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< Abstract >

Classification of certain idempotent matrices

over binary Boolean algebra

In this article we classify certain matrices over binary Boolean algebra to
find out whether they are idempotent or not for n x n matrices. That 1s, we
determine whether all 3 x 3 matrices are idempotent or not and exténd this
result to certain n x n binary Boolean matrices. We obtain these results by
investigating the sums of cells of diagonal cells and off-diagonal cells. Conse-
quently, we classify completely the matrices of the sums of mutually distinct

four cells and obtain the cases of being idempotent.
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1. Introduction.

If S is a set of one element, then. the power set of S"consists of two subsets
of S. We denote the null set by 0 and S by 1. Let B be the power set
of S. Ih B, let us denote the union of the elements by +, intersection by
juxtaposition, and complementation by *. Then B = {0, 1} with these
operations is an algebra and called the binary Boolean algebra([6)])

Let M, (B) denote the set of n x n matrices with entries in B which are
called the set of n x n binary Boolean matrices. If O is the zero matrix([6]),
then 02 = O. Also the identity matrix I{[6]) satisfies I? = I. Thus there
exist matrices A, in M, (B) such that A% = Ao. We call these matrices
A, as idempotent matrices. For these idempotent matrices, it is natural to
ask the following questions: What are their forms and how many idempotent
matrices exist in M, (B) ? In this article, we study on these problems. That
is, we investigate whether a given matrix is idempotent or not. First of all, we
determine whether all matrices with only one nonzero entry are idempotent
or not. And we determine whether all matrices with many nonzero entries
are idempotent or not l)yjusing the above matrices.

In section 2, we give some definitions and some preliminaries. In section 3,
we determine whether all matrices with only four nonzero entries are idem-
potent or not. In section 4, we research all 3 x 3 binary Boolean matrices and
determine their idempotency. Thus we obtain all 123 idempotent matrices
in M3(B). We also show that the other binary Boolean 3 x 3 matrices are

not idempotent and that the number of them is 389.
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2. Definitions and Preliminaries.

We introduce some definitions and notations which we shall use in this
article. Let B denote the binary Boolean algebra of two elements 0 and 1.
Its arithmetic is the same as that of any ring, except that 1+ 1 = 1([5]).
In this article, the entries of all matrices are in the binary Boolean algebra.
Addition and multiplication of matrices over B are defined as if they were
over a field([5]). The matrix with all entries equal to 0 is called zero matriz
and denoted by 0. The matrix with all entries equal to 1 is denoted by
J([5),[6))-

The zero-one n X n matrices with only one entry equal to 1 are called
cells([1]). If the nonzero entry oceursin row i and column j, we denote the
cell by E;; and say that the cell is in row ¢ and it is in column j([1]). A
line([1]) is a row or column. A set of cells is collinear([1]) if they are all in
the same line. When ¢ # j, we say E;j is an off — diagonal cell; Eji is a
diagonal cell([1]). we notice that any n x n matrix can be represented as the

sum of the distinct cells.

The following proposition is an immediate consequence of the rules of

matrix multiplication.

Proposition 2.1([1]). For all indices 1,7, u, and v, E;jEy, = Ej, or O

according as j = u or j # u.

Corollary 2.1.1([1]). For all cells C, C? = C or O according as C' is a

diagonal or off-diagonal cell.



Proposition 2.2([1]). Suppose C and D are cells and CD # O.
(a) If C and D are off-diagonal cells, then either
(i) CD is an off-diagonal cell distinct from C and D, and DC = O
or
(1'1'): D=CT andCD and DC are distinct diagonal cells.
(b) If C is a diagonal cell and D is not, then CD = D, and C and D are
in the same row.
If D is a diagonal cell and C is not, then CD = C, and C and D are
in the same column.

(c).If C and D are diagonal, then C = D.

Proof. The proofs are all routine applications of Proposition 2.1. We prove
(a). Suppose C = Ejj and D = Eyy where ¢ # j and u # v. Proposition 2.1
implies that u = j and CD = Ej, because CD # O. Then v #jand u #1
because u # v and i # j. Therefore CD is distinct from C and D. Ifv#z,
then CD is off-diagonal and DC = O by Proposition 2.1. If v = 3, then
D =CT, DC = Ejj, and CD = E;; by the same proposition. The proofs of

(b) and (c) are similar to (a). O

Let M,,(B) be the set of all n x n matrices whose entries are in B={0,1}.

Throughout this article, we assume that all matrices are in M, (B).

We call a matrix E 15 idempotent if E2 = E. If not, E is called
nonidempotent.

Notice that all diagonal cells are idempotent and all off-diagonal cells are

nonidempotent in M, (B). Furthermore all matrices of sums of mutually
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distinct diagonal cells are idempotent.

Lemma 2.3. Suppose E is a diagonal cell and F is an off-diagonal cell.

Then their sum is idempotent if and only if they are collinear.

Proof. (=) : Suppose (E + F)? = E + F. By Proposition 2.1, E? = E
and F? = 0. Therefore E4+ EF + FE =FE + F and so EF + FE = F. By
Proposition 2.2-(b), E and F are collinear.

(<) : Without loss of generality, we assume that F = E;; and F = E;;
with 7 # j. Then |

(FE + F)2 =(Ei + E,‘j)2 = E,-zi + E;iEi; + E;iEi; + E?j

=E;i+E;+O0O+0=E+F

Thus FE + F is idempotent. O

Lemma 2.4. Suppose E and F are distinct off-diagonal cells. Then their

sum is not idempotent.

Proof. If E and F are i? the same row, say E = E;; and F = E;; with
i # 3,k and j # k, then (E + F)? = O and so E + F is not idempotent. If E
and F are in the same column, say E = E;; and F = E;; with ¢ # j, k and
j # k, then (E + F)* = O and so E + F is not idempotent. If E and F' are
not in the same line, say £ = E;; and F = Eyg with 7 # 7,k and k # [, then
(E+ F)? =0 or E;y or Egj or Ey + Eyj according as (j # k and I # ¢) or
G=ktandl#)or(jE£hkandl=14)or(j=Fkandl=1)andso E+ Fis

not idempotent. O



From the same method in the proof of lemma 2.4 we obtain the general

result.

Corollary 2.4.1. Suppose Ey, Eq;--- , Ey are mutually distinct off-diagonal

cells. Then their sum is not idempotent.

Lemma 2.5. Suppose E, F, and G are mutually distinct cells, E and F are
diagonal but G is not. Then their sum is idempotent if and only if G is in

the same line to E or F.

Proof. The necessity is immediate and so we only prove the sufficiency. Sup-
pose (E+ F+G?=E+F+G. Then by Proposition 2.1, E? = E, F? =
F, EF — FE = O and G? = 0. So we have

E+F+(EG+GE)+(FG+GF)=E+F+G (2.1)

Notice that EG+GE =0 or G, and FG+GF = O or G. Therefore
we obtain the equation (2.1) implies that (EG + GE)+ (FG+ GF) =G.
Thus we have EG + GE = G or FG + GF = G. By Proposition 2.2-(b), E

and G are in the same line or F and G are in the same line. a
We can extend this Lemma 2.5 to the case of many diagonal cells.

Corollary 2.5.1. Suppose Ey, Ea,---, E\, and F are mutually distinct cell-
s, Ei's are diagonal hut F' is not. Then their sum is idempotent if and only

if F isin the same line to at least one of Ey, Eg, -+, E;.

Lemma 2.6([1]). Supposc E,F, and G are mutually distinct cells, E is
diagonal but F and G are not. Then their sum is idempotent if and only if

they are collincar.



Proof. Suppose S = E 4+ F + G and S? = §. By corollary 2.1.1, E? = E

and F? = G? = O. Therefore we have
E+F+G=E+(EF+FE)+(EG+GE)+(FG+GF) (2.2)

First we will show that FG+GF = O. By the equation (2.2), FG cannot
be an off-diagonal cell distinct from F and G, nor can FG and GF be a
pair of distinct diagonal cells. Therefore by Proposition 2.2-(a), FG = O.
Similarly GF = O. Next we will show that EF + FE is either O or F. If
EF # O or FE # O, then EF = F or FE = F by Proposition 2.2-(b).
Similarly, EG + GE is either O or G. Therefore we obtain the equation (2.2)
implies that EF + FE = F and EG+ GE = G. By Proposition 2.2-(b), E
and F are colliner, and E and G are colliner.

Without loss of generality, we assume that E = E;; and F = E;; for some
j # i. Then for some k # i, G is of the form Ey; or E;jx. Now G # Ey
because GF = 0. So we have G = E;x. Thus E, F, and G are collinear. 0O



3. All idempotent matrices that are the sums of four

cells in M, (B)

In this section, we classify completely the matrices of the sums of mutually

distinct four cells and obtain the cases of being idempotent.

Lemma 3.1. Suppose Ey, E2,E3, and E4 are mutually distinct diagonal

cells in M, (B) with n > 4. Then their sum is idempotent.
Proof. It is trivial. a

Lemma 3.2. Suppose Ey, E;, Ej3, and F, are mutually distinct cells,
E,, E,, and Ej3 are diagonal but Fy is not. Then their sum is idempotent if

and only if Fy is in the same line to at least one of By, E; or Ej.
Proof. This is a special case of corollary 2.5.1. O

Theorem 3.3. Suppose E,F,G, and H are mutually distinct cells, E and
F are diagonal but G and H are not. Then their sum is idempotent if and
only if they satisty one of.the following conditions;

(1) G is in the same line to each E and F and H =GT.

(2) G and H are collinear and they are in the same line to E or F.

(3) G and H are not collinear with GH = HG = O and G is in the same

line to either E or F and H is so.

Proof. The necessity is immediate and so we only prove the sufficiency.

Suppose (E+ F+ G+ H) = E+F+ G+ H. By Proposition 2.1,



E!=E, F?=F G*=H?=0,and EF = FE = 0. Thus we have

E+ F + (EG + GE)+ (EH + HE) + (FG + GF)

+(FH+HF)+(GH+HG)=E+F+G+H  (3.1)

Notice that EG+GE=0or G, EH+HE=0orH, FG+GF =0or
G, and FH + HF = O or H. First we suppose that GH + HG # O. Then
GH # or HG # O, say GH # O. By Proposition 2.2-(a), H=GT and GH
and HG are distinct diagonal cells. Therefore we obtain the equation (3.1)
implies that GH 4+ HG = E + F. Without loss of generality, we assume that
GH = E and HG = F. Let E = E;; and F = Ejj with ¢ # j. Then G is of
the form E;x with i # k' because GH = E. Similarly H = E;; with j # t.
Since H = GT, E; = E}; and so j = k and t = 1. That is, we obtain that
E = E;, F = E;j, G = Ejj, and H = Ej; which satisfy the condition (1).
Next we suppose that GH + HG = O. Then we have

(EG + GE)+ (EH + HE) + (FG + GF)+ (FH+ HF)=G + H

Notice that (EG + GE = G or FG+GF=G)and (EH+ HE = H or
FH + HF = H). \'Vitll()l;t loss of generality, we assume that E = Ej; and
F =E;; with ¢ # .

We prove this theorem by three steps.

Step 1. Assume that EG + GE = G and FG + GF =G.

By proprosition 2.2-(b), E and G are in the same line, and F and G are
in the same line. Thus G is in the same line to each E and F. Therefore the

form of G is either E;; or Ej;.



Case1.1) EH+ HE=Hand FH+HF =H.

By Proposition 2.2-(b), E and H are in the same line, and F' and H
are in the same line. So H is in the same line to each E and F. Thus the
form of H is either Ej; or E;; according to G = E;j or G = Ej;. Therefore
GH + fIG = E 4 F(# O) which is a contradiction.

Case 1.2) EH+ HE=Hand FH4+ HF =0.

By Proposition 2.2-(b), FE and H are in the same line, and F' and H are
not in the same line. Thus H is of the form E; or Ey; with ¢ # k,t. If
G = Eij, then H is of the form E;; with k # j (If not, H = Ey; and .t #3
and so HG = E;j(# O) which is a contradiction.). Therefore E,G, and H
are in the same column. If G = Ej;, then H is of the form Eg; with t # j (If
not, H = E;x and k # j and so GH = Ey(# O) which is a contradiction.).
Therefore E, G, and H are in the same row.

Case 1.3) EH+ HE=0and FH+ HF = H.

By the similar method of case 1.2), F,G, and H are in the same line.

Step 2. Assume that EG + GE = G and FG + GF = 0.

By Proposition 2.2-(b), E and G are in the same line, and F and G are
not in the same line. So t:lu’ form of G is either Ej or Ey; with 7 # &kt and
j# kit

Case 2.1) EH+HE=Hand FH+ HF =H.

By the similar method of case 1.2), E,G, and H are in the same line.
Case 2.2) EH+HE=H and FH+ HF = 0.

By Proposition 2.2-(b), E and H are in the same line, and F and H are

not in the same line. So H is of the form either Ej, or Ey; with 2 # a,b and
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j # a,b.
(a) G = Eix and H = Ej,.

We notice that k # a because G and H are distinct. Thus E,G,and H
are in the same row.

(b) G = Eir and H = Ey;.

Now HG = E;Eirx = Epi. But this cell is distinct from G and H. This
contradicts to GH + HG = O.

(¢) G = Ey and H = Ej,.

Now GH = E;E;. = Ei,. But this cell is distinct from G and H. This

contradicts to GH + HG = O.
(1) G=E; and H=E,,.

We notice that & # b because G and H are distinct. Thus E,G, and H
are in the same column.

From (a),(b),(c), and (d) E,G, and H are in the same line.

Case 2.3) EH+HE=0and FH+ HF = H.

By Proposition 2.2-(b), E and H are not in the same line, and F and H
are in the same line. Thl}S H is of the form either Ej, or Ey; with a # 1,7
and b #1,7.

() G = Ejx and H = Ej..

Since GH = HG = O, I # j and a # i. Thus G is in the same row only
to E and H is in the same row only to F. If a = k, then they satisfy the
condition (2). If a # k, they satisfy the condition (3).

(f) G=Ej and H = Ey;.
Notice that & # b (If k = b, then GH = Ei;(# O) which is a contradic-
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tion.). Thus G is in the same row only to E and H is in the same column
only to F. Therefore they satisfy the condition (3).
(g G=E;and H = Ej,..

Notice that ¢ # a (If t = a, then HG = E;;(# O) which is a contradic-
tion.). .Thus G is in the same column only to E and H is in the same row
only to F. Therefore they satisfy the condition (3).

(h) G = Ey; and H = Ey;.

Since GH + HG =0, b# ¢ andt # j. Thus G is in the same column
only to E and H is in the same column only to F. If b = ¢, then they satisfy
the condition (2). If b # ¢, then they satisfy the condition (3).

Step 3. Assume that EG+ GE =0 and FG + GF =G.

The proof is similar to Step 2. O

Definition. Let S be a binary Boolean matrix in M, (B). Then we call S a
rectangle form if S has only four 1’s and the four 1's constitute a rectangle

with a 1 on diagonal and the other three 1’s on off-diagonal.

Theorem 3.4. Suppose £,G, H, and I are mutually distinct cells, E is
diagonal but G, H, and I\ are not. Then their sum is idempotent if and only
if they satisfy one of the following conditions;

(1) They are collinear

(2) They have the rectangle form.

Proof. The necessity is immediate and so we only prove the sufficiency. Sup-

pose (E+ G+ H + LK) =FE+ G+ H+ K. By Proposition 2.1, E? =F

11



and G? = H? = k2 = 0. Thus we have

E+(EG+ GE)+ (EH + HE) + (EK + KE)
+(GH + HG) + (GK + KG) + (HK + KH)

=E+G+H+K (3.2)

We notice that EG+GE = 0O or G, EH+HE =QorH,and EK+KFE =
O or K. First we show that GH + HG = O or K. Suppose GH + HG # O.
Then GH # O or HG # O, say GH # O. By Proposition 2.2-(a),  GH
is an off-diagonal cell distinct from G and H with HG = O. Thus we have
the equation (3.2) implies that FFG = H which is desired result. Similarly,
GK+KG=0or Hand HK + H =0 or G.

Step 1. Assume that GH + HG = O.

Without loss of generality, we assume that F = Fy;.

Case 1.1) GK+ KNG =0 and HKX + KH = 0.

We notice that the equation (3.2) implies that EG+ GE = G, EH +
HE = H, and ELN + KE = II. By Proposition 2.2-(b), E and G are
collinear, F and H are gollinoar, and E and K are collinear. Thus G is
of the form E,, or Ep;. Similarly, H = E;. or Ey4; and K = E;. or Ey; with
1 # a,b,¢,de, and f.

(a) G = FE;,, H=E;,and K = E;.

Since G, H, and Iy are mutually distinct cells, 7,a,¢, and e are mutually

distinct. Therefore E, G, H, and I\ are in the same row.
(b) G=E;,, H=E,;,, and ' = Ey;.
Now VG = Ej,(# O) which is impossible.
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(c) G=FEi, H=Fy,and K = E,,.

Now HK = E4.(# O) which is impossible.

(1) G=E;, H=Ey, and K = Ey;.

Now_KG = Ef.(# O) which is impossible.

If Gv = E4;, then by the above method, E,G, H, and K are in the same
column.

Case 1.2) GN + KNG =H and HK + KH = 0.

We notice that the equation (3.2) implies that EG+GE =G, EH+HE =
Qor H,and EK+ KE = K. By Proposition 2.2-(b), E and G are collinear,
and E and K are collinear. Thus G is of the form E;, or Ey;, and K is of
the form Ej. or Eg; with i # a,b,¢, and d. Since GK+ KG=H, (GK =H
and KG =0)or (GK =0 and KG = H).

() GKN = H and KG = 0.

Since KG = O, G and K are of the forms (G = Ej, and K = E;.) or
(G = E; and ¥ = E;¢) or (G = Ey; and K = Eyg;). Let G = Ej;, and
I = E;.. Since G = H, a = i which is impossible. Let G = E3; and
K = E;.. Since GK = H and H is an off-diagonal cell, H = Ep. and b # c.
Since 1 # b,¢, EH + Hi? = . Thus F,G,H, and K have the rectangle
form. Let G = Ey; and k' = Ey;. Since GV = H, d =1 whichis impossible.

(f) GK =0 aud NG = H.
The proof is similar to the above (¢).
Case 1.3) G+ NG =0 and HN + H =G.
By the similar method of case 1.2), E,G,H, and I have the rectangle

form.
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Case 14) GN+ KG=H and HK + KH =G.

We notice that the equation (3.2) implies that EX + KE = K. By
Proposition 2.2-(b), E and I are collinear. Thus IV is of the form Ej,
or Ep; with i # a,b. Now, we will only consider K = F;,, GK = H, and
HE = G. Since GK = Hand HK =G, KG=KH = 0. Since K = E;.
and GK = H, G is of the form E; and H is of the form E., with 1 # ¢ and
c¢# a. Since HN = G(# 0), a=c which is impossible.

Step 2. Assume that GH + HG = I\

The proof is similar to Step 1. (]
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4. All 3 x 3 idempotent matrices.

Now in this section we determine that each 3 x 3 binary Boolean matrix
is idempotent or not. To determine them, we investigate the sums of cells
according to diagonal cells and off-diagonal cells. Through this section, D
and D;'s mean mutually distinct diagonal cells and F' and F;'s off-diagonal
cells.

0. Matrix of zero cell.

The zero matrix is trivially idempotent.

1. . Matrices of one cell.

1) The diagonal cells are idempotent and the number of them is 3.
2) The off-diagonal cells are not idempotent and the number of them
is 6.
2. Matrices of two cells.
1) The matrices of the forms Dy + D, are idempotent and the number
of them i1s 3.
2) The matrices of Qhe forms D + F
(a) If they are collinear, then the matrices are idempotent and the
number of them 1s 12.
(b) If they are not collinear, then the matrices are not idempotent
and the number of them 1s 6.
3) The matrices of the forms Fy + F; are not idempotent and the
nunber of them 1s 15.

3. Matrices of three cells.

15



1) The matrix of the form Dy + Dy + Dj is idempotent and the number
of it is 1.
2) The matrices of the forms Dy + Dy + F
We note that F is in the same line to D; or D;. So the matrices are
idempotent and the number of them 1s 18.
3) The matrices of the forms D + Fy + F3;
(a) If they are collinear, then the matrices are idempotent and the
number of them is 6.
(b) If they are not collinear, then the matrices are not idempotent
and the number of them is 39.
4) The matrices of the forms Fy + F; + F3 are not idempotent and the
number of them 1s 20.
4. Matrices of four cells.
1) The matrices of the forms Dy 4+ Dy + D3 + F;
We note that F is in the same line to at least one of Dy, Dy or D3. So
the matrices are idempotent and the number 1s 6.
2) The matrices of t}w forms Dy + Dy, + Fy + Fy;
(a) If Fy is in the same line to each Dy and Dy and Fp = FIT, then
the matrices are idempotent and the number of them is 3.
(b) If Fy and F, are collincar and they are in the same line to D; or
D,, then the matrices are idempotent and the number of them is 18.
(c) If otherwise, then the matrices are not idempotent and the num-
ber of them i1s 24.

3) The matrices of the forms D + Fy + F + Fj;

16



(a) If they have the rectangle forms, then the matrices are idempotent
and the number of them is 6.
(b) If otherwise, then the matrices are not idempotent and the num-
ber of them is 54.
4) The matrices of the forms Fy + Fy + F3 + F, are not idempotent
and the number of them is 15.
5. Matrices of five cells.
1) The matrices of the forms D; + Dy + D3 + Fy + F3;
(a) If Fy and F} are collinear, then the matrices are idempotent and
the number of them 1s 6.
(b) f F, =F T, then the matrices are idempotent and the number
of them 1s 3.
(c) If otherwise, the matrices are not idempotent and the number of
them 1s 6.
2) The matrices of the forms Dy + D, + Fy + F + F3;
For D, = Ey; and D, = Ey; the forms of idempotent matrices are the

following 3 matrices aud their transposes only;

O =
O =
O = O
O =

1
1
1

[en B e B

1 1 1

0 11

0 0 O

Similarly, we have have the same results for the other cases. That 1s, we
have 18 idempotent matrices and 42 nonidempotent matrices of these forms.

3) The matrices of the forms Dy + Fy + F, 4+ F3y+ Fy are not idempotent

and the number of them is 495.
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4) The matrices of the forms Fy + Fp + F3 + Fy + F; are not idempotent
and the number of them 1s 6.
6. Matrices of six cells.
1) The matrices of the forms Dy + D, + D3 + Fy + Fp + Fj;
The forms of idempotent matrices are the following 3 matrices and their

transposes only;

1 11 1 11 1 01
011 010 1 11
0 0 1 01 1 0 01
That is, we have 6 idempotent and 14 nonidempotent matrices of these

forms.
2) The matrices of the forms Di+D,+ L+ F,+ F+ Fy;
The forms of idempotent matrices are the following 3 matrices and their

transposes only;

1 1 1 1 11 0 0 0
1 1 1 0 00 1 1 1
0 0 O 111 1 1 1
9 nonidempotent matrices of these

That is, we have 6 idempotent and 3
forms. )
3) The matrices of the forms D + Fy + F, + F3 + Fy + F5 are not
idempotent and the mumber of them is 18.
4) The matrix of the form Fy + Fy+ F3+ Fy+ Fs+ Fs is not idempotent
and the number of 1t 15 1.
7. Matrices of seven cells.

1) The matrices of the forms Dy + Dy + D3 + F, 4+ Fy + F3 + Fy;
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The forms of idempotent matrices are the following 3 matrices and their

transposes only;

1 11 111 1 11
1 11 011 010
0 0 1 011 1 11

That is, we have 6 idempotent and 9 nonidempotent matrices of these
forms.
2) The matrices of the forms Dy + D, + F, + F, + F5 + Fy + Fs are
not idempotent and the number of them is 18. .
3) The matrices of the forms Dy + Fy + F2 + Fy + Fy + Fs + Fg are
not id.empotent and the number of thém is 3.
8. Matrices of eight cells.
1) The matrices of the forms D + Dy + Dis+ R+ FB+F+Fi+Fs
are not i(lempoten‘t and the number of them is 6.
2) The matrices of the forms Dy + D, + B+ R+ FB+Fy+ Fs+ Fe
are not idempotent and the number of them is 3.
9. Matrix of nine cells.
The J is trivially 1dempotent.
Consequently, there exist 123 idempotent and 389 nonidempotent matrices

in M;(B).
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