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ABSTRACT

COMPARISONS OF RANK, COLUMN
RANK AND MAXIMAL COLUMN RANK
OF MATRICES OVER MAX ALGEBRA
AND THEIR LINEAR PRESERVERS

Boolean rank, column rank and maximal column rank over Boolean
matrices have been studied and developed so far. And their linear pre-
servers also have been characterized over Boolean matrices in the previous
researches.

In this thesis, we compare the rank and column rank using a matrix
function and we obtain the values of this function on the matrices over max
algebra. We also characterize the linear operators that preserve column
rank over max algebra. We show that a linear operator on the set M of
m X n matrices over max algebra preserves column rank of each matrix
in M if and only if it is a congruence operator, which has the form of
multiplications by monomial matrices on both sides of the given matrix.

Moreover, we investigate the relationships between rank and maximal
column rank using a matrix function and we determine the values of this
function on the matrices over max algebra. We also obtain some character-
izations of the linear operators preserving maximal column rank over max
algebra. One of them is that a linear operator on M preserves maximal
column rank of each matrix if and only if it preserves maximal column ranks

1, 2 and 3.
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1 Introduction

One of the most active and important subjects in matrix theory during
the past century is the study of those linear operators on matrices that
leave certain properties or relations of matrices invariant. Such topics are
usually called Linear Preserver Problems(LPP). The earliest papers in our
reference list on LPP are [Frobenius, 1897] and [Kantor, 1897]. Since much
effort has been devoted to this type of problem, there have been several
excellent survey papers such that [Marcus, 1962}, [Marcus, 1971], [Grone,
1976], and so on. Since Grone’s thesis was published, this topic have been
studied by many authors. And various techniques have been introduced for
the researches of this topic.

Let M be a space of matrices. Linear preserver problems usually fall

into one of four categories.
(i) Suppose that P is a certain property of matrices. Characterize those
linear operators T on M that preserve property P in the sense that

T(X) satisfies P whenever X satisfies P.

For example, let M be the set of all n x n complex matrices, and let P

be nonsingularity. Then the problem is to classify all linear maps T satisfy
T(X) is nonsigular whenever X is nonsingular.

The answer is given in [Marcus, Purv' s, 1959]. The map T will preserve
nonsingularity if and only if there exist invertible n x n complex matrices
M and N such that

T(X)=MXN forall X e M, or (1.1)



T(X)=MX'N forall X € M. (1.2)

where X! denotes the transpose of X. It should be noted that many linear
preserver problems have answers like that of (1.1) and (1.2), where M and

N have to meet certain specifications.

(ii) Suppose that S is a subset of M. Characterize those linear operators
T on M that map S (onto) itself.

For example, let M be the n xn complex matrices and let S be the group
of unitary matrices. Then (see [Marcus, 1959]) a linear transformation T
preserves the unitary group if and only if T has the form (1.1) or (1.2) with
M and N unitary.

We remark that problems of type (i) and (ii) could overlap.

(iii) Let F be a scalar-valued, vector-valued, or set-valued function on
M. Characterize those linear operators T on M that preserve F' in the
sense that F(T'(X)) = F(X) for all X € M.

For example, let M be the n x n complex matrices and let F(X) be
the spectrum of X (including multiplicities). Then a linear operator T on
M preserves spectrum if and only if T has the form (1.1) or (1.2) with
N=M1

(iv) Let = be a certain relation on M. Characterize those linear opera-
tors on M that preserve = in the sense that

T(X) ~ T(Y) whenever X = Y.

For example, let M be the set of all n x n complex symmetric matrices,

and let = be the unitary congruence relation, that is, X = Y if there



exists a unitary U such that Y = UXU!. Then a linear operator T on M
preserves unitary congruence if and only if there exists a unitary matrix N

and M = N! such that (1.1) or (1.2) holds.

On practical grounds, for many physical problems one might want to
apply certain transformations to a system so that the transformed system
has a simpler structure. On the other hand, one might want to leave certain
important properties, subsets or relations in the original system invariant.
Since many physical systems may be described in terms of matrices, and
linear transformations are the easiest and most common operations used to
transform a system, results on linear preserver problems are applicable.

Besides the practical motivations mentioned above, one might study this
subject pure for intellectual curiosity. For example, if one defines a linear
operator on the n x n complex matrices by T(X) = UXU* where U is
unitary, we observe that T" preserves many important properties of matrices
such as spectrum, positive definiteness, normality, rank, etc. One might
ask which of the foregoing properties would be sufficient to force T to be a

unitary congruence. In some cases, very mild assumptions may be enough.

Among LPP, rank-preserver problems have been the subject of research
by many authors. Let F be an algebraically closed field. Marcus and Moyls
[1] and Westwick [2] have shown that

Over F, T preserves rank 1 if and only if T is a (U, V)—operator. (1.3)
Also Lautemann [3] have shown that

Over F, T is a rank preserver if and only if T is a (U, V) —operator. (1.4)



But the above results are different in semirings as Boolean semiring, fuzzy
semiring, etc.

In Boolean matrices, Beasley and Pullman [5] characterized those lin-
ear operators that preserve binary Boolean ranks. Kirkland and Pullman
(10] had characterizations of linear operators preserving ranks of non-binary
Boolean matrices. Song [11] characterized those linear operators preserving
Boolean column ranks, and Song and Lee [14] had characterizations of linear
operators preserving column ranks of non-binary Boolean matrices. Hwang,
Kim and Song [12] characterized those linear operators that preserve maxi-
mal column ranks of non-binary Boolean matrices, and Song and Yang [20]
had characterizations of linear operators preserving maximal column ranks
of non-binary Boolean matrices.

In fuzzy matrices, Beasley and Pullman [7] obtained characterizations
of linear operators that preserve fuzzy ranks. Song [13] characterized the
column rank preserver case. Song and Park [21] had characterizations of
the maximal column rank preserver.

Beasley, Gregory and Pullman [6] considered the nonnegative part R* of
reals R. They obtained characterizations of linear operators that preserve
ranks of matrices over U*, the nonnegative part of unique factorization
domain U in R. But the characterizations preserving column ranks and
maximal column ranks are hard subjects, so they are open until now. Here
are some partial responds. Beasley and Song [9] obtained characterizations
of linear operators that preserve column ranks of matrices over Z*, the
nonnegative part of integers. Song and Hwang [16] characterized those lin-
ear operators that preserve spanning column ranks of matrices over St, the

nonnegative part of unique factorization domain S(a subset of R) which con-



tains only one unit. Also Song [17] had characterizations of linear operators
preserving maximal column ranks of matrices over Z*.

Max algebra has been a great deal of interest by many authors since this
system allows one to express in a linear fashion, phenomena that are non-
linear in the conventional algebra. It has applications in many diverse areas
such as parallel computation, transportation networks and scheduling. We
refer to {15 and 18] for a description of such systems and their applications.

Bapat, Pati and Song [19] exhibited characterizations of the linear op-
erators that preserve several invariants of matrices over max algebra. But
they did not deal with column rank and maximal column rank preserver
over max algebra.

In this dissertation we study on the column rank and maximal column
rank of matrices over max algebra. Consequently, in section 5, we analyze
the relationships between rank and column rank and also obtain character-
izations of the linear operators that preserve the column ranks of matrices
over max algebra. In section 6, we investigate the relationships between
rank and maximal column rank of matrices over max algebra and also ex-
tend the study on known properties of linear operators preserving the rank
of matrices over max algebra carry over to linear operators preserving max-

imal column ranks.



2 Preliminaries and basic results

2.1 Boolean algebra and definitions of ranks

Let B = {0, 1} be the (binary) Boolean algebra equipped with two binary
operations, addition and multiplication. The operations are defined as usual
except that 1 +1 = 1. Let M,; ,(B) denote the set of all m x n matrices
with entries in B. Then the usual definition for adding and multiplying
matrices over fields are applied to Boolean matrices as well.

An n x n Boolean matrix A is said to be invertible if there exists some
X € M, ,(B) such that AX = XA = I,, where I, is the n X n identity
matrix. It is well-known ([5]) that the permutation matrices are the only

invertible matrices in M,, ,(B) and A™' = A* when A is invertible.

Definition 2.1. ([5]) Let A be a nonzero m x n Boolean matrix. If there is
the least integer k for which there exist m x k and k£ x n Boolean matrices
B and C with A = BC, then we call that A has Boolean rank (or rank) k

and denote b(A) = k. The Boolean rank of the zero matrix is zero.

A Boolean vector space V is any subset of B™[= M, 1(B)] containing 0
which is closed under addition. If ¥V and W are vector space with ¥ C W,
then V is called a subspace of W. We identity M, ,(B) with B™" in the
usual way when we discuss it as a Boolean vector space and consider its
subspaces.

Let V be a Boolean vector space. If S is a subset of V, then < S >
denotes the intersection of all subspaces of V containing S, which is a sub-

space of V too, called the subspace generated by S. If S = {81,82, -, 8p},
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then < S >= {}_F | x;8; : z; € B} is the set of all linear combinations of
the elements in S. In particular, (¢) = {0}. Define the dimension of V,
written as dim(V), to be the minimum of the cardinalities of all subsets S
of V generating V. We call a generating set of cardinality equal to dim(V)
a basis of V. It is well known that every Boolean vector space V has only
one basis (see [5]).

A subset of V is called linearly independent if none of its members is a
linear combination of the others. Evidently every basis is independent. The
subspace of B™ generated by the columns of an m x n Boolean matrix A

is called the column space of A, and denoted < A >.

Definition 2.2. ([8, 11]) Let A be any m x n Boolean matrix. Then the
column rank of A is defined by the dimension of the column space of A,

and denoted c(A).

It follows that 0 < (A) < ¢(A) < min(m,n) for any A € M, .(B).

Beasley and Pullman showed the following:

Lemma 2.3. ([11]) Let u(B, m,n) be the largest integer k such that for all
m x n Boolean matrices, r(A) = ¢(A) if r(A) < k. Then

1 i min(m,n) =1,
puB,mn)=4¢ 3 if m>3, and n=3;

2  otherwise.

Definition 2.4. ([12]) Let A be any m x n Boolean matrix. Then the
mazimal column rank of A is defined by the maximal number of the columns

of A which are linearly independent, and denoted mc(A).
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It follows that
0 < b(A) < ¢(A) < me(A) < min(m, n)

for any A € M, ,(B).
Let a(B, m,n) be the largest integer k such that for all m x n Boolean
matrices, ¢c(A) = mc(A) if ¢(A) < k and there is at least one m x n Boolean

matrix A with ¢(A) = k. Hwang and Song showed the following :

Lemma 2.5. ([12]) For m x n Boolean matrices, we have the values of o

as follows;
f 1 if min(m,n) = 1;

if m>3, and n = 3;

4 ifm>3, and n =4;

2 otherwise.

2.2 Max algebra and definition of rank

The maz algebra consists of the set Rp.,, where Rpax is the set of non-
negative real numbers, equipped with two binary operations, denoted by &
and - (and to be referred to as addition and multiplication over the max

algebra), respectively. The operations are defined as follows:
a®b=maz(a,b) and a-b=ab

That is, their sum is the maximum of a and b and their product is the usual

product. We denote a; @ - -- ® a, by &2 ,a;.



The (4, j)th entry of a matrix A is denoted by a;; or A(3, j). If A = [ay]
and B = [b;;] are m x n matrices over Rp,y, then the sum of A and B is
denoted by A & B, which is the m x n matrix with a;; & b;; as its (4, j)th
entry. If ¢ € Rpax, then cA is the matrix [ca;j]. If A is an m X n matrix and
B is an n x p matrix, then their product is denoted by A ® B, which is the
m X p matrix with maz,{a;-b;;} as its (i, j)th entry. For m x n matrices
A and B, A > B means a;; > b;; for all ¢,j. The identity matrix of an
appropriate order is denoted by I. And the transpose of A, denoted by A?,
is defined in the usual way, i.e. A(,7) = A(j,1) for all ¢, 5.

For example, if

320 1 01
A=]101 4 and B=1]211/1,
010 310
then we have
3 21 4 2 3
A®B=|21 4 and AQ®B=1]12 4 1
310 2 11

It can be easily proved that the product ® is associative and that it

distributes over the sum &.

Let S be a subset of (Rmax)", where n is a positive integer. Then span(S)

is the set defined as follows:

span(S) = {x|z = @ ,0ix; with x; € S and o; € Rpa}-



A semimodule over Ry, generated by S is the span(S). The elements
of a semimodule are called vectors. Given a semimodule V, if there exists
a finite subset S of V such that V = span(S), then V is called a finitely
generated semimodule.

Let V be a semimodule over Rpm,x. The set of vectors {v;|i € I} is
called a weak basis of V if span({v;|i € I}) =V and no proper subset of
{v;|i € I} span V.

Definition 2.6. A set S of vectors in a semimodule V is called linearly
dependent if there exists £ € S such that & € span(S — {x}). A set S of

vectors in V is called linearly independent if it is not linearly dependent.

Thus an independent set cannot contain a zero vector. Also a weak basis
of a semimodule is linearly independent.
In the followings, all matrices and semimodules are assumed to be de-

fined over max algebra.

Theorem 2.7. Let V be a semimodule. Let B, and B, be two weak bases
of V. Then for © € B, there exists a unique y, € B, such that y, = ax
for some nonzero a € Ryax, and for y € B, there ezists a unique x, € B,

such that x, = By for some nonzero € Rmax. In particular |B,| = |Bs|.

Proof. Let = be any vector in B;. Since B, is a weak basis of V, there exist

€1,C2,"** , €y € Rpmax and vectors y,,¥,,: -+, ¥, € B2 such that
T =®LGY; (2.1)

Since each y; is a linear combination of a finite number of elements of B,

we can assume that there exists a set {z), &2, -, &} C By such that

10



y; = O 0 T, (2.2)
where some of a] might be zero. From (2.1) and (2.2), we have
z=max{calz;:i=1,---,n;j=1,---,m; x; € B,.} (2.3)

Since B is linearly independent it follows that © = z,,, for some j;. (We
note here that there exists exactly one such j, for otherwise B; will be

linearly dependent.) Now we claim that
at least one element of {c;a?® :i=1,---,n} is 1. (2.4)

For, suppose that (2.4) does not hold. Then we have that no cia{"
can be more than 1, because the right hand side of (2.3) evaluates to a

vector strictly greater than x;, = x, which is the left hand side of (2.3), a

contradiction. So, let cl-af-'0 < 1,fori=1,---  n. Thus (2.3) reduces to
T, =z =max{galx; :i=1,---,n;j=1,---,m; 5 #jo}. (2.5)
The above equation implies that x,, is a linear combination of {x,,--- , z,,}

— {=;,}, which is a contradiction to the fact that B, is a linearly independent
set. Thus we have c;a?® = 1, for some 7 and jo. Hence (2.4) holds.
From (2.4), we may assume that c;, a{;’ = 1, and hence ¢;, # 0. Thus,

using (2.3), we obtain that
cioa'ggmjo =z 2 ciafa:j
fori=1,--- ,nand j=1,2,---, m. In particular,

Cio afg T jo 2 Cig afo T; (2'6)

11



for j =1, ---, m. Multiplying 1/¢;, in both sides of (2.6), we have that
afg Ty, > afo &,
for j=1,---,m, and hence

_ T o 0 A J0
Yi, = EBJa,-O T; = a;, T; =a; T

Thus for € B, there exists y, € By, that is Y, and o = afg such that
y. = az. The vector y, is unique, because if there exist two vectors in B
such that ¥y, = oy = and y, = a, x, then y, is a scalar multiple of y, and
this is a contradiction to the fact that B, is linearly independent.

Similarly it can be shown that for each y € B, there exists a unique
vector x, in B; such that &, = By, for some 3 # 0.

It is evident from the above discussion that the function f : B; = B,

defined by f(x) =y, is a bijection. Thus the proof is complete. aQ

This theorem shows that all weak basis for a semimodule V have the
same number of vectors, even if there are many different weak basis for
a semimodule. Thus the cardinality of a weak basis is called the weak
dimension of the semimodule V, denoted by dim,, (V).

Let M, n(Rpmax) denote the set of all m x n matrices with entries from
Rimax- We identity My, n(Rmax) with (Rpax)™" in the usual way when we
discuss it as a semimodule.

Let A = {(3,7)]1 < i <m, 1 <j < n} and by E we denote the
standard weak basis of M., ,(Rpmax), that is

E:{Ez : izla"'amaj=17"'7n}a

where the (i, j)th entry of the m x n matrix Ej; is 1 and all other entries

12



are zero. Then M, ,(Rnax) is a finitely generated simimodule with mn as

the weak dimension.

Definition 2.8. ([19]) Let A be an m x n matrix over max algebra. Then
the rank or factor rank of A, denoted by r(A), is the number defined as the
least integer k for which there exist m x k and k x n matrices B and C with

A = B ® C. The rank of the zero matrix is zero.

We can easily obtain that 0 < r(A4) < min(m, n).
A square matrix A is called invertible if there exists a matrix B such
that A® B= B ® A = I. A square matrix A is called monomial if it has

exactly one nonzero element in each row and column.

Lemma 2.9. Let A be a square matriz over Ry Then A is invertible if

and only if A s monomial.

Proof. Let A = [a,;] be an invertible matrix over Ry,.. Define a square
matrix B = [b;;] by
0 if a;; = 0,

1 otherwise.

Then B is an invertible Boolean matrix. It is well known [5] that the matrix
B is a permutation matrix. Thus A is monomial.

The converse follows from the definition of monomial. O

13



3 Linear operator preserving Boolean ranks

over Boolean algebra

3.1 Rank-preserving operator

Let V and W be two Boolean vector spaces. Then a mappingT:V —» W
which preserves sums and 0 is said to be a (Boolean) linear transformation.
If V=W, the operator is used instead of transformation.

Suppose T is a linear operator on My, ,(B). Then we say that T is a

(1) (U, V)-operator if there exist invertible Boolean matrices U and V such
that T(A) = UAV for all A in M, o(B), or m =n and T(A) = U AtV
for all A in M,, ,(B);

(2) rank preserver if b((T(A)) = b(A) for all A in M, .(B);

(3) rank-1 preserver if b((T(A)) = 1 whenever b(A) = 1 for A in My, ,(B).

Let F be an algebraically closed field. Then Marcus, Moyls [1] and
Westwick [2] showed that if T is a linear operator on M, ,,(F) and T' maps
rank-1 matrices to rank-1 matrices(i.e. T preserves rank-1 matrices), then
(and only then) T is a (U, V)-operator. This result does not hold for the
(binary) Boolean case.

The following example shows that not all rank-1-preserving operators T
are of the form T(X) = UXV or T(X) = UX'V for some invertible Boolean

matrices U and V, contrary to the situation for algebraically closed fields.

Example 3.1. Let

14



([a b cjl) [1 1 IJ l:a 0 d:l
T =(b+e+c+f) + .
d e f 1 11 000

Here, T is a linear operator and b(T'(X)) = 1 whenever b(X) = 1 (in fact
whenever X # 0). If there existed invertible Boolean matrices U and V
such that T(X) = UXV for all X € M,3(B), then for j = 1,2, 3, we have
T(Ey;) = uv, where u is the first column of U and v, is the jth column of

V. But
1 1
T(Ell) = l: [1, 0, 0] and T(Elz) = [ [1, ]., 1],
0 1

and hence

which is a contradiction. g

Suppose that U and V are invertible members of M,, ,,(B) and M, ,(B)
respectively, and T is the operator on My, ,(B) defined by T(X) = UXV
for all X € My, »(B). Clearly T is linear. Moreover T(X) has rank 1
whenever X has rank 1. For, suppose that X has rank 1, so that X = abt
where a # 0 and b # 0. Then T(X) = Uab'V = (Ua)(V*b)!, and since
U and V* are invertible, neither Ua nor V*b is 0, so T(X) has rank 1. It

follows that all Boolean (U, V))-operators are rank-1 preservers.

Theorem 3.2. ([5]) If T is a linear operator on M, ,(B), then the follow-

ing statements are equivalent ;

15



(1) T is invertible and preserves rank 1;
(2) T preserves the ranks 1 and 2 and preserves the dimension of all rank-1
spaces;

(3) T is a (U, V)-operator.

Theorem 3.3. ([5]) If T is a linear operator on M, .(B), then the follow-

ing statements are equivalent;

(1) T is a rank preserver;
(2) T preserves the ranks 1 and 2;
(3) T is a (U, V)-operator.

3.2 Column rank-preserving operator

Suppose T is a linear operator on M,, ,,(B). Then we say that T is a
(1) congruence operator if there exist invertible Boolean matrices U and V
such that T'(A) = UAV for all A in M,, ,(B);

(2) transposition operator if m = n and T(A) = A!, the transpose matrix

of A, for all A in M, .(B);

(3) column rank preserver if ¢(T(A)) = c(A) for all A in M, ,(B).

(4) preserves column rank k if ¢(T(A)) = k whenever c(A4) = k for all A
in M,, .(B).

Using the function g in Lemma 2.3, we can apply the results for ranks
1 and 2 in Theorem 3.2 to those for column ranks 1 and 2. Thus we obtain

the following Theorem 3.4.

16



Theorem 3.4. ([11]) If T is a linear operator on M,, .(B), then the fol-

lowing statements are equivalent ;

(1) T s invertible and preserves column rank 1;

(2) T preserves the column ranks 1 and 2 and preserves the dimension of
all column-rank-1 spaces;

(3) T is in the group of operators generated by congruence and transposition

operators.

But some rank preservers do not preserve any column ranks as shown

in Lemma 3.6 below.

Example 3.5. Consider a Boolean matrix

[ e T = S =Y
= I e B
N e =
—_— O O -

Then none of the columns of A are linear combinations of the others. So
c(A) = 4. But ¢(A?) = 3 because the fourth column of A is the sum of the
first and second columns of A?, and b(A) = b(A4*) < ¢(A') = 3. By Lemma
2.3, b(A) is greater than 2. So b(A) = 3. This shows that, for A € M, ,,(B)
with m > 4, b(A) < ¢(A) is possible. )

Lemma 3.6. ([11]) If T is a transposition operator on Mpy n(B) with
m > 4, then T does not preserve column rank c for ¢ > 3 but preserves

all Boolean ranks.

17



Theorem 3.7. ([11)) If T is a linear operator on M, .(B) with n > m >

4, then the following statements are equivalent ;

(1) T is a column rank preserver;

(2) T preserves the column ranks 1,2 and 3;
(3) T is a congruence operator;

(4)

4) T 1is bijective and preserves column ranks 1 and 3.

3.3 Maximal column rank-preserving operator

If T is a linear operator on M,, ,(B), then we say that T is a mazimal
column rank preserver if mc(T(A)) = mec(A) for all A in M,,,,(B). T
preserves mazimal column rank kif me(T(A)) = k whenever mc(A) = k for
all A in M, ,(B).

Using the function a in Lemma 2.5, we can apply the results for ranks
1 and 2 in Theorem 3.2 to those for maximal column ranks 1 and 2. Thus

we obtain the following Theorem 3.8.

Theorem 3.8. ([12]) If T is a linear operator on My, o(B), then the fol-

lowing statements are equivalent ;

(1) T is invertible and preserves mazimal column rank 1;

(2) T preserves mazimal column ranks 1 and 2 and preserves the dimension
of all mazimal-column-rank-1 spaces;

(3) T is in the group of operators generated by congruence and transposition

operators.

18



But some rank preservers do not preserve any maximal column ranks as
shown in Lemma 3.9 below.

Consider the Boolean matrix A in Example 3.5. Since all columns of A
are linearly independent, we have mc(A) = 4. But mc(A*) = 4 because the
fourth column of A* is the sum of the first and second columns of A! and
the first three columns of A’ are linearly independent. And b(A) = b(A!) <
mc(A*) = 3. By Lemma 2.5, b(A) is greater than 2. So b(4) = 3. This
shows that, for A € M, »(B) with m > 4, b(A) < mc(A) is possible.

Lemma 3.9. ([12]) If T is a transposition operator on M ;u(B) with m >
4, then T' does not preserve mazimal column rank r for r > 3 but preserves

all Boolean ranks.

Theorem 3.10. ([12]) If T is a linear operator on M, ,(B) withn > m >

4, then the following statements are equivalent;

1) T is a mazimal column rank preserver;

(1)
(2) T preserves the mazimal column ranks 1,2 and 3;
(3) T is a congruence operator;

(4)

4) T 1is bijective and preserves mazimal column ranks 1 and 3.
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4 Linear operator preserving rank

over max algebra

4.1 Rank-1 preserving operator

If V is a semimodule over Ry,x, @ mapping 7' : ¥V — W is called a
linear transformation if T has the following two properties:
(1) T(0) = 0 and
(2) T(az & By) = aT(x) ® BT(y) forall z,y € V, a, B € Rpax.

If V = W, the operator is used instead of transformation. By My, n(Rmax)
we denote the semimodule of all m x n matrices with entries from R,,,.
When T is a linear transformation on a semimodule V, its behavior on

the weak basis of V determines the behavior of 7' completely. This proves:

Lemma 4.1. Let V be a finitely generated semimodule. For every linear

transformation T on V
dimy, (T(V)) < dimy (V).

Proof. Let {x;,---,x,} be a weak basis of V. Then {T(x1),--- ,T(xn)}
span T(V). Thus by Theorem 2.7, the proof is complete. a

Let V and W be two semimodules over Ry.,. A linear transformation
T :V — W is called injective if T(x) = T(y) implies ¢ = y forall z,y € V.
The map T is called surjective if T(V) = W. The map T is called invertible

if it is both injective and surjective.
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Lemma 4.2. Let V and W be finitely generated semimodules. If T : V —

W is injective, then
dim,, (T (V)) = dim, (V).

Proof. Let {x,,---,z,} be a weak basis of V. Then S = {T(x,),---,
T(z,)} spans T(V). Suppose that S is linearly dependent and let T'(x,) =

@ 'a; T(z;). Then T being injective we get z, = @7 'a; x4, a contradic-
tion to the fact that {; : ¢ = 1,--- ,n} is linearly independent. Thus S is
a weak basis of T'(V). O

Henceforth we will be talking about finitely generated semimodules only.

Lemma 4.3. Let T : V — W be a surjective linear transformation. Then
T 1is invertible if and only if T preserves the weak dimension of every sub-

semimodule of V.

Proof. If T is invertible, then T preserves the weak dimension of every
sub-semimodule of V by Lemma 4.2. Conversely, if T preserves the weak
dimension of every sub-semimodule of V, then T must be injective, for oth-
erwise, there exist some « and y in V such that z # y, T(x) = T(y), which
would imply that the weak dimension of the sub-semimodule generated by

T,y is not preserved under 7. O

Corollary 4.4. If T : V — V is a linear operator, then the following
statements are equivalent ;

(1) T is invertible;

(2) T preserves the weak dimension of every sub-semimodules of V;

(3) T permutes the weak basis of V, with some nonzero scalar multiplication.
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Proof. The equivalence of (1) and (2) follows from Lemma 4.3. To show
that (1) and (3) are equivalent, note that, if T is invertible and {z; : i =
1,---,n} is a weak basis of V, then {T(x;) : i =1,--- ,n} is a weak basis
of T(V) = V. Now applying Theorem 2.7, we see that (3) is true for 7.
On the other hand, if T is a linear operator satisfying (3), then naturally

T{(x) = Az, where A is a monomial. Clearly T is invertible. O

We say that a linear operator 7' on My, n(Rmax) preserves rank k, if
for all m x n matrix A over max algebra, r(A) = k implies 7(T'(A4)) = k.
Suppose T is an invertible operator on My, n(Rmax). We know, by Corollary
4.4, that T(E;;) = yj Epq, for some nonzero a;j € Rmax, where p and ¢ are
the first and second coordinate of T'(E;;), respectively, which are depended
on the coordinates i and j. For this invertible linear operator T, define the
m X n array T whose (¢, j)th entry is 7(4, j) = a4; (p, q) for all ¢, j. The array

7 is called the representation of T.

Lemma 4.5. If T is an invertible linear operator on My, n(Rnax) that
preserves the rank of every rank-1 matriz and T is the representation of
T, then there exist permutations (matrices corresponding to these permu-
tations) U and V of 1,---,m and 1,--- ,n, respectively and there exist

invertible diagonal matrices C and D such that
(a) 7(4,5) = C(4,1) D(3,7) (U(2), V(j)) for all (i,5) € A and in this case
T(A) =CU® AV®D
holds for all A € My, n(Rmax) o7

(b) m =n and 7(1,3) = C(4,7) D(4,7) (V(4), U(2)) for all (i,7) € A and
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in this case
T(A) =CeU® A'®V®D
holds for all A € M, n(Rmax)-

Proof. We follow 8 steps for this proof.

Step 1. Any two entries in the same row ( or column ) of 7 satisfy
exactly one of the followings:
(i) The entries have a common first coordinate.

(ii) The entries have a common second coordinate.

Proof of Step 1. Suppose 7(¢,j) = o4(p,q) and 7(i,k) = au(r,s) for
j # k. Then T(E;;) = 04;Fp,, and T(Ey) = aixE,s. Since E;; @ Ey is a
rank one matrix and T preserves the rank of rank one matrices, a;; E,q ©
o, E,; must be a rank one matrix. But this is possible only if either p = r

or ¢ = s. Suppose both p = r and ¢ = s occurs simultaneously. Then

[ 79
T(Eij) = aijEpq = T( : Efk)
Uik

and thus T is not injective, a contradiction. Hence we have p = r or ¢ = s,

but not both.

Step 2. If two entries in the ith row of 7 have a common first coordinate,

then each entry in the ith row has the same first coordinate for all 7.

Proof of Step 2. Let T(EU) = a,'jqu, T(E‘k) = aikEp, and T(E,[) =
oy Ey, for distinct ¢, k and {. Suppose s # p. Comparing T(E;;) and T(E;;)
we get t = r. Comparing T(E;;) and T(E;) we get t = ¢q. Thus we have
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r = g, and hence both the first coordinate and the second coordinate of
T(E;;) and T(E;) are the same and this is a contradiction to Step 1. Thus

we have s = p.

Step 3. If the entries in the ith row of 7 have a common first coordinate,

then the second coordinates constitute a permutation V of {1,--- ,n}.
Proof of Step 3. It follows from Step 1.

Step 4. If the entries in the ith row of 7 have a common first coordinate,
then the entries in the [th row of 7 also have a common first coordinate, for

any l = 1,---,m.

Proof of Step 4. With reference to Step 1, assume that T(E};) = oy Ey,
and T(Ey) = aiEy, with u # w. Also assume that T(E;;) = «;;E,, and
T(Eix) = aiEp with ¢ # 7. Since E;; @ Ey @ Ei; & Ey is a rank one
matrix, T(E;; ® Eix ® Ei; ® Ey) should be a rank one matrix. But

T(Ei; ® Eix ® Ei; ® Ei) = i Epg @ @ik Epr © 0tj Eyy ® g Foyy,

can never be a rank one matrix, which is a contradiction to the fact that T’

preserves rank one.

Step 5. If the entries in the ith row of 7 have a common first coor-
dinate, say, p, then the entries in the Ith row (i # [) have a common first

coordinate, say q, then p # q.

Proof of Step 5. Assume that p = ¢g. We know by Step 3 that T(E;;) =
aijEp vy, 3 =1, ,n. Suppose that T(Epn) = anEgn = o Epy, for some

h € {1,---,n}. Since V is a permutation of {1,---,n}, there exists r such

24



that V(r) = h. But T(E;;) = @i, Ep v(r) = iy Epp, by Step 3. Thus we get

o
T(En) = anEyp =T (~'~1E,~ )

Gy
and this is a contradiction to the fact that T is injective.

Step 6. Suppose that the entries of the ith row of 7 have a common first
coordinate. Let V and V* be the permutation of {1,---,n} corresponding
the second coordinates of the ith and the Ith row of 7, respectively (guar-

anteed by Step 3 and Step 4 ). Then V = V*.

Proof of Step 6. Follows directly from Step 1. In fact, by Step 1, T(E;;)
and T(E};) should have either the same first coordinate or the same second
coordinate. But the first coordinates are different by Step 5. Thus the
second coordinates must agree. The situations are the same for T'(F;,) and
T(Ej;), s = 2,--- ,n. Thus the permutations V and V* corresponding to

the second coordinates of the 7th and the [th low must be the same.

Step 7. Suppose that the entries of the ith row have a common first
coordinate. Then the entries of the jth column have a common second co-
ordinate and the first coordinates of the entries of the jth column constitute

a permutation U of {1,--- ,m}.
Proof of Step 7. Similar to Step 3 in view of Step 5.

Step 8. Suppose that the entries of the ith row have a common first

coordinate. Then we have followings:
(a) There exist permutations U of {1,2,---,m} and V of {1,2,---,n}
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such that

T(Elj) = aijEU(i)’V(j), 7 = 1,- <., m, ] = 1,... , M.

(b) Forall ¢,l € {1,2,--- ,m} and all j,k € {1,2,--- ,n},

Qi Q4

Qi (¢ 4]

Thus there exist diagonal matrices C and D such that a;; = C(4,1) D(j, 5)
forallie {1,--- ,m} and j € {1,--- ,n}.

(c) For any m x n matrix A,
TA=CRU®ARQV ®D,

where U and V' are the matrices corresponding to the permutations

of {1,---,m} and {1,---,n}, respectively.

Proof of Step 8.
(a). It follows from Steps 1 to 7.
(b). Since E;;®Ey®E;®Ey is a rank one matrix, T (E;; & Ey & Ei; & Ey)

is also a rank one matrix. Using (a), we have

T (Ei; ® Eix ® Ej; ® Ex) = 04 Eygyvii) ® aixEugyv e
®eu; Euayvi) @ awBua),vr)-
Since the matrix in the right hand side of the above equation has rank one, it
follows that 2 = 2. Thus if we take C(1,1) = 1, D(1,1) = ayy, C(3,4) =
aii/a; and D(j,7) = ayj for all i € {2,--- ,m} and j = {2,--- ,n}, then

we have the invertible diagonal matrices C and D.
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(c). This is easy in view of (a) and (b). In fact

T(A) = T (®i;A(,7) Eij) = @:;A(,5) T (Ey)
= @;;C(,1) A(4,J) By v DG, j)) =C®U®A®V ® D.

A similar argument shows that if the entries in the first row of 7 have a
common second coordinate, then m = n and there exist permutations (ma-
trices) U and V of {1,---,n} and there exist invertible diagonal matrices
C and D such that T(A) =C QU A'®V ® D, for all A € My, u(Rmax)-

Thus the proof of the lemma 4.5 is complete. O

Now, we define a sub-semimodule of My, ,(Rnyax) Wwhose nonzero mem-

bers have rank 1 as a rank-1-sub-semimodule.

Lemma 4.6. If T is a linear operator on My, ,(Rmax) that preserves the
weak dimension of all rank-1-sub-semimodules, then the restriction of T to
the rank one matrices is injective or T reduces the rank of some rank two

matriz to one.

Proof. Let M! = {A € M, ,(Rpnax) : 7(A) = 1}. For each B € M},
define Wp = span{X € M! : T(X) = T(B)}. Note that B € Wp and

dim,,(T(Wg)) = 1. Then we have two cases.

Case 1. For all B € M!, Wy is a semimodule containing the nonzero
matrices of rank one and zero matrix only. Then by the hypothesis that
T preserves the weak dimension of all rink one sub-semimodules, we have
dimy,(Wg) = dim,(T(Wg)) = 1. Hence Wy = span ({B}). Thus T is

injective.
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Case 2. There exists a B € M! such that dim,(Wpg) > 1. Then there
exist Xo, Yy € {X € M! : T(X) = T(B)} such that 7(X, ® Y;) = 2. Also
T(Xo®Yy) = T(B) has rank 1. Hence T reduces the rank of some rank two

matrix to one. O

Corollary 4.7. If T is a linear operator on My, ,(Rnax) that

(i) preserves the ranks of all rank one and rank two matrices, and

(ii) preserves the weak dimension of all rank one sub-semimodules,
then

(a) T is invertible and

(b) T! satisfies (i) and (ii).

Proof. It follows from Lemma 4.6 that T is injective on the set of all
rank one matrices. Note that the weak basis' E of M, ,(Rmax) is a set
of rank one matrices. Let E;; € E and C be a rank one matrix such that
T(C) = E;;. Since C' # 0, we can choose a nonzero a € Ry and F € E
such that «C > F. Since T is a linear operator and we are dealing with
nonnegative real numbers, we have T'(aC) > T(F), that is aF,; > T(F).

Thus it follows that

for some nonzero 8 € Rpay.

It is easy to see that C has exactly one nonzero entry. In fact, if C has
more than one nonzero entry, then we can get a nonzero vy € R, and an
F’ € E with F' # F such that yC > F’. In a similar method as the above,

we can get that
T(F’) - (SE,']‘
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for some nonzero 6. Thus T (%F) = Ey; = T (3F') whereas ;F # ;F'.

This contradicts the fact that 7 is injective on the set of rank one matrices.

Thus C has to be of the form o;; Fjx. We remind that C is the pre-image
of E;;. Since T is injective, Ej; can not have more than one pre-images.
Since E is a finite set we conclude that T permutes E with some nonzero
scalar multiplication. Hence by Corollary 4.4-(3), T is invertible. The rest

of the proof is trivial. a

We say that a linear operator T on My, n(Rmax) is a (U, V)-operator
if there exist monomials U € My, i (Rimax) and V € M, n(Rpax) such that
either T(A) = U® AQ®V for all A in My, o(Rpax) or m = n, T(A) =
U®A'®V for all A in My, n(Rmax)-

Theorem 4.8. If T is a linear operator on My, n(Rmax) then the followings

are equivalent ;

(1) T is invertible and preserves rank 1;
(2) T preserves ranks 1 and 2 and preserves the weak dimension of all rank-
1-sub-semimodules;

(3) T is a (U, V)-operator.

Proof. Lemma 4.5 shows that (1) implies (3). Corollary 4.7 shows that
(2) implies (1). To show that (3) implies (2), note that (U, V')-operators are
preservers of all rank (it can be seen easily, in view of the fact that r(A) is
the smallest integer k such that there exist k rank one matrices whose sum

is A) and now apply Lemma 4.2. O
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4.2 Rank-preserving operator

In this section, we obtain characterizations of the linear operators which
preserve rank of matrices over max algebra.
We say that a linear operator T on My, ,(Rmax) is @ rank preserver if

T preserves all ranks.

Lemma 4.9. Let A,B € Mpn(Rmax), A # B,m > 1,n > 1 with r(A) =
r(B) = 1. Then

(i) if the number of nonzero entries in A is more than that of B, then there
ezists C' € Mupn(Rmax) such that r(A® C) = 1 and r(B & C)=2.

(ii) ¢of the number of nonzero entries in A is equal to that of B, then there
ezists C € Moy, n(Rmax) such that either r(A®C)=1andr(BoC) =2
or Tf(A®C)=2 and r(B®C) = 1.

Proof. (i). If r(A@® B) = 2, then it holds with C = A. So assume
that 7(A @ B) = 1. Then there exist 4, Jo such that A(ip, 75) # 0 but

B(tg, jo) = 0. Consider the following three cases.

Case 1. A® B has at least two nonzero rows and two nonzero columns.

Define an m x n matrix C as the following:

%A(io,jo), if (2,]) = (i07j0)>
A(i, j), otherwise.

C(z,4) =

Then A®C = A and hence 7(A®C) = 1. But B&C is the same as B@ 4,
except the (ip,jo)th entry of them. That is, (B @ C) (%0, jo) = 3A(io, jo)
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and (B @ A)(i, jo) = Al(to, jo) are different. Therefore 7(B @ C) = 2 since
r(Be A) = 1.

Case 2. A® B has exactly one nonzero row, that is the igth row. Then
the igth rows A and B are nonzero, respectively, and all the other rows are
zero. Let 7;th row of A be zero.

Define an m x n matrix C as the following :

[ L AGo, o), if (i, 5) = (io, o),
A ) , ) y lf 1=1 y . ) s
Cli, ) = ¢ (40,7) 0, J # Jo
Alio, g), if =14,
\ A(d, 9), otherwise.

Then A @ C is of rank one. But B @ C 1is the same as C @ A, except
that the (i, jo)th entry of them. That is, (C & A)(io, jo) = A(éo, jo) and
(B & C)(ig, jo) = 3A(i0, jo) are different. Therefore 7(B @ C) = 2 since
r(C® A) =1.

Case 3. A® B has exactly one nonzero column. The proof of this case

is similar to Case 2.

(i1). The proof is similar to that of (i) if we keep in mind that in the proof
of (i), %A(ig,jo) is a positive real number between A(ig, jo) and B(i, jo)

when A(i, jo) is strictly larger than B(io, jo). O

Lemma 4.10. If T is a linear operator on My, n(Rmax) with m > 1,
n > 1, and T is not invertible but preserves rank 1, then T decreases the

rank of some rank two matriz.
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Proof. By the proof of Corollary 4.7, T is not injective on the set of all
rank one matrices. So there exist distinct rank one matrices X and Y such
that T(X) = T(Y). Without loss of generality, we may assume that the
number of nonzero entries in X is more than or equal that of Y. By Lemma

4.9, there is some matrix C such that
either r(X®C)=2,7Y®C)=1 or r(XaC)=1,r(Y®C)=2

Then, in the former case, (X & C) = T(X) T(C) = T(Y)a T(C) =
T(Y & C) is a rank one matrix. Thus T decreases the rank of rank two
matrix X @ C. Similarly, in the latter case, T also decreases the rank of

Yo C. O

Theorem 4.11. Let T be a linear operator on My, n(Rpax) with m > 1

andn > 1. Then T is a rank preserver if and only if T is a (U, V')-operator.

Proof. By Theorem 4.8 and Lemma 4.10, we see that the necessity of the
condition is satisfied. The sufficiency is trivial in view of Theorem 4.8 and
the fact that r(A) is the smallest integer k such that there exist k rank one

matrices whose sum is A. 0

Theorem 4.12. Suppose T is a linear operator on M, n(Rmax). Then T

1s a rank preserver if and only if T preserves ranks 1 and 2.

Proof. We may assume m > 1 and n > 1. If T preserves ranks 1 and 2,
then 7T is invertible by Lemma 4.10. Thus T is a rank preserver by Theorem

4.8 and Theorem 4.11. The converse is trivial. O

Thus we have characterized the linear operators that preserve rank of

matrices over max algebra.
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5 Linear operator preserving column rank

over max algebra

5.1 Comparison of rank and column rank

The sub-semimodule of (Ry.x)™ generated by the columns of an m x n
matrix A is called the column space of A, and denoted < A >. The column
rank, c(A), of A € M, »(Rmax) is the weak dimension of the column space
of A. The column rank of the zero matrix is zero.

It follows that
0<r(4)<c(A) <n (5.1)

for all matrices A € My n(Rmax)-
The column rank of a matrix may strictly exceed its rank over Rpmax. For

example, we consider a matrix with nonzero elements a, b,c,d, e, f € Rpax

0 0 a b
A=|c 0 0 d| € M3a(Rmax). (5.2)
0 e f O

Then Example 5.6 (below) implies that r(A) = 3, but ¢(A) = 4.

Lemma 5.1. For any A € M n(Rmax)- 7(A) = 1 if and only if c(A) = 1.

Proof. If r(A) = 1, then A can be factored as



where b is an mx1 matrix and [¢; - - - ¢, ] is an 1xn matrix. Sincer(A4) =1,
b is not a zero column vector. Then it is obvious that span({b}) =< A > .

Therefore ¢(A) = 1. The converse follows from (5.1). a

Let p(Rmax, m,n) be the largest integer k such that for all A € M, ,,
(Rmax), 7(A) = ¢(A) if 7(A) < k. The matrix in (5.2) shows that p(Rpax,
3,4) < 3. In general 0 < p(Rpax, m,n) < n. We also obtain that

A0 ) ( A0 )
T =r(A) and ¢ = ¢(A) (5.3)
0 0 0 0O

for all A € My, 5 (Rmax)-

Lemma 5.2. If ¢(A) > r(A) for some p X ¢ matriz A over Rpax, then for

allm > p and n > ¢, p(Rmax, m,n) < r(A).

Proof. Since ¢(A) > r(A) for some pXxq matrix A, we have g(Rmax, P, q) <

A0

r(A) from the definition of u. Let B = |:
0 0

:l be an m X n matrix
containing A as a submatrix. Then by (5.3),

r(B) = r(A) < ¢(A) = ¢(B).
So, u(Rmax, m,n) < r(A) forall m > pand n > gq. O

Lemma 5.3. For any A € My n(Rmax) with n > 2, 7(A) = 2 if and only if
c(A) = 2.
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Proof. Let 7(A) = 2. If n = 2, then (5.1) implies that ¢(A) = 2. So we
can assume that n > 3. Since any zero column does not change the weak
dimension of the column space of A, we may assume that there is no zero

column in A. Then we may write

al e al o .. an

A:[al @y a"]: B o Bi o0 Da

Since c¢(A) > 2, there exist at least two different columns in A such that

they are linearly independent.

. Gy
Let 3 Biu#%{ﬂ"} and - ghlg(l){ o }. Then any column 5 of A
can be written as
y L
Q; .
%? if /Bk = 0)
L B
64 (6 5
, = < %f- if o = 0,
B | B
a aJ ﬂ ai .
Eb' @D 73& if akﬁk 74 0.
i B "B
\ Rt t
Thus ¢(A) = 2. The converse follows from (5.1) and Lemma 5.1. 0

Theorem 5.4. For any A € My, n(Rmax) withm > 2 andn > 2, r(A) = 2
if and only if ¢(A) = 2.
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Proof. Let r(A) = 2. Then A can be factored as A = B®C for some m x 2

matrix B and 2 x n matrix C, which are expressed as

al . al « s e an

=[xz y] and C =
B - Bi o0 Da

If n = 2, then (5.1) implies that ¢(4) = 2. So we may assume that n > 3.
Then Lemma 5.3 implies that ¢(C) = 2. And we consider the three cases in
the proof of Lemma 5.3. But it is sufficient to consider the last case. Notice
that any column of A is of the form oy & B,y. Using the method in the

proof of Lemma 5.3, we have

ah:%%ai@ﬂeaj and [y = ﬂ"ﬂ:@ ﬁ])

aj;
where
ﬁ—f:max{ﬁthI,---,n} and &Zmin{éb' h:l,--~,n}.
oy ay, a; Qp
Then we have
art @ By (  ® Gha ) ®(%ﬁi®%ﬂj)y
7 (0 ® fiy) @ 2 (a; @ Biy)

€ span({o;x ® Biy, oy & Piy}).

This shows that {o;x @ By, ajx @ By} is a weak basis of the column space
of A, which implies that ¢(4) = 2. The converse follows from (5.1) and

Lemma 5.1. O

Lemma 5.5. If all columns of an m x n matriz A over Ry, are linearly

independent, then c¢(A) = n.
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Proof. Let A = [a; - - a,] € My, n(Rpax), where each a; € M, 1 (Rmax) is
a column of A. Let 2 be any weak basis of the column space of A. Suppose
that there exists a column a; such that a;a; ¢ Q for all nonzero o; € Rpay.

Ihen we ha‘/e
. — (DN - ivalen a, = d", %ia,
a;a; = @i;éjatala equi 1 tly j #ja; 1

which contradicts the fact that all columns of A are linearly independent.

Hence dim, (< A >) > n, which implies that ¢(A) = n. O

Example 5.6. Consider a matrix

0 0 a b
A= c 0 0 d € M3,4 (Rmax)
0 e f O

with nonzero elements a,b,c,d,e, f € Rpax. Since all columns of A are
linearly independent over Ry.., we have ¢(A) = 4 by Lemma 5.5. Also
2 < r(A) €3 =min(3,4) by Lemma 5.1. It follows from Theorem 5.4 that
r(A) # 2. Therefore r(A) = 3. Q

Theorem 5.7. For m x n matrices over maz algebra, we have the values

of 1 as follows;

1 if min(m,n) =1,
P(Rmax,m,n) =4 3 4f in >3, and n = 3;

2 otherwise.

Proof. If min(m,n) = 1, then we have u(Ryax, m,n) = 1 from Lemma 5.1.
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Consider the matrix A € M3 4(Rpax) in Example 5.6. Then r(A) = 3 and
c(A) = 4. Thus we have p(Ryay,m,n) < 2 for allm > 3 and n > 4 by
Lemma 5.2. Suppose m > 2 and n > 2. Then we have pu(Rpyax, m,n) > 2
for all m > 2 and n > 2 by Theorem 5.4. Finally, we consider the case with
m > 3 and n = 3. Then we have u(Rpax, m,n) = 3 by Lemma 5.1 and

Theorem 5.4. Therefore we have the values of y as required. 0O

5.2 Column rank-preserving operator

In this section we obtain characterizations of the linear operators that
preserve the column rank of matrices over max algebra.

A linear operator T' on M, ,(Rmax) is said to preserve column rank if
c(T(A)) = c(A) for all A € M, o(Rmax). It preserves column rank r if
¢(T(A)) = r whenever c(A) = r.

Lemma 5.8. The column rank of a matriz over Ry, is preserved under

pre- or post-multiplication by an invertible matriz.

Proof. For the case of pre-multiplication, let A be any m x n matrix
and U be an m x m invertible matrix over Ry.x. By Lemma 2.9, U is
monomial. If ¢(A) = r, then there exists a weak basis {@,, -+ ,z,} of the
column space of A such that dim,(< A >) =7. Then {U®x,,--- ,U®=,}
is clearly a weak basis of the column space of U ® A. Thus ¢(U ® A) =r.
Conversely, if c(U ® A) = r, then there exists a weak basis {y;, - ,¥,}
of the column space of U ® A such that dim,(< U ® A >) = r. Then
{U7'®y,,---,U ' ®y,} is clearly a weak basis of the column space of
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U'®@U® A= A. Hence c(A) =r.
For the case of post-multiplication, let V' be an invertible matrix in
M, n(Rmax). By Lemma 2.9, V is monomial. Let v; be the nonzero entry

of the ith column of V. Then we have

AV = [01 as - an] @V = [’0101‘(1) VaQi(2)y Unai(n)],
where a;,a,, - ,a, are all columns of A and {i(1),i(2),---,i(n)} is a
permutation of {1,2,--- ,n}. Hence ¢(4) = c(A® V). O

Suppose T is a linear operator on M, ,(Rmax). Say that T is a

(1) congruence operator if there exist monomials U € M, n(Rpax) and V €

M n(Rpmax) such that T(A) =U® A® V for all A in My, n(Rmax);

(2) transposition operator if m =n and T(A) = A, the transpose matrix

of A, for all A in My, ,(Rpax)-

We define a sub-semimodule of M, ,(Rmax) Whose nonzero members
have column rank 1 as a column-rank-1-sub-semimodule. Using Theorem
5.7, we can apply the results for ranks 1 and 2 in Theorem 4.8 to those

column ranks 1 and 2. Thus we obtain the following Theorem 5.9.

Theorem 5.9. If T is a linear operator on M, n(Rmax), then the follow-

ings are equivalent;

(1) T is invertible and preserves column rank 1;
(2) T preserves column ranks 1 and 2 and preserves the weak dimension of
all column-rank-1-sub-semimodules;

(3) T is a (U, V)-operator.
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Example 5.10. Let

o R oS O
[a © o
o O o o

be a matrix in M, 4(Rnax) with nonzero elements a,b,¢,d, e, f € Ryay.
Then c(B) = 3 since the first three columns of B constitute a weak basis of

the column space of B. But the column rank of

0 0 a b
c 0 0 d
Bt =
0 e f O
0 0 00
L .
is 4 by (5.3) and Example 5.6. 0

Lemma 5.11. If T is a transposition operator on My, m(Rmax) with m >

4, then T does not preserve column rank r for r > 3 but preserves all ranks.

Proof. Let B be the matrix in Example 5.10. Consider C = B® 0,,_4 €
M m(Rmax). Then ¢(C) = 3 by (5.3) but T(C) = C* has column rank 4
by (5.3). Let

D = B @ Ilc 69 Om—k—4 € Mm,m(Rmax),

where i is the identity matrix of order k. Then ¢(D) = 3+k but T(D) =

D* has column rank 4 + k. Therefore T does not preserve column rank r
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for r > 3, but it is obvious that T preserves all ranks. O

Lemma 5.11 shows that some rank preserver(a transposition operator)

do not preserve any column ranks.

Theorem 5.12. Suppose T is a linear operator on My, n(Ryax) with n >

m > 4. Then the following are equivalent ;

1) T preserves column rank;

(1)
(2) T preserves column ranks 1,2 and 3;
(3) T is a congruence operator;

(4)

4) T is bijective and preserves column ranks 1 and 3.

Proof. (1) = (2) : Obviously. (2) = (3) : Assume (2). Then T preserves
ranks 1 and 2 by Theorem 5.7. Theorems 4.12 and 4.11 implies that T is a
(U, V)—operator. But the transposition operator does not preserve column
rank 3 by Lemma 5.11. Hence T is a congruence operator. (3) = (1) :
Assume (3). Then T preserves column rank by Lemma 5.8. (3) = (4) :
Assume (3). Clearly T is bijective and preserves column ranks 1 and 3 by
Lemma 5.8. (4) = (3) : Assume (4). Then T is invertible and preserves
column rank 1. By Theorem 5.9, T is (U, V)-operator. But Lemma 5.11
implies that T is not a transposition operator. Hence T is a congruence

operator. O

We have assumed that n > m > 4 in the Theorem 5.12. For the other
cases, the linear operators which prescive column rank are the same as
rank preservers in the Theorems 4.11 and 4.12. We show it in the following

remark.
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Remark 5.13. Suppose T is a linear operator on M, (Rmax) with n < 3.

Then the following are equivalent ;

(1) T preserves column rank;
(2) T preserves column ranks 1 and 2;

(3) T s a (U,V)—operator.

Proof. (1) == (2) : Obviously. (2) => (3) : Assume (2). Then T preserves
ranks 1 and 2 by Theorem 5.7. Thus T is a (U, V)—operator by Theorems
4.11 and 4.12. (3) == (1) : Assume (3). Then for any A € M (Rinax),
there exist monomials U € My, m(Rimax) and V € M, ,(Rpax) such that
either T(A) = U® A®V orm =n, T(A) = U® A* ® V. For the case
T(A) =U ® A®V, T preserves all column ranks by Lemma 5.8. For the
casem = n and T(A) = U® A'®V, we have m = n < 3 from the conditions
on m and n. But Theorem 5.7 implies that r(A) = ¢(A) < 3form =n < 3.
Then T(A) = U ® A*® V preserves all ranks by Theorem 4.11 and hence it

preserves all column ranks for m =n < 3. O

Thus we have characterized the linear operators that preserve column

rank of matrices over max algebra.
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6 Linear operator preserving maximal

column rank over max algebra

6.1 Comparison of rank and maximal column rank

The mazimal column rank, mc(A), of A € My, n(Rmax) is the maximal
number of the columns of which are linearly independent over Ry,x. The
maximal column rank of the zero matrix is zero.

It follows that

0<r(A) <c(A) <mc(A) <n (6.1)

for all matrices A € M, n(Rmax)-
The maximal column rank of a matrix may actually exceed its rank over

Rumax- For example, we consider the matrix A in Example 5.6;

0 0 ab
A=|¢ 0 0 d | € M34(Rnax)- (6.2)
0 e f O

Then Example 5.6 implies that r(A) = 3. But mc(A) = 4 because all
columns of A are linearly independent over Ry ax.

Moreover the maximal column rank of a matrix may actually exceed
its column rank over R,... Consider « matrix X with nonzero elements

a,b1c1d167f7g E Rm&x;
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a 00 b O
X=10 ¢ 0 0 d| €M;ss5(Rnax)

0 0e f g

Then ¢(A) = 3 since the first three columns of X constitute a weak basis
of the column space of X. But me(X) = 4 since the last four columns of X

are linearly independent over Ry ..

Lemma 6.1. For any m x n matriz A over Rpyay, we have that r(A) =1

if and only if me(A) = 1.
Proof. If r(A) = 1, then A can be factored as

- - -

ay a1b1 =K alb,- cee albn

a ashy -+ agb; -+ agb,
A= "7 el b b | =] ’ !

Qm ambi 0 amb; -+ apby

If there exist nonzero b; and b; for some i # j, then b; = %fb,—. Hence ith
and jth columns of A are linearly dependent. This implies that any two
columns of A are linearly dependent. Therefore mc(A) = 1. The converse

is obvious from (6.1). )

Let 3(Rmax, M, n) be the largest integer k such that for all A € My, ,
(Rmax), 7(A) = mc(A) if r(A) < k. The matrix A in (6.2) shows that
B(Rimax, 3,4) < 3. In general 0 < S(Rmax, m,n) < n. We also obtain that
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A0 A0
T ( [ } ) =r(A) and mc( l: ] ) = mc(A) (6.3)
0 0 0 0

for all m x n matrices A over Rp.x.

Lemma 6.2. If mc(A) > r(A) for some p x ¢ matriz A over Ruyax, then
for allm > p and n > q, B(Rmax, m,n) < r(A).

Proof. Since mc(A) > r(A) for some pxg matrix A, we have §(Rmax, P, ¢) <

A O
7(A) from the definition of 5. Let B = {
0 0

] be an m X n matrix con-

taining A as a submatrix. Then by (6.3),
r(B) = r(A) < mc(A) = me(B).
So, B(Rmax, m,n) < r(A) for all m > p and n > gq. O

Lemma 6.3. For any A € Mg ,(Rmax) with n > 2, we have that 7(A) = 2
if and only if mc(A) = 2.

Proof. Let r(A) = 2. If n = 2, then (6.1) implies that mc(A) = 2. So we

may assume that n > 3. Let

() ()= ()

be any three columns of A. Then we claim that the three columns are

linearly dependent. To show this, we consider three cases.
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Case 1. There are at least two zero elements in {a, b, ¢, d, e, f }. Then

it is obvious that the three columns are linearly dependent.

Case 2. There is only one zero element in {a, b, ¢, d, e, f}. Then,

without loss of generality, we may take b = 0 and max($, &) = % Thus we

d f
have
a f c eﬁ)ﬁc e
— EB_ — =
e\o) d\da f f

So the given three columns are linearly dependent.

Case 3. There is no zero element in {a, b, ¢, d, e, f}. Then, without

loss of generality, we may assume that $<3< -;- Thus we obtain

a e gaEBc c

b f do ¢ f d

ol
&
® 1o
J
Il

Hence the given three columns are linearly dependent.
This shows that mc(A4) < 3. Therefore mc(A) = 2 by (6.1). The converse

follows from (6.1) and Lemma 6.1. O

Theorem 6.4. For any A € M, ,(Ryax) with m > 2 and n > 2, we have

that r(A) = 2 implies mc(A) = 2 and conversely.

Proof. Let r(A) = 2. Then A can be factored as A = B®C for some m x 2
matrix B = [z y] and 2 x n matrix C with r(B) = r(C) = 2. If n = 2,
then (6.1) implies that mc(A) = 2. So we can assume that n > 3. Then any
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a
column of A has the form az ® by with a column of C. Let ax & by,
b

cx @ dy and ex @ fy be any three columns of A. Then

and
b d f

are columns of C' and hence they are linearly dependent by Lemma 6.3. Now
we consider all three cases in the proof of Lemma 6.3. But it is sufficient

to consider the case 3, that is, {a, b, ¢, d, €, f} has no zero element with

;<5< % Then the proof of Lemma 6.3 implies that
c:(—laEB—c-e and d=c—1b€BEf.
b e b e

Thus we have

d d d
cx & dy = (EaEBSe)zea (Ebeagf)y:Z(am@by)@i(em@fy).

Therefore we have mc(A) < 2, which implies that mc(A) = 2 by (6.1). The

converse is obvious from (6.1) and Lemma 6.1. 0O

Theorem 6.5. For m x n matrices over maz algebra, we have the values

of B as follows;

1 if min(m,n) = 1;
B(Rmax,m,n) = ¢ 3 if m>3, and n=3;

2 otherwise.
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Proof. If min(m,n) = 1, then we have 3(Rpax,m,n) = 1 from Lemma
6.1. Consider the matrix A € M3 4(Rmay) in (6.2). Then r(4) = 3 and
mc(A) = 4. Thus we have 3(Rmax,m,n) < 2 forallm > 3 and n > 4 by
Lemma 6.2. Suppose m > 2 and n > 2. Then we have §(Rmpax, m,n) > 2
for all m > 2 and n > 2 by Lemma 6.1 and Theorem 6.4. Moreover, for
A € Mup3(Rmay) With m > 3, 7(A) = 3 implies mc(A) = 3 from (6.1) and
me(A) = 3 implies 7(A) = 3 from Lemma 6.1 and Theorem 6.4. Thus we
have B(Rmax, m, 3) = 3 for m > 3. Therefore we have determined the values

of 3, as required. o

6.2 Maximal column rank-preserving operator

In this section we obtain characterizations of the linear operators that
preserve maximal column rank of matrices over max algebra.

A linear operator T on My, »(Rmax) is said to preserve mazimal column
rank if me(T(A)) = mc(A) for all A € My n(Rmax). It preserves mazimal

column rank r if me(T(A)) = r whenever mc(A) =r.

Lemma 6.6. The mazimal column rank of a matriz over Ry 1s preserved

under pre- or post-multiplication by an invertible matriz.

Proof. For the case of pre-multiplication, let A be any m x n matrix and U
be an m x m invertible matrix over Ry By Lemma 2.9, U is monomial. If
mc(A) = r, then there exists r linearly independent columns ai(1), - -+ , @i(r)
in A which are maximal. Then U ®a;(), - -+ , U ® @y() are linearly indepen-

dent columns of U ® A. Thus me(U ® A) > r. Conversely, if me(U® A) =,
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then there exists r linearly independent columns biy, -+, bip) inU® A
which are maximal. Then U™' @ byyy, -+, U™!' ® bi(r) are linearly indepen-
dent columns of U™! @ U ® A = A. Hence mc(A) > r. Therefore we have
mc(A) = me(U ® A).

For the case of post-multiplication, let V be an invertible matrix in
M n(Rmax). Then V is monomial. Let v; be the nonzero entry of the ith

column of V. Then we have
ARV =[a1a;---a,]®V = [V1@(1) V2@i2) - - VpBin) ],

where ay, - - - , @, are the columns of A and {i(1),--- ,%(n)} is a permutation
of {1,---,n}. If a;,a,, -, a, are linearly independent columns of A, then
Vz@i(z), UyQi(y), " * * , V,@i(») are finearly independent columns of A ® V, and

conversely. Hence mc(A) = me(A® V). a

We define a sub-semimodule of M, ,(Rnax) whose nonzero members
have maximal column rank 1 as a mazimal-column-rank-1-sub-semimodule.
Using Theorem 6.5, we can apply the results for ranks 1 and 2 in Theorem
4.8 to those maximal column ranks 1 and 2. Thus we obtain the following

Theorem 6.7.

Theorem 6.7. IfT is a linear operator on My, n(Rmax) then the followings

are equivalent ;

(1) T is invertible and preserves mazimal column rank 1;
(2) T preserves mazimal column ranks 1 and 2, and preserves the weak di-
mension of all mazimal-column-rank-1-sub-semimodules;

(3) T is a (U, V)-operator.
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Example 6.8. Let

]
[ © ©
o O o Qo

be the matrix in Example 5.10. Then mc(B) = 3 since the first three

columns of B are linearly independent over Ry,a,. But the maximal column

rank of
0 0 a b
c 0 0 d
Bt =
0e fO
P 00 00
is 4 by (6.2) and (6.3). O

Lemma 6.9. If T is a transposition operator on My, ;m(Rpax) withm > 4,
then T does not preserve mazrimal column rank r for r > 3 but preserves

all ranks.

Proof. Let B be the matrix in Example 6.8. Consider C = B ® 0,4 €
Mopm(Rmax). Then me(C) = 3 by (6.3) but T(C) = C* has maximal
column rank 4 by (6.3). Let

D=B8B 35] Ik @ Om—k—4 € Mm,m(Rmax)a

where I, is the identity matrix of order k. Then me(D) = 3 + k but

T(D) = D! has maximal column rank 4 + k. Therefore T' does not preserve
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maximal column rank r for 7 > 3, but it is obvious that T preserves all

ranks. O

Lemma 6.9 shows that some rank preservers(a transposition operator)

do not preserve any maximal column ranks.

Theorem 6.10. Suppose T is a linear operator on My n(Rmax) with n >

m > 4. Then the following are equivalent;

(1) T preserves mazimal column rank;

(2) T preserves mazimal column ranks 1,2 and 3;
(3) T is a congruence operator;
(4)

4) T is bijective and preserves mazimal column ranks 1 and 3.

Proof. (1) = (2) : Obviously. (2) = (3) : Assume (2). Then T preserves
ranks 1 and 2 by Theorem 6.5. Theorems 4.12 and 4.11 implies that T
is a (U, V)-operator. But the transposition operator does not preserve
maximal column rank 3 by Lemma 6.9. Hence T is a congruence operator.
(3) => (1) : Assume (3). Then T preserves column rank by Lemma 6.6.
(3) = (4) : Assume (3). Clearly T is bijective and preserves maximal
column ranks 1 and 3 by Lemma 6.6. (4) = (3) : Assume (4). Then
T is invertible and preserves maximal column rank 1. By Theorem 6.7, T
is (U,V)-operator. But Lemma 6.9 implies that 7" is not a transposition

operator. Hence T is a congruence operator. a

We have assumed that n > m > 4 in the Theorem 6.10. For the other
cases, the linear operators which preserve maximal column rank are the
same as rank preservers in the Theorems 4.11 and 4.12. We show it in the

following remark.
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Remark 6.11. Suppose T is a linear operator on My, n(Rmax) with n < 3.

Then the following are equivalent ;

(1) T preserves mazimal column rank;
(2) T preserves mazimal column ranks 1 and 2;

(3) T is a (U, V)—operator.

Proof. (1) = (2) : Obviously. (2) = (3) : Assume (2). Then T preserves
ranks 1 and 2 by Theorem 6.5. Thus T is a (U, V)—operator by Theorems
4.11 and 4.12. (3) = (1) : Assume (3). Then for any A € M, n(Rmax),
there exist monomials U € M, ;,(Rmax) and V' € M, ,(Rmax) such that
either T(A) = U® A®V orm =n, T(A) = U® A* ® V. For the case
T(A) =U® AQYV, T preserves all maximal column ranks by Lemma 6.6.
For the case m = n and T(A) = U ® A' ® V, we have m = n < 3 from the
conditions on m and n. But Theorem 6.5 implies that r(A) = mc(A) < 3
for m =n < 3. Then T(A) = U ® A' ® V preserves all ranks by Theorem

4.11 and hence it preserves all maximal column ranks form=n<3. 0O

Thus we have characterized the linear operators that preserve maximal

column rank of matrices over max algebra.
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7 Concluding remark

In this dissertation, we investigated the linear operator preserving col-
umn rank and maximal column rank over max algebra. In section 5, we
obtained the relationships between rank and column rank, and character-
ized the linear operator that preserves column rank over max algebra. It
turns out that the linear operator is a congruence operator, which equals
the linear operator that preserves (binary) Boolean column rank. In section
6, we studied the relationships between rank and maximal column rank, and
obtained the results like as column rank. Also we had the characterizations
of the linear operator preserving maximal column rank over max algebra.
Like column rank preserver, it is a congruence operator which equals the

linear operator that preserves (binary) Boolean maximal column rank.
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