5.19). The proof of this is provided in
Julier and Uhlmann (2004). The UKF used in this study consists of an augmented state
vector that contains both the process noise vector and the measurement noise vector. The
reason behind taking the augmented state is to consider process and measurement noises
with non-zero means. However, if the noise is additive and white Gaussian with zero-mean,

one can choose a much simpler form without taking the augmented state.

The complexity of UKF algorithm is (N,)’, where N, is the dimension of augmented state.

This has the same complexity as EKF. A number of other variations are also possible. For

example, the matrix square root, which is implemented directly using a Cholesky
factorization, is in general order (N, y} /6. However, the covariance matrices are expressed
recursively, and thus the square-root can be computed in the order Ex(N,)* (E is the
dimension of the voltage vector v, ) by performing a recursive update on the Cholesky

factorization. Such kind of UKF is called square-root UKT and its implementation is covered

in Van der Merwe and Wan (2001). For practical purposes, the alternatives are then to use

91



Nonstationary phase boundary estimation using unscented Kalman filter

the parallel implementation for sigma points calculation, to use limited measurement data, or

to use the square-root UKF with lower complexity.

5.2 Numerical and experimental results for Fourier coefficients

In order to evaluate the performance of UKF, numerical and experimental studies were
performed and the performance was assessed in comparison to extended Kalman filter (EKF)
which is most often used as a dynamic inverse solver. The EKF uses Tikhonov regularization
with regularization parameter @, and regularization matrix L, as identity matrix. The
experimental setup shown in Figure 5.3 consists of a circular phantom with a radius of 40mm

and a height of 80mm was considered around which I.=32 electrodes (each of length 6 mm)
were mounted. Two different meshes (Figure 5.4) were used for forward (2121 nodes and
3984 elements) and inverse solver (563 nodes and 993 elements) so that inverse ctime is
avoided in numerical simulations. As for the current injection protocol, opposite current
patterns are used. Traditionally, for 32 electrodes’ configuration, there are 16 opposite
current patterns. However, since the goal of the current research is to use UKF in dynamic

settings, a subset of opposite current patterns is considered in each image frame.

For numerical simulations, two scenatios are considered and their evolution models are

shown in Figure 5.5. In both scenarios, a very high contrast ratio between the background
(1/(300x10° Qem) ) and target (1/(330Qcm)) is maintained. Also, a total of N=6 Fourier

coefficients are reconstructed in the inverse solver that can represent an elliptic object and
also meet the requirements of this study. In Figure 5.5(a), in scenario 1, a circular target
located in the south moves east at first and then towards north along the boundary until it
stops just above the center. It then starts to expand and takes an elliptic shape. Here, a total
of 64 image frames (a hypothetical number representing a frame in which the target remains
static) are considered where each frame consists of one current pattern. i.e., target changes its
position after every current pattern. Furthermore, the measurement data obtained is
perturbed with 1%, 2% and 3% relative white Gaussian noise so as to emulate the real

situations. The scenarios are then reconstructed with both EKF and UKF.

The parameters used in scenario 1 for both UKF and EKF are shown in Table 5.1. The
reconstructed results and RMSE comparison are shown in Figures 5.6-5.11. The
reconstructed profiles in Figures 5.6, 5.8, and 5.10 are shown after every 4 current patterns.

For the case where measurement data is perturbed with 1% white Gaussian noise, it is noted
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that UKF is performing remarkably well in estimating the phase boundary. EKF, on the
other hand, is trailing behind after application of each current pattern. However, it is noted
that in the later part of the simulation, when the target is static and only expanding, the
difference between UKF and EKF is a bit less. From the RMSE comparison for 1% white
Gaussian noise case, it can be noted that on the average, the RMSE values for UKF are
around 0.1 whereas for EKF, they are around 0.3. It can be established that a performance
gain of 3 times is a marked improvement. Another key point is that UKE has a smaller
transition period in the start as compared to EKF, and the difference in the transition periods
between the two filters grows exponentially with the increase in measurement noise.
Therefore, for 2% white Gaussian noise case, it can be seen in Figure 5.9 that the first stable
estimate for UKF is obtained around the 5th current pattern and for EKF, it is obtained
around the 20th current pattern. As for the 3% white Gaussian noise case, the first stable
estimate for UKF is obtained around the 15th current pattern, whereas for EKF, it is around
the 35th current pattern. From the reconstructed images of Figure 5.8 for 2% white Gaussian
noise case, it can be observed that the performance of UK is better than EKF. The
reconstruction results for 3% white Gaussian noise show that EKF has neatly failed whereas
UKTF is still giving a satisfactory performance. Furthermore, UKF is estimating the position
well and the only problem is the shape of the target. However, that is expected in noisy

scenatios.

In scenario 1, the emphasis was more on the movement of the target and less on the
expansion of the target. Therefore, scenario 2 is considered, whose evolution model is given
in Figure 5.5(b), in which a target initially circular located in south-west, moves north and
changes its shape after the application of every current pattern. Here, a total of 48 image
frames are considered and in each image frame, one opposite current pattern is used. The
parameters used in both UKF and EKF are shown in Table 5.2. The reconstructed results
and RMSE comparison are shown in Figures 5.12-5.17. The reconstructed profiles in Figures
5.12, 5.14, and 5.16 are shown after every 4 current patterns. Here, the changes in the
position are not abrupt, therefore, it is anticipated from the first scenatio’s expansion that the
difference between UKF and EKF will be small, however, UKF will still be better in terms
of reconstructed image and RMSE. And so, for the 1% white Gaussian noise case, the
reconstructed image quality is almost similar for both filters but UK is slightly better than
EKF. In terms of RMSE (Figure 5.13), UKF (average RMSE is around 0.05) is performing 2
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times better than EKF (average RMSE is around 0.1). Similatly, for 2% and 3% white
Gaussian noise cases, in terms of RMSE (Figures 5.15 and 5.17), the difference between
UKF and EKF is small as compared to scenario 1, however, UKF is still performing better
than EKF after the application of every current pattern. A similar thing that is already
observed in scenario 1 can also be seen in scenatrio 2 and that is the difference in transition

period for higher noise levels.

From the simulation results, it can be established that UKF has performance gains over EKF
for processes in which the dynamic changes are abrupt and that it is also possible to model
boundaries of air bubbles. Therefore, both UKF and EKF are put to use in experimental
studies by considering plastic targets in saline water (with a resistivity of 330Qcm). In Figure
5.3(c), the possible positions of the plastic targets are shown in the phantom. Since
experimental results are a bit difficult to reconstruct and also in the current configuration, the
position changes are abrupt, therefore, multiple current injections per image frame are
considered during which the target remains stationary. Two different experiments are
considered in which UKF and EKF use the parameters shown in Table 5.3. In both
experiments, 8 image frames are considered and each image frame comprises of 6 current
patterns. The reconstruction results for both experiments are shown in Figures 5.18 and 5.20
after 6 current patterns and the RMSE compatisons are done in Figures 5.19 and 5.21. In
both experiments, it can be seen that UKF is performing far better than EKF in terms of
reconstructed boundary. In the RMSE comparisons, it can be seen that mostly the RMSE for
UKEF is much less than EKF, however, there are certain points where the RMSE curve of
both the filters almost come closer. The reason behind this phenomenon is the repetition of
the current patterns. Since from the simulations, it was observed that UK estimates the
position very fast as compared to EKF, therefore, in the first few current patterns in the
static case, the decrease in UKF is substantial as compared to EKF. However, after
sometimes, when it finally reaches the estimated position, it generally wobbles on the same
spot. In the meanwhile, the EKF also converges and hence the difference between UKF and
EKF is reduced. In all the simulations and experimental results, it can be noticed that RMSE
for UKF is always lower than EKF. This is because UKF basically uses nonlinear unscented
transform, and EKF uses the linearized version of the measurement equation. However,
there can also be some exception to this rule, i.e., certain scenarios might favor EKF better

than UKF which can be best explained from Figure 5.22 in which there are three positions of
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the target. Since UKF estimates fast so it moves very fast to the second position and the slow

EKF is still in the middle. However, from the second position to the third position there is
more distance for UKF to cover as compared to EKF, thus proving that in certain cases one
can also observe EKI’s RMSE to be slightly less than that of UKF. The same phenomenon
can also be observed in a situation in which a target at position A goes to position B and then
comes back to position A. However, through extensive simulations and experimental results,

it was found out that such cases are rare and UKF on the average performs better.

Actual (Sampling) Linearized (EKF) UT igma points
° /gs
mean
covariance A by
. A °
+ o
) CACY) £
¢
UT mean

true mean

Q...

UT covariance

EKF mean transformed
EKF covariance sigma points

(@) (b) ©

Figure 5.1. An example of unscented transform for mean and
covariance propagation: (a) actual; (b) first-order linearization
(EKF); and (c) unscented transform.
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Figure 5.2. Block diagram of the UKF for phase boundary
estimation in EIT.
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©

Figure 5.3. Experimental setup: (a) phantom; (b) plastic rods used
as targets; and (c) positions where the plastic targets could be
placed.
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Figure 5.5. Evolution model for numerical simulations: (a)
scenario 1; and (b) scenario 2.
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Figure 5.6. Reconstructed boundaries for scenario 1 with 1%
noise. Solid line, dotted line and dashed line represent the true
boundary, boundary estimated by EKF, and boundary estimated
by UKF, respectively.

RMSE y

Patterns

Figure 5.7. RMSE comparison for scenario 1 with measurements
perturbed by 1% white Gaussian noise.
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Figure 5.8. Reconstructed boundaries for scenario 1 with 2%
noise. Solid line, dotted line and dashed line represent the true
boundary, boundary estimated by EKF, and boundary estimated
by UKF, respectively.
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Patterns

Figure 5.9. RMSE comparison for scenario 1 with 2% noise.
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Figure 5.10. Reconstructed boundaries for scenario 1 with 3%
noise. Solid line, dotted line and dashed line represent the true
boundary, boundary estimated by EKF, and boundary estimated
by UKF, respectively.
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Figure 5.11. RMSE comparison for scenario 1 with 3% noise.
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Figure 5.12. Reconstructed boundaries for scenario 2 with 1%
noise. Solid line, dotted line and dashed line represent the true
boundary, boundary estimated by EKF, and boundary estimated
by UKF, respectively.
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Figure 5.13. RMSE comparison for scenario 2 with 1% noise.
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Figure 5.14. Reconstructed boundaries for scenario 2 with 2%
noise. Solid line, dotted line and dashed line represent the true
boundary, boundary estimated by EKF, and boundary estimated
by UKF, respectively.
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Figure 5.15. RMSE comparison for scenario 2 with 2% noise.
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Figure 5.16. Reconstructed boundaries for scenario 2 with 3%
noise. Solid line, dotted line and dashed line represent the true
boundary, boundary estimated by EKF, and boundary estimated
by UKF, respectively.
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Figure 5.17. RMSE comparison for scenario 2 with 3% noise.
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Figure 5.18. Reconstructed boundaries for first experiment. Solid
line, dotted line and dashed line represent the true boundary,
boundary estimated by EKF, and boundary estimated by UKF,
respectively.
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Figure 5.19. RMSE comparison for first experiment.
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Figure 5.20. Reconstructed boundaries for the second experiment.
Solid line, dotted line and dashed line represent the true boundary,
boundary estimated by EKF, and boundary estimated by UKF,
respectively.
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Figure 5.21. RMSE comparison for the second experiment.
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Figure 5.22. A scenario favoring EKF. UKF path is represented by
dashed line and EKF path is represented by dotted line.

Table 5.1. Parameters used in simulations for scenatio 1.

EKF UKF
1% white 2% white 3% white 1% white 2% white 3% white
Parameters Gaussian Gaussian Gaussian ~ Gaussian ~ Gaussian ~ Gaussian
Noise Noise Noise Noise Noise Noise
0, 0.011, 0.011, 0.011, 0.011, 0.011, 0.011,
R, 2001, 9001 3000 1, 101, 90 I 3001,
G, 0.11, 0.11, 0.11, 0.11y Oluly 0.11
g 0.001 0.01 0.1 - - -
a, = k 2 0.1 0.08 0.2
s 5 ? 7 2 Z
K % - - 0 0

Table 5.2. Parameters used in simulations for scenatio 2.

EKF UKF
1% white 2% white 3% white 1% white 2% white 3% white
Parameter Gaussian Gaussian Gaussian Gaussian  Gaussian Gaussian
arameters Noise Noise Noise Noise Noise Noise
0, 0.011, 0.011, 0.011, 0.011, 0.011, 0.011,
R, 2001, 1000 1, 6000 I 101, 901, 3001,
G, 0.11, 0.11, 0.11, 0.11, 0.11, 0.11,
ag 0.001 0.01 0.1 - - -
a, - - - 0.05 0.08 0.2
B, - - - 2 2
K, - - - 0 0 0
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Table 5.3. Parameter used in obtaining experimental results.

Parameters EKF UKF
O, 0.011, 0.011,
R, 2001, 101,
Co 0.11, 0.11,
ag 0.2 -
a, - 0.2
K _

= 0
5
-10
16 %
=15, -10 A 0 b 10 15 -15 -10 4 0 1 10 18
(a) scenario 1 (b) scenario 2
15
1
a
= 0
E
-10
16 :
=15 -10 5, 1) a 10 15 15 -10 4 0 5 10 18
(c) scenario 3 (d) scenario 4

Figure 5.23. Scenario considered: (a) for reconstruction with 10
front points; (b) for reconstruction with 12 front points; (c) for
reconstruction with 14 front points; and (d) for reconstruction
with 16 front points
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5.3 Numerical results for front points

In this section, the numerical results for UKF are reported with the same settings as
considered in the first chapter for EKF i.e., stratified flow of two conducting immiscible
liquids through a cylindrical pipe of diameter 28cm with 16 electrodes of width 2.5cm each
around its periphery. For comparison purposes, EKF is used along with Tikhonov
regularization with regularization parameter as @, and regularization matrix as identity matrix.
Starting with 10 front points, the UKF simulations are performed using contrast ratio of
100:1 and are tested with 1%, 2% and 3% white Gaussian noise. Furthermore, higher
contrast ratios are tested with 10 front points and results for contrast ratio as high as 10000:1
is reported with 1% white Gaussian noise. The scenario considered for 10 front points is
shown in Figure 5.23(a). Also, the results are provided for the increase in the number of
front points. The scenarios for 12 front points, 14 front points and 16 front points are shown
in Figures 5.23(b), 5.23(c), and 5.23(d), respectively. It was found that the front points greater
than 16 tend to deteriorate the image reconstruction performance incase of UKF whereas it
was 10 front points in case of EKF in Kim ez 4/ (2007). In all the simulations, a very small
measurement data is used, i.e., 8 image frames. Therefore, total number of current patterns
are 32. Furthermore, in the reconstruction process, only first two modes of cosine and sine
patterns are used as: cos(¢}), cos(2{)), sin(¢;) and sin(2¢}) . The repeated use of the first

cosine pattern is dropped in this study.

Figures 5.24-5.26 show the reconstructed interfacial boundaries for scenario 1 in which white
Gaussian noises of 1%, 2%, and 3% are added to the simulated voltage measurement so as to
emulate the real situations. The parameters used in EKF and UKF are shown in Table 5.4. In
Figures 5.24-5.26, the reconstructed boundaries are shown after every 4 current patterns. As
seen from the results, UKF performs significantly better than EKF. For 1% white Gaussian
noise case (Figure 5.24), on the average a performance gain of 2 is observed in UKF over
EKF in terms of RMSE. The average value of RMSE for UKF are around 0.05 and for EKF
they are around 0.1. Similarly, a performance gain of 1.25 (0.08 for UKF and 0.1 for EKF on
the average) can be observed for 2% white Gaussian noise (Figure 5.25). For 3% white
Gaussian noise (Figure 5.26), EKF has completely failed in estimating the interfacial
boundaries. The observed average RMSE values are 0.09 and 0.11 for UKF and EKF,
respectively. Several other conclusions can also be drawn from analyzing the same results.

UKF has a small transition period, therefore, the initial guess moves very fast to the true
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boundary. EKF on the other hand has a slow convergence. For relative smooth boundaries,

UKEF and EKF will have similar performance, but UKF will still be slightly better. With many

ripples in the boundaries, the performance of UKF will be significantly better than EKF in
crests and troughs on the interface where the differences in adjacent front points is high.
That is exactly the same reason why 280 frames were used and a slow moving interface was

considered for 10 front points in Kim ef a/. (2007).

Table 5.4. Parameters used in simulations for assessing the impact
of measurement noise in 10 front points case with contrast ratio

of 100:1.
EKF UKF
1% white 2% white 3% white 1% white 2% white 3% white
Gaussian Gaussian Gaussian ~ Gaussian ~ Gaussian ~ Gaussian
Parameters Noise Noise Noise Noise Noise Noise
0, 0.011, 0.011, 0.011, 0.011, 0.002 1, 0.011,
R, 9x10*1, 10x10*7,  13x10*1,  2x10°I, 3x10°1, 3x10*1,
G, 0.011, 0.11, 0.011, 0.011, 0.011, 0.011,
ag 0.00001 0.0001 0.0001 - - -
a; - 4 - 0.5 1 0.2
B, - - z 2 % 2
K, o - - 0 0 0

Table 5.5. Parameters used in simulations for assessing the impact
of contrast ratio in 10 front points case with 1% noise.

Contrast Ratio

EKF UKF

Parameters 1000:1 10000:1 1000:1 10000:1

O 0.011, 0.011, 0.011, 0.011,

R, 5x10°1, 5x107 I, 3x10%1, 5x10°1,

C, 0.011, 0.11, 0.011, 0.011,

o 0.0001 0.0001 - -

o, - - 1 1

K, - -
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It is worth mentioning here that the measurement error covariance matrix R of EKF will
always be bigger than UKF as for EKF it will also include the linearization errors caused by
ignoring higher-order terms in Taylor series expansion. Therefore, this point should be kept
in mind in replacing EKF with UKF as an inverse solver. With 10 front points and 1% white
Gaussian noise, the results with different contrast ratios are shown in Figures 5.27 and 5.28
in which the reconstructed boundaries are shown after every 4 current patterns. The
parameters used in the simulation are listed in Table 5.5. Notice that UKF is error-prone to
increase in contrast ratio. In the contrast ratios of 100:1, 1000:1, and 10000:1, it can be
observed that on the average, the RMSE of UKF is somewhere between 0.05 and 0.09 and a
very little increase in RMSE can be observed with the increase of contrast ratio. On the other
hand, the recontruction results for EKE show a different story. There is an exponential
increase in RMSE with the increase in contrast ratio and also it can be observed in Figure
5.28 that EKF becomes unstable and fails in the contrast ratio of 10000:1. As mentioned
before, with the increase in the ripples in the interface, UKF will tend to show better
performance than EKF, so for this purpose, increase in front points are considered for the
scenarios shown in the Figures 5.23(b), 5.23(c), and 5.23(d), respectively. The reconstruction
results are shown in Figures 5.29-5.31 whereas the parameters used in the simulations are
listed in Table 5.6. Again the reconstructed boundaries are shown after every 4 current
patterns. With the increase in the number of front points, there is a decrease in the
performance for both UKEF and EKF, however, the deterioration in estimation quality of

UKTF is small as compared to EKT.

Table 5.6. Parameters used in simulations for assessing the impact
of front points with contrast ratio of 100:1.

EKF UKF
12 Front 14 Front 16 Front 12 Front 14 Front 16 Front
Points Points Points Points Points Points
Parameters

O, 0.011, 0.11, 0.011, 0.011, 0.011, 0.011,
R, 4x10° I, 6x10°1, 3x10°1, 3x10%1, 3x10° 1, 3x10° 1,
C 0.011, 0.11, 0.011, 0.011, 0.011, 0.011,
ag 0.0001 0.001 0.0001 - - -
a; - - - 1.5 1 1.5
X - _ -
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Figure 5.24. Results with 10 front points for scenariol with 1%
noise and contrast ratio of 100:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKF (-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.25. Results with 10 front points for scenariol with 2%
noise and contrast ratio of 100:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKF (-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.26. Results with 10 front points for scenario 1 with 3%
noise and contrast ratio of 100:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKF (-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.27. Results with 10 front points for scenariol with 1%
noise and contrast ratio of 1000:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKF (-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.28. Results with 10 front points for scenariol with 1%
noise and contrast ratio of 10000:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKF (-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.29. Results with 12 front points for scenario 2 with 1%
noise and contrast ratio of 100:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKEF(-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.30. Results with 14 front points for scenario 3 with 1%
noise and contrast ratio of 100:1: (a) reconstructed boundaries
after every 4 current patterns. True profile (-), EKF (-x-), and
UKF (-0-); (b) RMSE comparison between EKF and UKF.
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Figure 5.31. Results with 16 front points for scenario 4 with 1%
noise and contrast ratio of 100:1: (a) reconstructed boundaries
after every 4 current pattern. True profile (-), EKF (-x-), and UKF
(-0-); (b) RMSE comparison between EKF and UKF.
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Chapter 6

6 GAUSS-NEWTON UNSCENTED KALMAN FILTER APPROACH TO
NONSTATIONARY PHASE BOUNDARY ESTIMATION

Recently, it was discovered that the measurement updates of EKF and UKF are algebraically
equivalent to a single iteration of the online Gauss-Newton method for solving the nonlinear
least squares problem. However, for nonlinear problems, the measurement updates of EKF
and UKF that do not iterate cannot be expected to achieve the maximum likelihood solution,
especially, in the case of significant nonlinearity in measurement function. However, the
iterative methods are provably convergent and have a rich convergence theory (Dennis JE
and Schnabel 19906). Fortunately, one can easily extend the measurement updates of EKF
and UKF to Gauss-Newton iterative measurement updates. The resulting new methods are
called Gauss-Newton EKF and Gauss-Newton UKE respectively (Bell and Cathey 1993,
Van der Merwe 2004, Sibley ezal. 20006).

Compared to Gauss-Newton EKF, the Gauss-Newton UKEF (GNUKF) removes the
requirement to analytically calculate Jacobians in both time and measurement updates.
Therefore, in this section GNUKEF is used as an inverse solver as an improvement over
UKF. For the sake of simplicity we assume additive white Gaussian noise in both process

and measurement model.

6.1 Gauss-Newton unscented Kalman filter

We assume the state-space model as follows:
X = Fyoi X + Wiy ©.1)
Ve =U (x)+ v, 6.2)

where w, e R™! and v, e R” are assumed to be white Gaussian noise with covariances
O = Elwow; 1 and R, = E[vyv; 1, respectively. Also, Uy (x;) is the forward solver to obtain
boundary voltages. In the previous chapter, the augmented form of state-vector was assumed

by including process noise and measurement noise vector. However, a much simpler version

of UKF can also be derived which precludes the need of using augmented form.
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Most of GNUKF is similar to conventional UKF. Firstly, the UKF time update is

performed, which uses the sigma-point technique to select from the distribution on x,_; a

. . 2N, . . . . .
set of sigma points, {¥;},_; where N is the dimension of state vector. The sigma points are

0

. . . 2N, . . .

then assigned different weights, {Wi(m),Wi“)} . The sigma points are selected to lie on the
=

principle component axes of the covariance C, , plus one extra point for the mean X, of

the distribution:

Yo =X (6.3)
¥, =+/N, + 4 6.4
X =%+ (¥ Co )i i=L. N, (6.5
X =X 4= (#o\[Co i =Ny £1,...,2N, (6.6)
W = ﬁ% 6.7
R & NS (-a’+pB,) (6.8)
N, + A,
=Y £ YNlJT) i=1,..,2N, (6.9)

where ¥, is a scaling parameter and A4, =@,”(N, +&,)—N, . The typical values of parameters

a,, B,,and k, are set to 107, 2, and 0, respectively.

These sigma points are then propagated through the state transition function (6.1) which is
identity matrix here considering the random-walk model. The propagated sigma points are

then combined with associated weights to produce the predicted state and covariance, i.e.,

2P =Fy i=0,.,2N, (6.10)
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2N, .
F=2 Wm0 (6.11)

i=0

2N, ' »
¢, = > WnY -3y -5 1 +0 6.12)

i=0

In order to incorporate the effect of the process noise on the sigma points, we redraw a new

set of sigma points from the Gaussian time-updated covariance éxk ,

i = |:)A€k X+ \,éxA =7 éxA } (6.13)

Next, the required measurement covariance € and cross-correlation covariance Cyy, ate

calculated from the weighted sigma points, by

2N,

s

U, =Y WU, () (6.14)
i=0
A~ 2N‘ . A . A
Cy, = LW ) =0 U, (") =0, 1 (6.15)
i=0
- 2N, = : ~
C.u, = WL -2 U (g -0, T (6.16)
i=0

Next, the Gauss-Newton measurement update is considered as
=5 +Cy, (Cy +R) WV —U () =CLy Cpt Gy —x))) j=1.2.... (6.17)

Here, ékak (éUk +R,)”" is the Kalman gain and V, is the measured voltage data available in

each iteration. The GNUKTF iteratively updates the current state x/ until convergence. After

the convergence, the state mean X, is set to x{ , and the covariance is updated as

c, =C, —Cyy (Cy +R)'CY (6.18)

k X XUy

If we set x/ =%, and do not iterate, the GNUKF reduces to the UKF.
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6.2 Numerical results for front points

For the simulation putposes, the front points approach is considered to evaluate the
performance of GNUKF. As in the previous section, a stratified flow of two conducting
immiscible liquids is considered through a cylindrical pipe of diameter 28cm with 16
electrodes of width 2.5cm each around its periphery. A total of 32 frames are considered with
the contrast of 100:1 for 10 front points shown in Figure 6.1. Here, only one current pattern
is considered in each frame. The data generated is then perturbed with 1%, 2%, and 3%
white Gaussian noise respectively. For comparison purposes, GNUKF is compared with

UKF and the parameters used are shown in Table 6.1.

Figure 6.1. Evolution of the interface.

Table 6.1. Parameters used in simulations for both GNUKF and

UKF.
UKF/GNUKF Parameters
1% white 2% white 3% white
Gaussian Gaussian Gaussian
Parameters Noise Noise Noise
0, 0.011, 0.011, 0.011,
R, 4x10°1, 2x10*1, 3x10*1,
C, 0.011, 0.011, 0.011,
a, 0.4 0.6 0.6
B,
K, 0 0
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Figure 6.2. Results for 10 front points with 1% noise and contrast
ratio of 100:1: (a) reconstructed boundaries after every 4 current
patterns. True profile (-), GNUKF (-x-), and UKF (-0-); (b) RMSE
comparison between GNUKF and UKF.
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RMSE,

frames

(b)

Figure 6.3. Results for 10 front points with 2% noise and contrast
ratio of 100:1: (a) reconstructed boundaries after every 4 current
patterns. True profile (-), GNUKF (-x-), and UKF (-0-); (b) RMSE
compatison between GNUKF and UKF.
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Figure 6.4. Results for 10 front points with 3% noise and contrast
ratio of 100:1: (a) reconstructed boundaries after every 4 current
patterns. True profile (-), GNUKF (-x-), and UKF (-0-); (b) RMSE
compatison between GNUKF and UKF.
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It should be mentioned here, that for the generation of measurement data, the first two
modes of sine and cosine current patterns are used alternatively. For comparison purposes,
the RMSE for the parameter 4, RMSE,, is considered. The simulation results are shown in
Figures 6.2-6.4. From the reconstructed results it can be seen that the performance of
GNUKEF is better than UKF in terms of RMSE, especially in the later part of the
simulations, i.e., from 22nd frame to 32nd frame in the case of 1% measurement noise and
from 25th frame to 32nd frame in the case of 2% and 3% measurement noise. Since
equation (06.17) is iterative in nature, therefore, in order to save some computational burden
in the overall process, a much simpler version of UKF is considered which does not use the
augmented form and also uses reduced number of sigma points in every iteration. For
example, with 10 front points and 16 electrodes configuration, the total number of sigma
points generated using augmented approach is 73 sigma points whereas in the current

simulations, only 21 sigma points are generated in each iteration.
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CONCLUSIONS

In this thesis, electrical impedance tomography (EIT) is introduced for phase boundary
recovery. It is assumed that the domain goes through a fast transient change and that the
region occupied by each phase or the conductivity distribution is time varying during the time
taken to collect a full set of independent measurement data. In order to track the varying
interfacial boundary, the interface is parameterized with truncated Fourier coefficients (for
closed boundary representation), and discrete front points (for open boundary
representation). A special class of EIT inverse problem is addressed, in which the position
and shape of the objects were the unknowns to be identified while conductivities (conversely,
resistivities) of the objects are known @ priori. The unknown boundary shape is regarded as a
state variable and the EIT problem is transformed into a state estimation problem. Then, the
unknown state variables are estimated with the aid of Kalman-type filters. For the verification
of the proposed algorithms extensive numerical simulations and experimental studies are
performed and computational issues have been discussed. The issues include the avoidance
of inverse crime, the calculation of Jacobian, the data collection method, model parameters,

the effect of measurement noise, the effect of contrast ratio, and so on.

The IMM based nonstationary boundary estimation technique is proposed which consists of
a bank of model-conditioned extended Kalman filters connected in parallel, a model
probability evaluator, an estimate mixer at the input of each Kalman filter and an estimate
combiner at the output of the parallel filters. Such a configuration is used with different
process noise covariances to alleviate the modelling uncertainty of the random-walk model in
extended Kalman filter. For the case where one can make a guess on the evolution of
interfacial boundary, different kinematic models can be incorporated into the extended
Kalman filter. In this thesis, the kinematic models are considered for elliptic region boundary
represented with Fourier coefficients. The movement and expansion of an air bubble is
considered with constant velocity and constant acceleration. The estimation performance of
extended Kalman filter with kinematic model is better than random-walk model in most

cases.

By using unscented Kalman filter as an inverse solver, there are several performance gains

over conventional extended Kalman filter. In the case of unscented Kalman filter, the mean
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and covariance of the state estimate is calculated to second order or better as opposed to the
first-order in extended Kalman filter, therefore, unscented Kalman filter always gives better
results. Also, no analytical Jacobian is required as the key point is unscented transform which
uses the measurement equation as such. In the past there were several attempts on more
complicated problems in EIT where the internal dynamic equations were difficult to derive,
and so inaccurate numerical methods (like perturbation method) were used to derive
Jacobian. Unscented Kalman filter generates sigma points and can be computationally
intensive, however, the realizable hardware implementation can take advantage of the

modern hardware extensions pertaining to vectorization to run some of the code in parallel.

The advantage of Kalman-type filters is that they employ the minimum mean squared error
criterion and enable accurate modeling of nonlinear transitions in the boundary interfaces
using a limited set of voltage data. They can optimally estimate the boundary interfaces in the
presence of noisy voltage data. In this thesis, a 3% relative white Gaussian measurement
noise is successfully handled. Furthermore, these algorithms iteratively repeat themselves for
each new measurement vector, using only values stored from the previous cycle. Thus, as
soon as the voltage data becomes available for a single current pattern, an iteration can be
run. This distinguishes itself from batch-processing algorithms, which must save all the data
for a current frame consisting of multiple current patterns. With unscented Kalman filter,
abrupt changes in boundary interfaces are successfully handled even using voltage data from
a single current pattern. Contrast ratio also plays an important role in determining the
performance of the reconstruction algorithm. It is generally difficult to handle high contrasts
in the target and the background. In this thesis a higher contrast ratio of 10° :1 is successfully
handled in closed boundary approach and 10*:1 is successfully handled in the open
boundary approach for given scenarios. These can further increase if the boundary interfaces
change slowly or remain static in the application of few current patterns. In this thesis, a
smooth elliptic boundary is represented with only 6 Fourier coefficients. With increase in the
number of coefficients, a complex shape could also be represented and reconstructed with
the Kalman-type algorithms, however, the higher order coefficients are more sensitive to
estimation. In the case of front points approach, 16 front points are successfully handled to
visualize many ripples in the interface. Thus, it can be concluded that the use of Kalman-type
filters as inverse algorithm suggest a practical implication of this research in estimating the

fast changes in the interfacial boundaries in industrial processes.
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SUMMARY

Electrical impedance tomography is used for boundary estimation in binary mixtures. Two
types of problems are considered: open boundary problems in which the object domain can
be divided into two disjoint regions which are separated by an open boundary parameterized
with front points; and closed boundary problems in which the anomalies are parametetized
with truncated Fourier coefficients and are enclosed by the background substance. The finite
element method solution of forward problem using complete electrode model is discussed
for 2D geometry and is modified as a set of boundary parameters. Also, the analytical
Jacobian (linearization of the measurement equation) is derived for both front points and

Fourier coefficients approach.

Different types of Kalman-type filters are investigated that can be used as inverse solvers for
phase boundary estimation in electrical impedance tomography. Firstly, we use extended
Kalman filter to recover the front points that represent the interfacial boundary in stratified
flows of two immiscible liquids. After that interacting multiple model algorithm is introduced
as an inverse algorithm for the recovery of front points and consists of banks of extended
Kalman filter each using different process noise covariance model. Then kinematic models
for extended Kalman filter are discussed which are constructed using first- and second-order
Markov models. Then, unscented Kalman filter is suggested as an improvement over
extended Kalman filter that uses the nonlinear measurement equation and hence does not
require the Jacobian. Finally, the Gauss-Newton measurement update in the unscented
Kalman filter is employed which improves the performance due to iterative nature of the
measurement update. Extensive numerical simulations and experimental results are provided
to validate the performance of the above mentioned Kalman-type algorithms and to suggest

their practical usage.
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