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1. Introduction

The notion of a fuzzy set was introduced by Zadeh[6] and the theory of
fuzzy sets have been used to model situations where knowledge is impre-
cise. This imprecision is presumed to arise when dealing with concepts that
are ill-defined. We shall base our theory on the work of Stein and Talati
(10]. In that paper, they defined the concept of a fuzzy variable X as a
real-valued function defined on an arbitrary set I' and proved some proper-
ties of fuzzy variables and their membership functions. They defined also
a fuzzy random wariable Z : Q@ — R as a fuzzy variable valued function
defined on a probability space (2, F, P). The set § is a sample space and we
assume that a probability measure P is defined on a o-algebra F of subsets
of © while RT represents all real-valued functions defined on I'. For some
fuzzy random variables Zy, .-, Z,, we proved the convergence of sequence
{Z,l = ;(Z 1+---+Z,)} and find the sufficient condition for the convergence
of sequence of their membership functions.

The organization of this paper is as follows. In Section 2, we review
certain properties of fuzzy variables and relationship for their membership
functions. We define the convex fuzzy variable and observe properties of the
convex fuzzy variables. In Section 3, we define the fuzzy random variable and
its expectation as a fuzzy variable and find the membership function of the
expectation of fuzzy random variable. We investigate properties of the expec-
tation of fuzzy random variable and its membership function. Furthermore,
we study the relationship hetween expectation of fuzzy random variable, its
membership function, and convex fuzzy variable. We carry over usual lin-

ear properties of probabilitic expectation to fuzzy random variable and view



linear properties of expectation of fuzzy random variables. In Section 4, we
define the convergence of sequences of fuzzy variables and fuzzy randon vari-
ables and then prove the convergence of sequences of a fuzzy random variable

and its membership function.



2. Fuzzy variables

We define a scale o on the class of all subsets of a set ' as a function
satisfying
(1) o(¢) = 0 and o([) = 1,

(11) for any arbitrary collection of subsets {44} of T,

U(U Ay) = sip o(Aq)-

Definition 2.1. A fuzzy variable X is a real valued function defined on T.

The seale o is analogous to a probability measure P. The distribution
of a random variable 1s obtained from P and the definition of the random
variable. wlhile tlhie membership funetion of a fuzzy variable is determined
from o and the definition of the fuzzy variable.

The membership function px : R — [0,1] of the fuzzy variable X is

defined by

px(r)=c{y €l: X(v) =2z}, z€R.
To obtain the membership function of ¢(X') where X 1s a fuzzy variable
and ¢ : R — R is any funetion, Nahimias [4] proved that

Hyxy(t) = sup px(n).
w:g(u)=t

Example 2.2.
(1) praox(t) = /I‘_\’(‘%). for « #0 and t.
(1) yoxat) = py (VY i (=VE), for ¢ >0,



§23

(i11) If pex () = e~ (x=a)*/b* then pexe(t) = e~ (VI=1ah?*/6*  for ¢ > 0.
Proof. (1) By definition,

fax(t) = of{y € |(aX)(v) = t}

= oly eTIX() = 1)
= jx(),

(11) By definition,
jiye(t) = oy € T|X?(y) =t}

=o{7 € T|X(7) = £V}
= pux (V) V px(—V1).

(i) By (ii), if jex () = e~ =08 then piye = e~ VI-1aD? for ¢ > 0. O

Fig. 1. The transformation g(x) = x? applied to

a triangnlar membership function.



In Fig. 1, the effect of the transformation ¢(X) = X? is shown applied to
a triangular membership function.
Nahmias [4] calls two fuzzy variables X, Y are unrelated (or noninteractive)
if
o X=rnNY=y)=0(X=2)Ao(Y =y) for all z,yeR.
This 1s analogous to the concept of independent random variables. A collec-
tion of fuzzy variables is called mutually unrelated if every finite subcollec-
tion has the property that the scale of the intersection can be computed by
the minimum of the scale of each term (see [4]).
Using the concept of unrelated fuzzy variables, Nahmias [4] derived Zade-
L’s extension principle for the sum of two fuzzy variables.
Theorem 2.3 (Nahmias[4]). If XY are fuzzy variables, then
(1) px+y () =supo({X =2} n{Y =t —z}).
Furthermore, if f‘(, Y are unrelated, then
(i) pex4y(t) = Sl;1)[/1.\'(-1') ANy (t'=z)].
Proof. (1) We have that
pxy(t)=o{y e TI(X +Y)(y) =t}
=o{y e Tl((X +Y)(v)=t)nT}
=c{y eTI((X +¥)(7) =) V(X (y) = 2))}
=o{y €T JUX (1) =0)n (X +Y)(7) =1))}

(X(v)=2)n (X +Y)(v) =1t)}

‘\'”.1”7{7 el
— wperls € TIX(7) =) A (Y(7) = £ - 0)}.

(11} Since XY ave unrelated, pv gy (1) = suplpx () A py (t — 2)]. O

)



Note that in the above theorem, X 4+ Y refers to the fuzzy variable defined

by

(X +Y)4)=X(v)+Y(y), for all yeT.
The set of all fuzzy variables, RF, is a vector space over R. Scalar multi-
plication is also defined in the usual manner.
(c¢X)(~)=a(X(v)) and (a+ )X =aX + 5X.
This can be extended to define products and ratios of fuzzy variables. Let *

be any binary operation defined between pairs of real numbers. Then we can
define the fuzzy variable X *Y by (X *Y)(y) = X(v)* Y(v). The following

theorem is a definition in Chang [1] and Nguyen [3] by the extension principle.
Theorem 2.4 (Stein and Talati [10]). If X.Y are unrelated fuzzy vari-
ables, then

vy (t) = sup [ux(x) Ay (y)).

rey=t

Proof. Since

iy () = ofs € TIX « V)7 = t)
=o{7 = T(N(7)+Y(7)=t)uT}
=o{7 2 TIX()+Y(1) =) (LX) =a)n (Y (3) =)}
= oy e TI{JIX ()Y (1) =) n((X(3) = 2) N (Y(y) = y)))}
olo) - if exy#t,

sup o{y €T X =0)n(Y(v)=y)} f r*xy=t,

rxy=t
we have

6



vy (t) = sup [px(x) A py (y)). 0

rxy=t

Definition 2.5. A fuzzy variable X is convez if its membership function is
quasi-concave. That is, px(Aa + (1 = A)b) > pux(a) A ux(b), for all a,b € R

and 0 < N < 1. We call jux 1s convex if X 1s convex.

A convex membership function is called a fuzzy number by Dubois and
Prade [2]. The class of convex membership function includes
(1) functions that only asswne the values 0 or 1,
(1) monotone funetions and
. 2 42
(i11) N(a.b) = ¢~=07 /" for a € R and b > 0.
In fact, (1) 15 clear. Sinece monotone functions are increasing or decreasing,
(i1) holds. We know that all N(a,b) are continuous and concave, thus (iii)
11()](15.

We note the following result, that is, sufficient condition for convexity of

composite funetion without proof.

Theorem 2.6 (Chang [1]). If f : R® — R is a continuous function and
N LY, are nnrelated convex fuzzy variables, then f(X,,--- , X,,) is also

couvex fuzzy variable,

The above theorewn implies that X4+Y, X =1, XY and X? are all convex
if Vand Y are vrelated and convex. It s quite easy to find counter examples

to show that unrclared 18 & necessary condition in the above theorem. For

-1



example, if X is N(0.1) and

,_{X if X[ <1,
T lo i |X|>1,

then

- - O if |‘X'] S 1',
xoy={ -
X if |X|>1,

so that X — Y has a nonconvex membership function.

Theorem 2.6 can be extended to the case when f is defined on a convex
subset of R, For example. if X is convex and X > 0, then X? is also convex
(see Fig. 1).

The conecept of a couvex fuzzy variable will play a key role in the next

Seetlons.



3. Fuzzy random variables

We will consider only fuzzy random variables that take on a finite number

of values (each value is a fuzzy variable):
n
Z(w) = E Ig, (w)X;
=1

where Xy, -+, X, are fuzzy variables and Ey,--- | E, are a partition of the
sample space @ and w € 2. Thus Z takes the value X; with probability
P(E;). We shall call Z 1s convex if each X; 1s convex. Note that Z:;l pi=1
it P(E;) = pi.
Definition 3.1. With the above notation, define the expectation (of Z)
E(Z)y=3"._, piXi. This defines E(Z) as a fuzzy variable.
Proposition 3.2. If Z is a fuzzy random variable, then E(aZ + ) =
«E(Z)+ 3 for all reals o and 3.
Proof. Since oZ + 4 = oY\ Ig,Xi+ 8 =Y, Ig,(aXi + B), we have
E«Z+3)=5" pilaXi+8)=aXl pXi+8=aE(Z)+ 5. O

The following theorem ean be used to determine the membership function
of E(Z).
Theorem 3.3 (Stein and Talati [10]). Let Z = 31| I, X,, where {X,}
are fuzzy variables and p, = P(E}). Then

jenth = suplpx, () A A, ()]

where the supreunnn is taken over (rp,---,x,) subject to the constant
Z pory =t
P?‘uuf. We Lave thar



tepczy =o0{y € T|E(Z)(v) =t}

=o{y € F[(Z}h‘-\'i)(‘?’) = t}
1=1

D(J]U ¢ (-Yl(')) =rnN--N —Yn(ﬂf) = -En))}

"

=o{vell |J (O p-Xiy)=1)

A

o (’—\—1(’\,' =y -\'71(7) = -l'n))}

alo) i Y pi-ri £t
- aap a{y €T (A =10 NX,(y) = a0)}
Zl‘il"i:t

if S pi-ri=t

= sup [pn,(e) A Ay, ()]
ST, =t

Corollary 3.4. If Z is & fuzzy raudom variable with

{X with probability p,
2 =

Y with probability ¢,

where XY are nurclated fuzzy variables and p + g = 1, then

10



T t—=zx
eitt) = soplex (2) A (F5))

P
The following theorem shows that convexity is required for a sensible

interpretation of the expectation when all values are unrelated.

Theorem 3.5 (Stein and Talati [10]). Assume that Z is a fuzzy ran-
dom variable as in Theorem 3.3. Also assume that each X; has the same
membership function j. Then E(Z) has membership function p (for every

Piyc o pn ) If and only If Z s convex.

Proof. First we consider the case n = 2. Then E(Z) = p1 X1 + p2 X2 with
2 +p-é = 1. Now for fixed p; and p,, the following statements are equivaleut.

(1) p1 X7 + p2 X, has membership function .

(2) For all ¢, (t) = suplj(x1) A p(xo)] where the supremum is taken over
£y and ry such that prey + pray =t

(3) p(t) > p(ry) A p(ay) for all t, where pyay + poze =t (equality occurs
at ry = 1o =1).

(4) p(pray + prxg) > p{xy) A pze) for all t,z; and z,.

Note that these equivalences hold for all probabilities p; and p; with
1+ p2 = 1. We see from above that g is required to be convex. Thus by
(1) aud (4). the result holds for n = 2.

For arbitrary » € N. consider

E(Z) = 1‘1‘\—1 + P'.’-X’Z + Tt ‘+‘ PH—X—n

D1 Pn-1 -
- X4+ X _)
<1)] +"'+1’n—] ! pl+"'+1)n—1 nol

SN 2PN I o L ) +]’:14Yn-

11



Then we can extend the result from n = 2 to arbitrary n by induction. O

Lemma 3.6. Let Z = )" Ig X; with unrelated convex fuzzy variables X;.

Then E(Z) is a convex fuzzy variable.

Proof. Since E(Z) = Y p.Xi, E(Z) is a convex fuzzy variable by Theorem
2.6. ad

We may extend p to the positive reals to obtain another membership
function ji. If we consider the computation of E(Z) as in Theorem 3.5, we
will obtain different results if we choose g rather than p. The following
theorem summarizes the extent of the differences between these results and

leads to an "optimal” extension.

Theorem 3.7 (Stein and Talati [10]). Let Z = I, X, with unrelated
fuzzy variables X;. each with membership function j¢ with support contained
in the nonnegative integers. Let ji be an extension of ju to the nonnegative
reals that is convex. Let Z e the fuzzy random variable obtained if we use
fi instead of . Then

(1) g < gy gz = ftand

(i) pezy(t) = pgz(t) i te{p>0}

Proof. (1) Taking », =t,

fpcnit)y = sup o [pla ) A A pay)] > op(t).
STpiri=t

Sinee i is extension of i, we have g < i Thus from the definition, ppz) <
tegz)- By Theorem 3.5 and convexity of i, we have gz = H

(ii) Sinee ji is an extension, g = o on {p > 0}. Thus (i1) follows from (i). O

12



This theorem shows in (i) that the membership functions of E(Z) and
E(Z) are close if p and fi are ; and in (ii) that the membership function
of E(Z) and E(Z) agree on the original points. So we see that we should

choose an extension g that is close to g as is possible and is also convex.

Definition 3.8. Let i be as above. Define fort > 0,

A(t) = { pi(t) if  u(t) >0,
w(th A p([t]+1) if p(t) = 0.

If i is convex, we call it the minimal eztension of p.

/! /"

Fig. 2. A discrete membership funetion and its minimal extension.

In Fig. 2. the minimal extension of a typical membership function is given.
It is clear that if 7 1s convex and /7 is any extension of p that is also convex,
then g < i So in this seuce, jiis the closest convex membership function to
_u.

13



A fuzzy random variable can be considered as a generalized random vari-
able, since it takes values in the linear space RT. This is sufficient to be able

to define an expectation (Definition 3.1) as a lincar operator. Extending the

linearity proven in Proposition 3.2, we can show the following theorem.
Y1 1

Theorem 3.9 (Stein and Talati [10]). Let Z,.---, Zy be fuzzy random

variables and let oy, --- , o be any real numbers. Then
k k
E( E o Zy) = E o E(Z;)
=1 =1

EOY_a.Zi=Ela1Zy+ -+ Zy)

= FE(nZy)+ -+ E(a Zy)

= mE(Zy) + 0 + arE(Zy)

k
:Z(\-,‘E(Z,). O

=1

I probability theory, we know that the sample mean X is an unbiased

estimator of the population mean when all the summand show the same

expectation.

Corollary 3.10. Let Z,.--- ,Z, be fuzzy random variables with all the

E(Z,) unrelated and cacly luving the same convex membership function p.

1

IfZ==(Z,+ -+ Z,). then E(Z) has the membership function .
n

Proof. By Theorem 3.9,

14



E(Z) = %{E(Zl) bt E(Z0)).

Thus E(Z) has the membership function g by Theorem 3.5.

Lemma 3.11(Stein and Talati [10]). Let Z,W be independent fuzzy
random variables. Then E(ZW) = E(Z)E(W).

Proof. Let Z = 300 I, X and W = 30| I, Y;, where {E;} and {F}}
are both partitions of 2. Since Z and W are independent, P(E; N F}) =
P(E;)P(F;). Thus

E(ZW)=E IeX:) IrY;)
i=1 j=1

= Z Z P(E; N F})X.Y;

i=1 j=1

=Y P(E)X.)_ P(F))Y;
i=1 J=1

= E(Z)E(W).

15



4. Convergence of fuzzy random variables

Definition 4.1. The sequence of fuzzy variables {X,,} is said to converge

to the fuzzy variable X if X,,(y) — X(v) for all y € T.

Definition 4.2. The sequence of fuzzy random varibles {Z,} is said to
converge almost surely (a.s.) to the fuzzy random variable Z if there exist
aset F C Q with P(F) = 0 such that for every w € F¢, Z,(w) - Z(w) as

n — oC.

Definition 4.1 1s not same as pointwise convergence of the membership
functions. For example, consider T' = {a, 3} with a scale o defined on each

element. Define the fuzzy variables:

Xu(a) =1, X(a) =1,
<Yu(&"-j) =1+ 1/71, }{(/3) = 1,

so that X,, — X. Now,

i o(e) if t=1,
hmyuy, (1) =

0 otherwise,

whereas

olaU ) if t=1,
Mim x, (F) =

0 otherwise,

which will not be the same if o(3) > o(a).

Theorem 4.3. Let {Z,} be independent fuzzy random variables. Let

{X with probability  p,
Z, =

Y with probability

16



- 1
where X,Y are unrelated fuzzy variables. If Z, = —(Z1 + ---+ Z,), then
n

Z, converge almost surely (a.s.) to E(Z,) asn — oo and fig(z.) = HE(Z,)-

_ k ) -k
Proof. Note that Z,,(w) = (—)X + (n )Y, where k is a binomial ran-

n n
dom variable that represents the number of the successes in the first n trials.

By the nonfuzzy strong law of large numbers, — converge to p a.s., so that
n

k(w)

there exist F' C  with P(F) = 0 such that for every w € F°, converge
to p(w) = p as n — oco. Therefore Z, converges to E(Z;) = pX +qY as..
- 1
By Theorem 3.9, E(Z,(w)) = —(E(Z1)+ -+ E(Z,)). Since E(Z;) =
n

E(Z;) for all « and j,

KE(Zu(w) = FL(E(Z)++E(Z2)) = FL((pX+qY)+--+(pX+gY))
= ’“':T(”P‘\,+"7Y) = HpX+qY

= HE(Z)):

Using the same approach as in the above theorem, it is also possible to
reformulate the fuzzy random variables Z; so that the values are merely un-
related fuzzy variables. In this case, we shall consider pointwise convergence

of membership functions. The following lemma will be required.

Lemma 4.4. If X, .- . X, are unrelated fuzzy variables with X; having
an N(a;. b)) membership function, b; > 0, so that ux,(r) = exp{—(z —
a)? bt} then ey X+ - +¢, X, is a fuzzy variable with membership function

N(S ciai, Y eby) for any positive real numbers ¢y, - -+, ¢y,

17



Proof. Consider Z = X; + X2. Without loss of generality, we can assume

that @z > a; and b, > b;. Then we have pz(z) = suplux, (z) A px,(z — 7)]
z

by Theorem 2.3. Let g.(x) = pux,(z) A pux,(z — z) for fixed z. As a function

of x, g.(r) 1s unimodal and achives its maximum of z;(z) solving

px, ((z)) = [, (= — x1(z)),

which gives 21(z) satisfving the quadratic equation

[(01(2) = a1)/bi}* = [(z = 21(2) — a2)/ba]*.

The solutions obtained from the quadratic formula.

r1(z) = (! = ) Hab? = (2 —ag)b* £ biba(z — ay — az)}.

Since jrz(z) = px, (21(2)) = exp{—(x1(z) = a1)?/b;%}, we can alternatively
substitute the positive and negative roots for xy(z). Substituting the positive

root, we obtain

py Len(=)) = exp{—((by — b)) "z — a1 —az))?}

and substituting the negative root,

“K‘l(-l'l(:)) = P.\:p{—((l,z + b])ﬁl(z —ay — a2).)2}.

Since by > 0 and by > by, we have py (01(2)) > /L‘T\,](xl(:)) and the

suprenmun is achived at the negative root. Hence

18



pez(z) = exp{—((b2 + b1) "'z — (a1 + a2)))*}.

n

For any n € N, we consider Z = 3", X, then Z is a fuzzy variable with
membership function N(3 a;, Y b;) by induction.

Suppose that Z = ¢; X, , ¢; # 0. Then puz(z) = mx, () = exp(—(& -
a1)?/0,%) = exp(—(z — c1a1)?/(c1b1)?), so that Z is a fuzzy variable with
membership function N(cyay,e10p). Thus, if Z = Z?:l ¢; X; for ¢; # 0,
then Z is a fuzzy variable with membership function N(3 ciai, 3, ¢ib;) by

induction. ad

Theorem 4.5. Let {Z;} be independent fuzzy random variables. Let

P {Xi with probability p,
"\ Y:  with probability q.

Aassume that {X;} and {Y;} are all unrelated fuzzy variables. Suppose that
each X; has an N(1,1) membership function while Y; has an N(0,1). If
Z, = ll(Zl + -+ + Z,), then the membership functions of the sequence
Zn(w) (7tmwerge almost surely (a.s.) to the membership function of E(Z;) =

pX1 + ¢Y7 which is N(p,1).

Proof. By Lemma 4.4, we know that Xy + X, has the same membership
function as 2X;, so the membership function of Z,(w) is the same as that of

k( — R(w)
( (w)>.\"1 + (n—y-(——))}",, where &(w) is the value of a binomial random

n 2

variable.

Since X; has a membership function N(1,1) and Y; has a membership

hw —k
function N(0,1). (L)_\’l + (n_(_wl
n

) 7 has a membership function
n

klw
N( (w)‘l) by Lemma 4.4, Since k(w) is the value of binomial random

19



: k .
variable and N(«,b) is continuous, N(—,l) converges a.s. to N(p,1) as
n
n — oo. So there exist a set F' C Q with P(F) = 0 such that for every
w € F pnz () converges to ppz,) with membership function N(p,1) as

n — 00. O

20
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< Abstract >

Convergence of fuzzy random variables

Today, fuzzy theory is studied and developed on the various parts.

In this paper, we review certain properties of fuzzy variables and relation-
ship for their membership functions. We define the convex fuzzy variable and
observe properties of the convex fuzzy variables. We investigate properties of
fuzzy variables, fuzzy random variables, and its membership functions. Fur-
thermore, we study the relationship between expectation of fuzzy random

ariable, its membership fanction. and convex fuzzy variable. We define the
convergence of sequences of fuzzy variables and fuzzy random variables, and
then prove the convergence of sequences of fuzzy random variables and its

membership function.
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