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I. Introduction

Initially, electrical tomography (ET) technique has been developed as alternatives to

the medical imaging techniques such as X-ray imaging, computerized tomography

(CT), gamma camera, magnetic resonance imaging (MRI) and ultrasonic imaging,

some of which are expensive and/or even cause adverse health impacts. Since ET

is characterized by good time resolution and low cost, it has obvious advantages in

the application to the medical imaging and visualization of two-phase flow systems

(Webster, 1990), (Williams & Beck, 1995), (Cheney et al, 1999).

If the electromagnetic properties of different materials inside the object differs

from each other the spatial and/or temporal distributions of the material properties

can be estimated based on the various ET techniques. In general, the ET techniques

can be classified into three categories according to the electromagnetic quantities to

be imaged; These quantities are the magnetic permeability (µ), electric permittivity

(ε) and electric conductivity (σ), which correspond to electromagnetic inductance

tomography (EMIT) (Peyton et al,1996), electrical capacitance tomography (ECT)

(Xie et al 1992) and electrical resistance tomography (ERT) (Dickin & Wang, 1996),

respectively. In all of the above tomographic techniques, the relationships between

the electromagnetic quantities inside the object and sensing quantities on the surface

are described by the Maxwell’s equations (Webster, 1990).

In electrical impedance tomography (EIT), the quantity to be imaged is actu-

ally the impedivity (inverse of admittivity) so that it includes both ECT and ERT.

However, more frequently in EIT it assumed that the resistive part of the impedivity

dominates and estimates only the resistivity (inverse of conductivity) distribution

inside the object. In EIT, the internal resistivity distribution is reconstructed based

on the known sets of injected currents and measured voltages on the surface of the

object. The physical relationship between the internal resistivity and the surface

voltages is governed by a partial differential equation (Laplace equation) with ap-

propriate boundary conditions. Owing to the complexity of this relationship, it is in
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most cases impossible to obtain a closed-form solution for the resistivity distribu-

tion. Hence, various reconstruction algorithms have been developed in the literature

to estimate the internal resistivity distribution of the object.

However, most of the reconstruction algorithms presented so far are mainly fo-

cused on the case where the internal resistivity of the object is time-invariant within

the time taken to acquire a full set of independent measurement data. As is well

known, the conventional EIT imaging techniques such as backprojection or modi-

fied Newton-Raphson (mNR) algorithm use a full set of voltage measurements for

each image (Barber & Brown, 1984), (Yorkey et al, 1987). However, in real appli-

cations such as biomedical and chemical processes, these static imaging techniques

are often fail to obtain satisfactory temporal resolution for the reconstructed images

due to the rapid changes in resistivity.

More recently, dynamic imaging techniques have been developed to enhance

the temporal resolution of the reconstructed images in the situations where the re-

sistivity distribution inside the object changes rapidly in time. In most of these

techniques, the inverse reconstruction problem is treated as state estimation prob-

lem and the time-varying state is estimated with the aid of linearized Kalman filter

(LKF) (Vauhkonen et al, 1997, 1998, 2000) or extended Kalman filter (EKF) (Kim

et al, 2001). Although the LKF has the computational advantage that the Kalman

gain can be precomputed off-line and stored in a memory since the observation

equation is normally linearized about the nominal value or the best homogeneous

resistivity which is computed based on a set of voltage measurements, the rationale

for the choice of the EKF instead of the LKF is that the linearization state for the

LKF is usually not as close to the actual trajectory as is the predicted state used in

the EKF. Therefore, the EKF may have improved reconstruction performance es-

pecially in the situations in which the resistivity distribution changes greatly from

the assumed linearization state. The improvement is obtained with the expense of

slightly increased computational burden that is due to the updating the electrode

voltages and the Jacobian for each iteration. The detailed comparison between LKF

and EKF in EIT imaging is appeared in (Kim et al, 2001).

Quite often in real situations there are partially known fixed internal structures

and/or resistivities inside the object. These internal structures can be, for example,
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an impeller drive shaft or a mixing paddle in process vessels and an assembly of

fuel rods in nuclear reactor. The internal structures inside the object may results in

difficulties in the image reconstruction in EIT especially in the case where the high

resistive region is near the conductive internal structure (Heikkinen et al, 2001).

The so-called masking effect in the reconstructed image may be significant for the

high-contrast case. There are two ways to get around these difficulties; the one is to

take into account it as a prior information in the inverse procedure (Heikkinen et al,

2001) and the other is to use the internal structure as additional electrodes (Lyon &

Oakley, 1993), (Heikkinen et al, 2001). However, all of the above approaches are

for the case where the resistivity distribution inside the object is time-invariant for

one classical frame.

The objective of this thesis is to develop a dynamic EIT reconstruction algo-

rithm for the case where the fixed internal structure and/or its resistivity are known

partially and the resistivity distribution of the other part inside the object changes

rapidly within the time taken to acquire a full set of independent measurement data.

Special attention is given to use the known internal structure and/or resistivity as a

prior information. In the first method an additional constraint for the known internal

structure and/or its resistivity is incorporated into the cost functional as a prior in-

formation and in the second method the internal electrode is attached to the internal

structure in addition to the external electrodes. In two proposed methods the inverse

problem is treated as the state estimation problem and the unknown state (resistiv-

ity) is estimated with the aid of the EKF in a minimum mean square error sense. In

other to deal with the well known ill-posedness of the EIT inverse problem, smooth-

ness assumption is made and the modified Tikhonov regularization technique is also

introduced in the cost functional.

We carried out both computer simulations with synthetic data and laboratory

experiment with real measurement data extensively to illustrate the reconstruction

performance, and to investigate the effects of a prior information on the spatial and

temporal resolution for the assumed scenarios.

The thesis is organized as follows. After introduction in chapter I , a short review

on the reconstruction algorithm widely used in EIT for the static or dynamic recon-

struction is given in chapter a. The proposed algorithms are appeared in chapter
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b. In chapterc, computer simulations and experimental results are given to illus-

trate the effects of a prior information on the spatial and temporal reconstruction

performance. Conclusions are given in the final chapter.
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II. Image reconstruction methods in EIT

EIT is a relatively new imaging modality in which the internal impedivity distri-

bution is reconstructed based on the known sets of injected currents and measured

voltages on the array of electrodes which are attached on the boundary of an object.

The concept of EIT is depicted in Fig. 2.1.

Fig. 2.1. Concept of electrical impedance tomography

Image reconstruction in EIT is obtained by iteratively solving the forward prob-

lem and inverse problem. In the forward problem, boundary voltages are calculated

by using the assumed resistivity distribution. On the contrary, in the inverse prob-

lem, resistivity distribution is estimated by using the boundary voltage measure-

ments. Brief concept of forward and inverse problems is depicted in Fig. 2.2.

The EIT reconstruction problem is a nonlinear ill-posed inverse problem. To

solve the EIT inverse problem, many different reconstruction algorithms have been

proposed in the literature. One of the most common is the minimization of the

squared norm of the difference between the calculated voltages and the measured

voltages on the boundary electrodes. However, because of the ill-posed nature of the

problem, the minimization has to be regularized in order to obtain stable solution.
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Fig. 2.2. Forward vs. inverse problem in EIT

In section 2.1 we formulate the EIT forward problem based on the complete

electrode model (CEM) (Cheng et al, 1989),(Vauhkonen, 1997) and describe the

numerical solver by the finite element method (FEM). The inverse solver based on

the mNR and the EKF is presented in section 2.2.

2.1 Forward solver for the physical model of EIT

When electrical currents Il(l = 1, 2, . . . , L) are injected into the two-dimensional

object Ω through the electrodes el(l = 1, 2, . . . , L) attached on the boundary ∂Ω and

the resistivity distribution ρ(x, y) is known for the Ω, the corresponding electrical

potential u(x, y) on the Ω can be determined uniquely from the partial differential

equation, which can be derived from the Maxwell equations:

∇(ρ−1∇u) = 0 in Ω (2.1)

with the following boundary conditions based on the complete electrode model :

u + zlρ
−1 ∂u

∂n
= Ul on el, l = 1, 2, . . . , L (2.2)

∫

el

ρ−1 ∂u

∂n
dS = Il, l = 1, 2, . . . , L (2.3)
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ρ−1 ∂u

∂n
= 0 on ∂Ω\

L
⋃

l=1

el (2.4)

where zl is the effective contact impedance between lth electrode and electrolyte, Ul

is the potential on the lth electrode, el is lth electrode, n is outward unit normal, L

is number of electrodes, and ∂Ω\⋃L
l=1 el is the boundary except for the electrodes.

Although different form of the boundary conditions may be used in the forward

model, we choose the CEM that takes into account the discrete electrodes, effects

of the contact impedance, and the shunting effect of the electrodes.

In addition, the following two constraints for the injected currents and measured

voltages are needed to ensure the existence and uniqueness of the solution:

L
∑

l=1

Il = 0 (2.5)

L
∑

l=1

Ul = 0 (2.6)

The computation of the potential u(x, y) on the Ω and the voltages Ul on the elec-

trodes for the given resistivity distribution ρ(x, y) and boundary conditions is called

the forward problem. In general, the forward problem can not be solved analytically

we have to resort to the numerical method. There are different numerical methods

such as the finite difference method (FDM), boundary element method (BEM), and

finite element method (FEM). In this thesis, we used the FEM to obtain the numer-

ical solution.

In the FEM, the object area is discretized into sufficiently small elements having

a node at each corner and it is assumed that the resistivity distribution is constant

within each element.

Let M be the number of nodes in the finite element mesh. The potential u within

the object is approximated as

u ≈ uh(x) =
M
∑

i=1

αiφi(x) (2.7)
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and the potential on the electrodes represented as

Uh =
L−1
∑

j=1

βjnj (2.8)

where the function φi is the two-dimensional first order basis function and the bases

for the measurements are n1 = (1,−1, 0, · · · , 0)T , n2 = (1, 0,−1, · · · , 0)T , · · · ∈
<L×1 etc. That is, the potentials Uh

l on the electrodes are obtained as

Uh
1 =

L−1
∑

l=1

βl (2.9)

Uh
2 = −β1

Uh
3 = −β2

...

Uh
L = −βL−1

(2.10)

This can be written in the matrix form as

Uh = Nβ (2.11)

where N ∈ <L×(L−1) is a sparse matrix such that

N = (n1, n2, · · · , nL−1) =





















1 1 · · · 1

−1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1





















(2.12)

This choice for nj’s ensures that the condition of eq. (2.6) is fulfilled. The linear

equation obtained from the finite element formulation Ab = f is constructed such

that
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b =

(

α

β

)

∈ <M+L−1 (2.13)

A =

(

B CN

(CN)T NT DN

)

∈ <(M+L−1)×(M+L−1) (2.14)

f =

(

0

Ĩ

)

=

(

0
∑L

l=1 Il(nj)l

)

∈ <M+L−1 (2.15)

where α = (α1, α2, · · · , αM )T , β = (β1, β2, · · · , βL−1)
T , Ĩ = (I1 − I2, I1 −

I3, · · · , I1−IL)T ∈ <L−1 and 0 ∈ <M . And the elements of the matrix A (Vauhko-

nen, 1997) are

B(i, j) =

∫

Ω

1

ρ
∇φi∇φjdxdy +

L
∑

l=1

1

zl

∫

ej

φiφjdS, i, j = 1, 2, . . . , L (2.16)

C(i, j) = − 1

zj

∫

ej

φidS, i = 1, 2, . . . , M, j = 1, 2, . . . , L (2.17)

D(i, j) =

{

0 i 6= j
|ei|
zj

i = j
, i, j = 1, 2, . . . , L (2.18)

where |ei| is the length of the electrode i.

2.2 Inverse solver for the image reconstruction

The forward problem is to find a unique effect of a given cause by using appropriate

physical model. On the contrary, the inverse problems can be interpreted as finding

the cause of a given effect or finding the physical law given the cause and effect.

These inverse problems do not necessarily have unique and stable solutions and

small changes in the data can cause large changes in the solution. Many inverse

problems, including EIT, are ill-posed and therefore the problem has to be modified

in order to obtain a stable solution. So, the idea of regularization is to replace the

ill-posed problem by a nearby well-posed problem.
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Image reconstruction in EIT is an inverse problem in which the resistivity distri-

bution of the interior is estimated based on the injected currents and corresponding

measured voltages on the boundary of the object.

2.2.1 Modified Newton-Rapson method (mNR)

The inverse problem of EIT maps the boundary voltages from experiments to re-

sistivity image. The objective function may be chosen to minimize the error in the

least square sense,

Φ(ρ) =
1

2
[V (ρ) − U ]T [V (ρ) − U ] (2.19)

where U ∈ <LK×1 is the vector of measured voltage and V (ρ) ∈ <LK×1 is the

calculated boundary voltage vector that must be matched U .

To find ρ which minimizes the above object function, its derivative is set to zero

as:

Φ′(ρ) =
[

V ′(ρ)
]T

[V (ρ) − U ] = 0 (2.20)

where [V ′]ij = Jij = ∂Vi

∂ρj
is the Jacobian matrix. The solution of the above eq.

(2.20) uses the Newton-Raphson linearization about a resistivity vector ρi at ith

iteration as

Φ′(ρi+1) = Φ′(ρi) + Φ′′(ρi)(ρi+1 − ρi) = 0 (2.21)

The term Φ′′ is called the Hessian matrix, expressed as

Φ′′ =
[

V ′
]T

V ′ +
[

V ′′
]T {I ⊗ [V − U ]} (2.22)

where ⊗ is the Kronecker matrix product. Since V ′′ is difficult to calculate and rel-

atively small, the second term in the above eq. (2.22) is usually omitted. Therefore

the Hessian matrix is modified as
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Φ′′ =
[

V ′
]T

V ′ = J ′J = H (2.23)

Thus, the iterative equation for updating the resistivity vector based on the above

regularized object function is expressed as

ρi+1 = ρi − H−1{JT
[

V (ρi) − U
]

} (2.24)

where J and H are the Jacobian and the Hessian matrix, respectively.

2.2.2 Modified Newton-Rapson method with Tikhonov regularization

The Hessian matrix is known to be ill-conditioned, which then degrades the perfor-

mance of the image reconstruction algorithm. To mitigate this problem, the objec-

tive function that should be minimized is regularized as:

Φ(ρ) =
1

2
{[V (ρ) − U ]T [V (ρ) − U ] + α [R(ρ − ρ∗)]T [R(ρ − ρ∗)]} (2.25)

where R is the regularization matrix, α is the regularization parameter and ρ∗ is the

assumed resistivity vector.

Consider first a special case in which R = I and ρ∗ = 0. This is called the

standard Tikhonov regularization method that has been widely used in EIT inverse

problems. Consequently, the iterative equation to update the resistivity vector based

on the above regularized object function (2.25) is derived as

ρi+1 = ρi − (H + αI)−1{JT
[

V (ρi) − U
]

+ αρi} (2.26)

In more general case in which R 6= I , so-called the generalized Tikhonov regu-

larization (Vauhkonen, 1997), the iterative equation to update the resistivity vector

based on the above regularized object function (2.25) is derived as

ρi+1 = ρi − (H + αRT R)−1{JT
[

V (ρi) − U
]

+ αRT R(ρi − ρ∗)} (2.27)
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where α is regularization parameter which is chosen a posteriori. One popular

conventional method for the choice for the regularization matrix R is a difference

type matrix on the basis of the generalized Tikhonov regularization technique by

the smoothness assumptions in resistivity distributions (Vauhkonen, 1997). In this

method, the resistivity distribution is parameterized such that

ρ =
N
∑

n=1

ρnXn (2.28)

where Xn is the characteristic function of the nth finite element. The ith row of R

is

Ri = (0, 0, · · · , 0,−1, 0, · · · , 0,−1, 0, · · · , 0, 3, 0, · · · , 0,−1, 0, · · · , 0) (2.29)

where 3 is located at the ith column and −1 is placed in the columns corresponding

to elements having common edge with the ith element.

2.2.3 Extended Kalman filter

In case where the resistivity distribution inside the object changes rapidly within

the time taken to acquire a full set of independent measurement data, the conven-

tional imaging techniques which need a full set of voltage measurements for each

image often fail to obtain satisfactory temporal information on the resistivity distri-

bution. We consider the underlying inverse problem as a state estimation problem to

estimate rapidly time-varying distribution of the resistivity. In the state estimation

problem, we need so-called the dynamic model which consists of the state equation,

i.e., for the temporal evolution of the resistivity and the observation equation, i.e.,

for the relationship between the resistivity and boundary voltage.

In general, the temporal evolution of the resistivity distribution ρk in the ob-

ject Ω is related by the nonlinear mapping. Here, the state equation is assumed to

be of the linear form, of which the modelling uncertainty is compensated by the

noise since there is no other information on the temporal evolution of the resistivity

distribution in EIT.
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ρk+1 = Fkρk + wk (2.30)

where Fk ∈ <N×N is the state transition matrix at time k and N is the number of

finite elements in the FEM. In particular, we take Fk = IN where IN ∈ <N×N is

an identity matrix, to obtain the so-called random-walk model. It is assumed that

the process error, wk is white Gaussian noise with the following covariance which

determines the rate of changes in resistivity distribution

E[wkw
T
k ] = Γw

k (2.31)

Let Uk ∈ <L, defined as

Uk ≡ [U1
k , U2

k , · · · , UL
k ]T (2.32)

be the surface measurement voltages induced by the kth current pattern. Then the

observation equation can be described as the following nonlinear mapping with

measurement error

Uk = Vk(ρk) + νk (2.33)

where the measurement error νk is assumed to be white Gaussian noise with co-

variance

E[νkν
T
k ] = Γν

k (2.34)

Linearizing (2.33) about the latest predicted state ρk|k−1 we obtain

Uk = Vk(ρk|k−1) + Jk(ρk|k−1) · (ρk − ρk|k−1) + H.O.Ts + νk (2.35)
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where H.O.Ts represents the higher-order terms which will be considered as addi-

tional noise, and Jk(ρk|k−1) ∈ <L×N is the Jacobian matrix defined by

Jk(ρk|k−1) ≡
∂Vk

∂ρ

∣

∣

∣

∣

ρ=ρk|k−1

(2.36)

Let us define the pseudo-measurement (artificial-measurement) as

yk ≡ Uk − Vk(ρk|k−1) + Jk(ρk|k−1) · ρk|k−1 (2.37)

Then we obtain the linearized observation equation by considering the H.O.Ts in

eq. (2.35) as additional noise

yk = Jk(ρk|k−1) · ρk + νk (2.38)

where νk is composed of measurement error and linearization error and also as-

sumed to be white Gaussian noise with covariance as

E[νkν
T
k ] = Γk (2.39)

In Kalman filtering we estimate the state ρk based on all the measurements taken

up to the time k. With the Gaussian assumptions the required estimate is obtained

by minimizing the cost functional which is formulated based on the above state

and observation eqs. (2.30) and (2.38), respectively. The cost functional for the

conventional Kalman filter is of the form

Ξa(ρk) =
1

2
{‖ρk − ρk|k−1‖2

C−1
k|k−1

+ ‖yk − Jk(ρk|k−1) · ρk‖2
Γ−1

k

} (2.40)

where Ck|k−1 ∈ <N×N is the time-updated error covariance matrix, which is de-

fined by
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Ck|k−1 ≡ E[(ρk − ρk|k−1)(ρk − ρk|k−1)
T ] (2.41)

In order to mitigate the inherent ill-conditioned nature of the EIT inverse problem,

additional constraint is included in the cost functional as in eq. (2.40)

Ξb(ρk) =
1

2
{‖ρk−ρk|k−1‖2

C−1
k|k−1

+‖yk−Jk(ρk|k−1) ·ρk‖2
Γ−1

k

+α‖Rρk‖2} (2.42)

where α is regularization parameter which is chosen empirically, and R is regular-

ization matrix.

Define the augmented pseudo measurement, yk ∈ <(L+N)×1 and pseudo-mea-

surement matrix, Hk ∈ <(L+N)×N as

yk ≡
(

yk

0

)

and Hk ≡
(

Jk√
αR

)

, (2.43)

respectively. Then the cost functional, eq. (2.42) can be rearranged as

Ξb(ρk) =
1

2
{‖ρk − ρk|k−1‖2

C−1
k|k−1

+ ‖yk − Hkρk‖2

Γ
−1
k

} (2.44)

where the augmented covariance matrix, Γk ∈ <(L+N)×(L+N) is defined by

Γk ≡ Blockdiag[Γk, IN ] (2.45)

Minimizing the cost functional in eq. (2.44) and solving for the updates of the asso-

ciated covariance matrices we obtain the recursive extended Kalman filter algorithm

(EKF) which consists of the following two steps (Gelb, 1974), (Grewal & Andrews,

1993), (Kim et al, 2001):

(i)Measurement Updating Step (Filtering)

16



Gk = Ck|k−1H
T
k [HkCk|k−1H

T
k + Γk]

−1 (2.46)

Ck|k = (I − GkHk)Ck|k−1 (2.47)

ρk|k = ρk|k−1 + Gk[yk − Hkρk|k−1] (2.48)

(ii) Time Updating Step (Prediction)

Ck+1|k = FkCk|kF
T
k + Γw

k (2.49)

ρk+1|k = Fkρk|k (2.50)

Hence, we can find the estimated state ρk|k for the true state ρk in a recursive mini-

mum mean square error sense for k = 1, 2, . . . , rK, where K is the number of the

independent current patterns and r is the number of the classical frames.

2.2.4 Calculation of Jacobian

The Jacobian matrix

J =









∂U(1)

∂ρ1
· · · ∂U(1)

∂ρN

... · · · ...
∂U(K)

∂ρ1
· · · ∂U(K)

∂ρN









(2.51)

where U (K) ∈ <L is the vector induced by kth current pattern, can be computed by

the standard method (Vauhkonen, 1997).

From the finite element formulation Ab = f , the n’th column of the Jacobian J

can be obtained from

∂b

∂ρn
=

∂(A−1f)

∂ρn
= −A−1 ∂A

∂ρn
A−1f = −A−1 ∂A

∂ρn
b (2.52)

in which ∂A(m,i)
∂ρn

= − 1
ρ2

n

∫

4n
∇φm∇φidxdy . Here, 4n is the element with respect

to which the derivative is calculated.
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In the FEM discretization, the L − 1 last lows of ∂b
∂ρn

correspond to the deriva-

tives of the electrode voltages from which the derivative ∂U(k)

∂ρn
can be computed by

using eq. (2.9) ˜(2.11).
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III. Dynamical electrical impedance tomography

with prior information

In the previous chapter, dynamic imaging techniques have been developed to en-

hance the temporal resolution of the reconstructed images in the situations where

the resistivity distribution inside the object changes rapidly in time. In most of these

techniques, the inverse reconstruction problem is treated as state estimation problem

and the time-varying state is estimated with the aid of LKF or EKF.

In real situations there are partially known fixed internal structures and/or resis-

tivities inside the object. These internal structures can be, for example, an impeller

drive shaft or a mixing paddle in process vessels and an assembly of fuel rods in

nuclear reactor. The internal structures inside the object may results in difficulties

in the image reconstruction in EIT especially in the case where the high resistive

region is near the conductive internal structure. The so-called masking effect in the

reconstructed image may be significant for the high-contrast case. There are two

ways to get around these difficulties; the one is to use the internal structure as addi-

tional electrodes and the other is to take into account it as a prior information in the

inverse procedure (Heikkinen et al, 2001). That is the available prior information

can be included into the dynamic image reconstruction algorithm. If we have some

prior knowledge on the location and possibly the resistivity of the structure, it would

be desirable to implement it into the inverse problem. The location of the internal

structure can be included in the mesh that is used in the image reconstruction and

the edges of the structure as well as the resistivity value can be considered in the

regularization of the solution.

We proposed to develop a dynamic EIT reconstruction algorithm for the case

where the fixed internal structure and/or its resistivity are known partially and the

resistivity distribution of the other part inside the object changes rapidly within the

time taken to acquire a full set of independent measurement data. To achieve the

purpose, in section 3.1 we propose method EKF-SR, an additional constraint for the
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known internal structure and/or its resistivity is incorporated into the cost functional

as a prior information. In section 3.2, we propose method EKF-IE. This method is

to use the internal known structure as additional electrodes.

The proposed inverse problems are treated as the state estimation problem and

the unknown state (resistivity) is estimated with the aid of the EKF in a minimum

mean square error sense. In other to deal with the well known ill-posedness of the

EIT inverse problem, smoothness assumption is made and the modified Tikhonov

regularization technique is also introduced in the cost functional. In doing so, we

can enhance the temporal and spatial resolution for the reconstructed image.

3.1 Partially known internal structure & resistivity (EKF-SR)

Sometimes in real situations, there are partially known internal structures and/or

its resistivities. These additional information inside the object can be taken into

account as a prior information in the cost functional as

Ξ(ρk) = 1
2{‖ρk − ρk|k−1‖2

C−1
k|k−1

+ ‖yk − Jk(ρk|k−1) · ρk‖2
Γ−1

k

+α‖R∗ρk‖2 + β‖L(ρk − ρ∗)‖2}
(3.1)

where R∗ is obtained from R by removing the −1 in eq. (2.29) that corresponds

to element having common edge with the known internal structure. In that case,

the number 3 in eq. (2.29) is also replaced by 2 since the smoothness assumption

is violated between the known element and background. The norm in the last two

terms in eq. (3.1) is the common 2-norm without any weighting factor. In eq. (3.1),

the sparse matrix L is constructed to pick out the elements corresponding to the

known structure. If we know the location and resistivities of P elements inside the

object, ρ∗ ∈ <N is constructed such that it contains resistivity of P elements cor-

responding to the known structure and zeros of N − P elements and the dimension

of the extraction matrix is L ∈ <P×N . The ith row of the extraction matrix, Li is

constructed such that it contains zeros for (N − 1) elements and only one 1 at the

jth column if the resistivity of the jth element is assumed to be known. In addition,

β is another weighting factor representing the confidence on the assumed resistivity
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of the internal known structure. The value of β can be chosen to be large if the

resistivities of the internal structure are known accurately. If we know the location

of the internal structure but not the resistivity, the value of β is equal to zero.

Define the augmented pseudo-measurement, Yk ∈ <(L+N+P )×1 and pseudo

measurement matrix, Hk ∈ <(L+N+P )×N as

Yk ≡









yk

0
√

βLρ∗









and Hk ≡









Jk√
αR∗

√
βL









(3.2)

Then the cost functional (3.1) can be rearranged as

Ξ(ρk) =
1

2
{‖ρk − ρk|k−1‖2

C−1
k|k−1

+ ‖Yk − Hkρk‖2
Γ−1} (3.3)

where the augmented covariance matrix, Γ ∈ <(L+N+P )×(L+N+P ) is defined by

Γ ≡ Blockdiag[Γk, IN , IP ] (3.4)

Minimizing the cost functional in eq. (3.3) and solving for the updates of the associ-

ated covariance matrices we obtain the recursive extended Kalman filter algorithm

which consists of the following two steps:

(i)Measurement Updating Step (Filtering)

Gk = Ck|k−1H
T
k [HkCk|k−1H

T
k + Γ]−1 (3.5)

Ck|k = (I − GkHk)Ck|k−1 (3.6)

ρk|k = ρk|k−1 + Gk[Yk − Hkρk|k−1] (3.7)

(ii) Time Updating Step (Prediction)

Ck+1|k = FkCk|kF
T
k + Γw

k (3.8)
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ρk+1|k = Fkρk|k (3.9)

As a result, the only difference between the conventional EKF and the proposed

EKF-SR which includes a prior information for the partially known internal struc-

ture is that the dimension of the measurement updating procedure is increased.

3.2 Internal electrode attached to the known internal structure (EKF-
IE)

The sensitivity of EIT depends on the current density inside the object. In the areas

where the current density is low the resistivity changes may not cause detectable

changes on the measured voltages on the electrodes. In conventional EIT one uses

only the electrodes attached on the surface of the object. Thus, the current density

in the center of the object is quite low and the sensitivity is poor.

In some cases, there are prior known internal structures of the object that could

be used as internal electrodes. By injecting currents through the internal electrode

the current density and the sensitivity can be increased.

The purpose of this section is to develop a dynamic EIT reconstruction method

for the case where the fixed internal structure which used as internal electrodes.

The inverse problem is treated as the state estimation problem and the unknown

state (resistivity) is estimated with the aid of the EKF consists of the above eqs.

(2.46)˜(2.50). In other to deal with the well-known ill-posedness of the EIT inverse

problem, smoothness assumption is made and the modified Tikhonov regularization

technique is also introduced in the cost functional as R∗ in section 3.1. That is, Ri

in eq. (2.29) that corresponds to element of the internal electrode is replaced as

R∗
i = (0, 0, · · · , 0,−1, 0, · · · , 0, 0, 0, · · · , 0, 2, 0, · · · , 0,−1, 0, · · · , 0) (3.10)
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IV. Computer simulations & experimental results

4.1 Partially known internal structure & resistivity

We carried out both the computer simulations with synthetic data and experiments

with real measurement data to evaluate the reconstruction performance of the pro-

posed algorithm. In both cases, the complete electrode model with 32 electrodes(L)

and trigonometric current patterns with two classical frames(r) were employed. For

convenience, we assumed that the structure and/or its resistivity located at center of

the object are known a prior. The trigonometric current patterns for one classical

frame are of the form

Ik(l) = Mk cos(kζl), l = 1, 2, . . . , L, k = 1, 2, . . . , L
2

= Mk sin((k − L
2 )ζl), l = 1, 2, . . . , L, k = L

2 + 1, . . . , L − 1
(4.1)

where ζl = 2πl/L and the amplitude of the injected current Mk is set to 1 for all k.

The FEM meshes used for the forward and inverse solvers are shown in Fig. 4.1

(a) and (b), respectively. In the forward computations we used the FEM with a mesh

of 3104 elements and 1681 nodes(M). In the inverse computations, we used the

FEM with a mesh of 776 elements(N) and 453 nodes to reduce the computational

burden and mitigate the ill-posed characteristics of the inverse problem.

To compare the reconstruction performance, we used the modified Newton-

Raphson algorithm with partially known internal structure and resistivities (mNR-

SR) (Heikkinen et al, 2001), dynamic algorithm with the extended Kalman filter

(EKF) (Kim et al, 2001), and the extended Kalman filter with partially known inter-

nal structure and resistivities (EKF-SR) which is described in this thesis. The pa-

rameters used for the three methods are as follows. The regularization parameter(α)

is set to 0.1 and 1.0 in the simulation and experiment, respectively. The weighting

factor(β) for a prior information in EKF-SR is set to 1.0 and 10.0 in the simula-

tion and experiment, respectively. The initial resistivity value is set to the same as
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Fig. 4.1. FEM meshes for (a) forward solver and (b) inverse solver.

the background value in all cases. For simplicity, it is assumed that the covariance

matrices for all the EKFs are diagonal and time-invariant. The covariance matrix

for process noise(Γw
k ) is 10IN and 0.1IN in the simulation and experiment, respec-

tively. The covariance matrix for measurement noise(Γk) is 10−6IL and 10−2IL

in the simulation and experiment, respectively. The initial value for the state error

covariance matrix(C1|0) is IN in both cases.

4.1.1 Computer simulation results

We generated the following sequence of resistivity distributions to simulate a dy-

namic situation. We assumed that there is known conductive circular structure (2cm

in diameter, resistivity of 10Ωcm) located at the center of the domain. An almost

circular-type target (resistivity of 600Ωcm) was moved abruptly to the opposite site

through near the center after 16 current patterns in a circular domain (8cm in diam-

eter, 300Ωcm background resistivity) as depicted in the first column of Fig. 4.2.

Fig. 4.2 shows the reconstructed images for the three methods in which the

color-bar represents resistivity value. The images in the second column are recon-

structed by the EKF. As can be seen clearly, the location (temporal resolution) of

the moving target is rather misleading especially when the target is located near the

conductive center of the domain (2nd and 3rd rows in the 2nd column). It seems

that the error may be generated from the masking effect for the high-contrast ratio

(in this case the contrast ratio is 60 : 1). Also, the background was severely blurred

by the conductive circular structure. The third column represents the reconstructed
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Fig. 4.2. Reconstructed images from the computer simulation. (a) True images, (b)

reconstructed images by the EKF, (c) reconstructed images by the EKF-SR when

β = 0, (d) reconstructed images by the EKF-SR when β = 1, and (e) reconstructed

images by the mNR-SR.

images from the EKF-SR when β = 0. This case means that we know only the

location of internal structure. The images obtained for the first frame (1st and 2nd

rows in the 3rd column) are similar to those of the EKF. However, the images ob-

tained for the second frame (3rd and 4th rows in the 3rd column) are more clear

than those of the EKF. The fourth column represents the reconstructed images from

the EKF-SR when β = 1. As can be expected, the reconstruction performance is

improved qualitatively in terms of the temporal and spatial resolution. The recon-

structed images obtained from the mNR-SR (5th column) are also blurred and the

information on the time-variability of the moving target is lost since it requires a

full set of measurement data.

4.1.2 Experimental results

We have developed an EIT measurement system (Fig. 4.3) that consists of a pentium

PC, data acquisition board and control software, current generator and switching

board, and a cylindrical phantom with 32 electrodes that cover approximately 55%

of the inner circumference. The phantom simulates a two-dimensional situation.
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Fig. 4.3. EIT measurement system

The cylindrical phantom (8cm in diameter) was filled up with saline (NaCl) hav-

ing resistivity of approximately 330Ωcm. We placed cylindrical iron rod (1.3cm in

diameter, resistivity of 0.5Ωcm) at the center of the phantom and one or two cylin-

drical plastic target (2cm in diameter) was moved abruptly after every 16 current

patterns (1st column of Fig. 4.4) to simulate more complex dynamic system with

partially known internal structure.

Fig. 4.4 (b), (c), (d), and (e) shows the reconstructed images obtained by the

EKF, EKF-SR when β = 0, EKF-SR when β = 10, and mNR-SR, respectively. As

can be seen in these Figs, the reconstructed images from the EKF and EKF-SR when

β = 0 for the moving targets near the center are obscure while those from the EKF-

SR when β = 10 are more visible. As in the simulation results, it is also pointed

that the employed a prior information located at the center has a significant effect

on the reconstruction performance of the moving targets located near the center.

Compared to the simulations the reconstruction performance is worse with real

measurements. For example, the truly homogeneous background is more nonhomo-

geneous in the experiment than in the simulation and also the moving target is not

as clearly discerned. These artifacts can be due to the random noise in the measure-

ments but this does not explain a systematic artifact that can be seen in the center

of the tank, near the rod. Possible explanations for this are that the rod was bigger

(1.3cm in diameter) in the experiment than it was assumed to be (1.0cm), when the

reconstruction was carried out.
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Fig. 4.4. Reconstructed images from the experiment. (a) True images, (b) recon-

structed images by the EKF, (c) reconstructed images by the EKF-SR when β = 0,

(d) reconstructed images by the EKF-SR when β = 10, and (e) reconstructed im-

ages by the mNR-SR.

4.1.3 Errors in the reconstructions

We also computed errors in the reconstructions for EKF and for the EKF-SR with

β = 0 and β = 1. The error (RMSE) for each current pattern k was computed as

RMSE(k) =

√

(ρk − ρk|k)T (ρk − ρk|k)

ρT
k ρk

(4.2)

where ρk and ρk|k are the true resistivity distribution and the estimated resistivity

distribution at the kth current pattern, respectively. The result is shown in Fig. 4.5.

As it can be seen from Fig. 4.5, the error in the image reconstruction is dra-

matically reduced in the simulation, when the internal structure is considered in the

reconstruction procedure.

4.1.4 Effects of parameter values (α, β) on the reconstruction performance

In order to investigate how the parameters α and β affect the image reconstruction,

we choose the simulation (Fig. 4.2) and made the EKF-SR reconstructions with

different choices for α and β.
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Fig. 4.5. Reconstruction errors RMSE for the simulation. (+) is for EKF, (♦) for

EKF-SR with β = 0 and (*) for EKF-SR with β = 1.
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Fig. 4.6. Reconstructed images (in Ωcm) from the variable β tests. The parameter

α was fixed to 0.1. Reconstruction with (a) β = 0, (b) β = 10−4, (c) β = 10−2, (d)

β = 0.2, (e) β = 1, and (f) β = 10.
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Fig. 4.7. Reconstructed images (in Ωcm) from the variable α tests. The parameter

β was fixed to 0.01. Reconstruction with (a) α = 10−4, (b) α = 10−2, (c) α = 0.1,

and (d) α = 1.
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Fig. 4.8. Reconstructed images (in Ωcm) from the variable α tests. The parameter

β was fixed to 1. Reconstruction with (a) α = 10−6, (b) α = 10−3, (c) α = 10−2,

(d) α = 0.1, (e) α = 0.3, and (f) α = 0.5.
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In Fig. 4.6, we fixed the α value to 0.1 and changed the β value from 0 to 10.

As we can see in eq. (3.1) in the manuscript, β is weighting factor for the assumed

resistivity of the internal structure. If we give a large value for β this means that we

strongly believe that the resistivity of the internal structure is ρ∗. As can be expected,

we increase the value of β we see more enhanced reconstruction performance for

the known internal structure since the resistivity is forced to be close to the given

ρ∗.

The regularization parameter α includes two types of information when con-

nected to R∗. Firstly, as we increase α we get smooth results almost everywhere,

except on the boundary of the internal structure. Secondly, the internal structure

becomes more pronounced as we increase α since the regularization includes the

information on the jump between the structure and the background.

This effect can be seen in the Figs. 4.7 and 4.8. Large value for α gives very

sharp image of the internal structure, diminishing the image of the target at the

same time. Too large value for α lost the target completely due to the smoothness

assumption. In addition, as shown in Fig. 4.8 with β = 1, if β is large enough, α is

not needed for making the internal structure distinct.

4.2 Internal electrode attached to the known internal structure

We carried out extensive computer simulations with synthetic data to evaluate the

reconstruction performance of the proposed algorithm.

The FEM meshes without internal electrode used for the forward and inverse

solvers are shown in Fig. 4.9 (a) and (b), respectively. In the forward computations

we used the FEM with a mesh of 2400 elements and 1281 nodes. In the inverse

computations, we used the FEM with a mesh of 600 elements and 341 nodes. For

the current injection and corresponding voltage measurement, traditional adjacent

method (Webster, 1990) was employed through 16 boundary electrodes(L) so that

the total measurement voltage data were 256(16 × 16).

The FEM meshes with a single internal electrode used for the forward and in-

verse solvers are shown in Fig. 4.10 (a) and (b), respectively. In the forward com-

putations we used the FEM with a mesh of 2480 elements and 1336 nodes. In the
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Fig. 4.9. FEM meshes without internal electrode used for (a) forward solver and (b)

inverse solver.
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Fig. 4.10. FEM meshes with an internal electrode used for (a) forward solver and

(b) inverse solver.

inverse computations, we used the FEM with a mesh of 620 elements and 358 nodes.

We injected electrical current between 16 boundary electrodes and the internal elec-

trode and measured the corresponding voltage on the 17 electrodes (L) so that the

total measurement voltage data were 272(17 × 16).

To compare the reconstruction performance, we used the static algorithm based

on the modified Newton-Raphson algorithm with internal electrode (mNR-IE) (Heikki-

nen et al, 2001), dynamic algorithm based on the extended Kalman filter (EKF)

(Kim et al, 2001), and the extended Kalman filter with internal electrode (EKF-IE)

described in this thesis. The parameters used for the three methods are as follows.

The regularization parameter (α) is set to 0.5 in both simulations. The initial resis-

tivity value is set to the same as the background value in all cases. For simplicity,
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it is assumed that the covariance matrices for all the EKFs are diagonal and time-

invariant. The covariance matrix for process noise (Γw
k ) is 10IN , the covariance

matrix for measurement noise(Γk) is 0.0001IN and the initial value for the state

error covariance matrix (C1|0) is IN in both simulations.

4.2.1 The first simulation results

For the verification of the proposed model, we simulate in a circular domain (8cm in

diameter). It is assumed that there is a known conductive circular structure (about

1cm in diameter, 0.0001Ωcm in resistivity), which is located at the center and is

used as an internal electrode.

We generated the following sequence of resistivity distributions to simulate a

dynamic situation. We assume a single anomaly emerges and disappears, and then,

three anomalies emerge and disappear. The background resistivity and the anomaly

resistivity are set to 300Ωcm and 600Ωcm, respectively. The simulated evolution

of the resistivity distribution is depicted in Fig. 4.11 (a). Each transient interval

is equivalent to 4 current injections. Also, In order to make the simulation more

realistic, we assume that the measured boundary voltages are contaminated by the

measurement error of 1%.

Fig. 4.11 shows the reconstructed images for the three methods. The images

in Fig. 4.11(b) are reconstructed by the EKF without internal electrode. As can

be seen clearly, the location (temporal resolution) of the moving target is rather

misleading. It seems that the error may be generated from the masking effect for the

high-contrast. The Fig. 4.11(c) represents the reconstructed images from the EKF-

IE. As can be expected, the reconstruction performance is improved qualitatively

in terms of the temporal and spatial resolution. The reconstructed images in Fig.

4.11(d) obtained from the mNR-IE are also vague and the information on the time-

variability of the moving target is lost since it requires a full set of measurement

data.

4.2.2 The second simulation results

In the second simulation, we assume the same condition for the internal structure

and the resistivity values as in the first simulation. In the measurement of boundary

voltages, as in the first simulation, random error of 1% is included. However, a
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different evolution of mixture distribution is considered as shown in Fig. 4.12(a).

As much similar to the results from the first simulation, mNR-IE cannot ex-

tract any useful information from the EIT image reconstruction. Even with EKF,

the reconstruction seems to be more deteriorated compared to the first simulation.

It should be noted that in this simulation we intentionally place two anomalies and

the conductive internal structure close together. Then, resistive anomalies impede

electrical current flowing to the conductive internal structure and the spatial reso-

lution is expected to substantially worsen. However, the utilization of the internal

electrode improves the spatial resolution in Fig. 4.12(c).

4.2.3 Effects of parameter value (α) on the reconstruction performance

To investigate how the regularization parameter affects the image reconstruction,

we made EKF-IE reconstructions for the same scenario as the first simulation with

different choices for α. The results are shown in Fig. 4.13. As we can see from eq.

(2.42), α is the weighting factor for the Tikhonov regularization. As we increase

the value of α from 5 × 10−6 to 5 we get very homogeneous background images,

but diminishing the sharpness for the moving target at the same time. Generally

speaking, too small a value for α results in continued instability of the solution,

whereas too large a value results in an overregularized solution that, while stable,

has an unnecessarily large reconstruction error.

4.2.4 Effects of the measurement and linearization error on the reconstruc-
tion performance

In order to see how the uncertainty νk in the measurement eq. (2.38) affects the

image reconstruction, we chose the first simulation and made the EKF-IE recon-

structions with different choices for the noise level. As can be seen from the Fig.

4.14, the reconstruction performance of the EKF-IE deteriorates if we increase the

level of the noise. As can be expected, too high level of the uncertainty lost the

targets completely as in the last column of the Fig. 4.14.
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Fig. 4.11. Reconstructed images for the first simulation. (a) True images, (b) recon-

structions with EKF, (c) reconstructions with EKF-IE, and (d) reconstructions with

mNR-IE.
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Fig. 4.12. Reconstructed images for the second simulation. (a) True images, (b)

reconstructions with EKF, (c) reconstructions with EKF-IE, and (d) reconstructions

with mNR-IE.
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Fig. 4.13. Reconstructed images for the first simulation with different values of α.

Reconstruction with (a) α = 5 × 10−6, (b) α = 0.05, (c) α = 0.3, (d) α = 0.5, (e)

α = 1, and (f) α = 5.
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Fig. 4.14. Reconstructed images for the first simulation with different noise levels.

Reconstruction with (a) free noise, (b) 0.5% noise, (c) 2.0% noise, (d) 3.0% noise ,

and (e) 9.0% noise.
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V. Conclusions

In usual static EIT techniques, the internal resistivity distribution is assumed to be

stationary during the measurement of the required full set of independent EIT data.

Quite often in real situations, however, the object to be visualized may undergo

severe transient. The situation considered in this thesis is the application of the EIT

technique to the visualization of resistivity distribution under rapid transient within

the time taken to acquire a full set of independent measurement data. In addition,

there are partially known fixed internal structures and resistivity inside the object.

For the dynamic electrical impedance imaging with prior information, EIT in-

verse problem is formulated as a state estimation problem and the state (resistivity

distribution) is estimated with the aid of EKF after the voltage measurements cor-

responding to each current pattern. Additional information for the known internal

structure and its resistivity is incorporated in the cost functional as prior information

so that the measurement updating procedure in the EKF is modified slightly (EKF-

SR). In addition, internal electrode is attached to the internal structure in addition to

the external electrodes to improve the spatial resolution of the reconstruction image.

The reconstruction performance of the proposed dynamic reconstruction algo-

rithms (EKF-SR and EKF-IE) was compared with that of the existing algorithms

through computer simulations and laboratory experiments. The results show that the

proposed methods improve reconstruction performance significantly in the sense of

the spatial and temporal resolution.

Of course, there are many alternatives to the extended Kalman filter used in

this thesis. For example, LKF can be replaced by the EKF to reduce the on-line

computational burden. Further research will be carried out to test the reconstruction

performance of the proposed technique for more complicated real situations.
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Summary

Electrical impedance tomography (EIT) is a relatively new imaging modality in

which the internal impedivity distribution is reconstructed based on the known sets

of injected currents and measured voltages on the an array of electrodes which are

attached on the boundary of an object.

In this thesis, dynamic EIT imaging techniques are described for the case where

the fixed internal structure and/or its resistivity are known partially and the resistiv-

ity distribution of the other part inside the object changes rapidly within the time

taken to acquire a full set of independent measurement data. Two methods are

proposed to enhance reconstruction performance in EIT, in which available prior

information is exploited. In the first method, an additional constraint for the known

internal structure and/or its resistivity is incorporated into the cost functional as a

prior information and in the second method the internal electrode is attached to

the internal structure in addition to the external electrodes. The inverse problem is

treated as the state estimation problem and the unknown state (resistivity) is esti-

mated with the aid of the extended Kalman filter in a minimum mean square er-

ror sense. In other to deal with the well known ill-posedness of the EIT inverse

problem, smoothness assumption is made and the modified Tikhonov regularization

technique is also employed in the cost functional.

To illustrate the reconstruction performance of the proposed algorithm, we car-

ried out extensive computer simulations for synthetic and experimental data. The

results show that the proposed algorithm has enhanced reconstruction performance

than that of the existing methods in the sense of temporal and spatial resolution.
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