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<Abstract>

Characterizations of idempotent matrices

over semirings

In this paper, we extend the characterizations of idempotent matrices
over the binary Boolean algebra to those of idempotent matrices over several
semirings. In Section 2, relevant definitions and notations are presented. In
Section 3, we will give a sufficient condition of idempotent matrices over an
arbitrary semiring. In Section 4, we characterize idempotent matrix over the
general Boolean algebra. In Section 5, we characterize idempotent matrix
over fuzzy semiring. Finally in Section 6, we obtain characterizations of

idempotent matrix over nonnegative integer semiring.



1 Introduction

A semiring is essentially a ring in which only the zero is required
to have an additive inverse (a formal definition is given in Section 2).
Thus all rings are semirings. The set of all nonnegative integers, the
general Boolean algebra of subsets of a finite set, and the fuzzy scalars
are combinatorially interesting examples of semirings. The concepts of
algebraic operations on matrices over a semiring are defined as if the
underlying scalars were in a field.

There are many papers on the study of semiring matrix theory. In
particular, Beasley and Pullman [3] studied on linear operators that pre-
serve idempotent matrices over several semirings. Consequently they
showed that the semigroup of linear operators on the semiring matrices
strongly preserving idempotents (that map idempotents to idempotents
and non-idempotents to non-idempotents) is generated by transposition
and the similarity operators (those that map X to PXPT for some per-
mutation matrix P).

But there are few papers on the characterizations of idempotent ma-
trices over a semiring. Recently Bapat et al. [2] obtained characteri-
zations of nonnegative real idempotent matrices, and Beasley et al. [5]
characterized all idempotent binary Boolean matrices.

In this paper, we extend the characterizations of idempotent matri-
ces over the binary Boolean algebra to those of idempotent matrices over
several semirings. In Section 2, relevant definitions and notations are
presented. In Section 3, we will give a sufficient condition of idempo-
tent matrices over an arbitrary semiring. In Section 4, we characterize
idempotent matrix over the general Boolean algebra. In Section 5, we

characterize idempotent matrix over fuzzy semiring. Finally in Section



6, we obtain characterizations of idempotent matrix over nonnegative

integer semiring.



2 Definitions and Notations

Definition 2.1. [7, 10] A semiring S consists of a set S and two binary

operations, addition +, and multiplication -, such that
(1) Sis an Abelian monoid under addition (identity denoted by 0);
(2) S is a monoid under multiplication (identity denoted by 1);
(3) multiplication is distributive over addition on both sides;

(4) s0=0s =0 for all s € S.

Definition 2.2. A semiring S is called antinegative if the zero element

is the only element with an additive inverse.

Let Z, be the set of all nonnegative integers. Then Z, is a commu-

tative antinegative semiring which has no zero-divisors.

Definition 2.3. Let B = By, be the (general) Boolean algebra of subsets
of a k element set Sy, and o1, 09, . . ., o) denote the singleton subsets of S.
Union is denoted by +, and intersection by -; 0 denote the null set and 1
the set Si. Under these two operations, B is a commutative antinegative

semiring; all of its elements, except 0 and 1, zero-divisors.

In the above Definition, if £ = 1, then B; is just set {0, 1}, which is

called the binary Boolean algebra.

Definition 2.4. For F = [0,1] = {x € R|0 < 2 < 1}, we define z +y

as max(z,y) and zy as min(z,y) for all x,y € F. Then F becomes a



commutative antinegative semiring that has no zero-divisors, and called

a fuzzy semiring.

Throughout this paper, we will assume that S is a commutative an-
tinegative semiring.

Let M,,(S) denote the set of all n x n matrices with entries in S. The
usual definitions for addition, multiplication by scalars, and the product
of matrices over fields are applied to S as well. The zero matrix is denoted
by O,, the identity matrix by I,, and the matrix with all entries equal to
1 is denoted by J,,.

Definition 2.5. An n x n matrix with only one (i, j)™ entry equal to
1 is called a cell, and denoted by E;;. A matrix E € M,(S) is called
a weighted cell if there exist a nonzero a € S and a cell £;; such that
E = aFE; ;. We say that the weighted cell a£; ; is in i row and it is in j*
column. When 7 # j, we say that the weighted cell aF; ; is off-diagonal,

all;; is diagonal.

The following Proposition is an immediate consequence of the rules

of matrix multiplication.

Proposition 2.6. For any weighted cells aF;; and bE,,, we have
(aE;;)(bE, ) = abE;, or O, according as j = u or j # u.

Definition 2.7. A matrix E in M,,(S) is called idempotent if E* = E.

Otherwise, F is called non-idempotent.

The matrices O,, and I,, are clearly idempotents in M,,(S). By Propo-

sition 2.6, we have all diagonal cells are idempotents, but all off-diagonal



cells are non-idempotents. The matrix J, is idempotent over the general
Boolean algebra or the fuzzy semiring while it is not non-idempotent over
the nonnegative integers because J? = nJ, in M, (Z,).

Let A € M, (S) be a given matrix. For i = 1,...,n, we define an

th

i™ row matriz R;(A) of A as a matrix whose i row is the same as the

ith row of A and the other rows are zero. Similarly, we can define a 5
column matriz Cj(A) of A for j =1,...,n. If the matrix A is clear from
the context, we write R;(A) and C;(A) as R; and C}, respectively. Thus

we have
= [a;;] = ZR ):ZCJ-(A) or A:ZRi:ZCj'
j=1 i=1 j=1

Let A= [a”] be any matrix in M,,(S). The matrix A can be written

uniquely as Z Z a; ; E; j. Thus the matrix A is the sum of some weighted
i=1j=1
cells. If a; ; # 0 for some 7 and j, then we say that the cell £;; is in the

matrix A; a;;E; ; is a weighted cell of A.

th

Definition 2.8. A line matriz is an i*" row matrix or a ;™ column

matrix of a matrix.

k

Definition 2.9. Weighted cells Ej, ..., Ey are called collinear if »_ E;
i=1

is a line matrix.

Definition 2.10. We say that a matrix A = [a, ;] € M, (S) dominates
a matrix B = [b; ;] € M,,(S) if and only if b; ; # 0 implies that a; ; # 0,
and we write A J B or BC A.

Let A = [a;;] be a matrix in M,,(S). For an arbitrary cell E; ;, we
have that E; ; C A if and only if £} ; is in A if and only if a; ; # 0.

5



Lemma 2.11. Let A be idempotent in M, (S). If F and G are cells in
A, then FG C A.

Proof. If FG = O, then FG C A. If FG # O,, then by Proposition
2.6, FG is a cell which is a summand for the matrix A2. By the addition
rules in S, there is no element that can cancel a nonzero summand. Thus
FG T A% = A since A is idempotent. Thus the result follows. ]

By applying Lemma 2.11 repeatedly, it follows that

Corollary 2.12. Let A be idempotent in M, (S). If k > 2 and Fy, ..., Fy
are cells in A, then F1Fy---F, C A.

Lemma 2.13. Let A € M,,(S) be idempotent and F be an off-diagonal
cell in A. Then there exist distinct cells G and H in A such that F = GH.
Moreover if both cells G and H are off-diagonal, then the cells F,G and

H are mutually distinct.

Proof. Since A is the sum of some weighted cells, we may assume that

A =" E;, where each E; is a weighted cell of A. Since A is idempotent,
i=1

we have

M E}+ ) EE=A=A=) E.
i=1 ij=1,i#j i=1

Thus F' is either a square of a cell or a product of two distinct cells.

Since F' is off-diagonal, it follows from Proposition 2.6 that F' is not a

square of a cell. Thus F'is a product of two distinct cells G and H in A.

Furthermore, if G and H are off-diagonal, then F, G and H are mutually

distinct by Proposition 2.6. ]



Definition 2.14. Let A = [a; ;] € M, (S). For 1 <1i,j5 <n, R; and C;
are said to be (i, j)-disjoint if XY = O, for any off-diagonal weighted
cell X of R; and for any off-diagonal weighted cell Y of Cj;.

Definition 2.15. A weight of A € M,(S) is the number of nonzero
entries of A and is denoted by |A]|.

Definition 2.16. Let A € M,,(S) with |A| = 4. Then we say that A is a
frame if four nonzero entries in A constitute a rectangle with at least one

entry on diagonal; A is pure if it has only one nonzero diagonal entry.

For example, consider the following two frames in Mj3(S);

10
A=11 0 and B =
00

O =
— o

0
0
0

—_ O =

Then A is pure, but B isnot. If S = B or T, then we can easily show that
A and B are all idempotent. If S =7Z,, then A is idempotent, while B
is not because B%(= 2B) # B.

Definition 2.17. Let A = {a;;] € M,(S). We say that A has an "
rectangle part if the following hold:

(1) there is a frame X in M,,(S) such that E;; C X and X C A;

(2) forany 1 <k, I <n,if £, C Aand E;; C A, then E;;, C A.

Definition 2.18. If A € M, (S) has an ™ rectangle part, then the
matrix in M,,(S) with the smallest number of nonzero elements which is

dominated by A and dominates all frames of A dominating E; ; is called

7



it rectangle part of A and is denoted RP(i)[A] or RP(i), if A is clear

from the context.

Suppose that A = [a; ;] € M,(S) has the i" rectangle part RP(3).
Let
{Ei,ila cee aEi,it} and {Ejlm R Ejs,z‘}

be the sets of all off-diagonal cells that are in R; and Cj, respectively.
Then

s t
RP(i) = > (B + asByiy + asEj s + aaEjy ;)

k=1 I=1
for some nonzero scalars aq,...,a4 € S.
Let
1011 1011
0 00O 0100 b
A= , Ay = and A3: 1 10
1011 1011
0 00
0 00O 0001

Then A; = RP(1)[A;] = RP(3)[A1] = RP(1)[As] = RP(3)[As] and
RP(2)[As] = E1q + E12+ Ea1 + Es s, however the 1% rectangle part of

As does not exist.

Definition 2.19. It is said that a matrix A = [a;;] € M,(S) has an
i™™ line part if there exists i € {1,...,n} such that a;; # 0 and either
|R;| = 1 or |C;| =1 or both |R;| =1 = |C;|. In these cases R; + C;
is a line matrix dominating E;; which is called a line part of A and is
denoted by LP(i)[A]. If the matrix A is clear from the context, we write
LP(i)[A] as LP(37).



1 11

Let A4 = and 5 = 0 . Then LP(l)[A4] = E171 + El,g,

LP(2)[A4] = Ey1 2+ Es2, while A5 do not have line parts.



3 Some results

In this section, we will give some properties of idempotent matrices
in M, (S), where S is a commutative antinegative semiring. For this
purpose, we shall analyze the structures of the sums of weighted cells.

For any matrix A = [a;;] in M, (S), define the matrix A* = [a} ;] in
M, (By) as aj; = 1 if and only if a;; # 0. If S is a semiring which has

no zero-divisors, then we can easily show that
(A+B)"=A"+B", (AB)"=A"B*, and (aA)"=a"A" (3.1)

for all A,B € M, (S) and for all @ € S. The following Lemma is an

immediate consequence of (3.1).

Lemma 3.1. Let S be a semiring which has no zero-divisors. If A is
idempotent in M, (S), then A* is idempotent in M, (B;).

In general, the converse of Lemma 3.1 may be not true. For example,

!
consider a matrix A = ) in Ms(Z,.). Then A is non-idempotent in

M, (Z, ) because A% = 2A # A while A*(= A) is idempotent in My (B;).
The following two Lemmas are useful in characterizing idempotent

matrix in M,,(S) and have been proved in [5].

Lemma 3.2. Let A be a nonzero matriz in M, (B1). If all cells in A

are off-diagonal, then A is non-idempotent .

Lemma 3.3. Let A be idempotent in M,,(B;). Assume that there exists
an off-diagonal cell F T A such that for any diagonal cell EC A, E and

10



F are not collinear. Then F is in a frame with one diagonal cell and two

additional off-diagonal cells in A.

Corollary 3.4. Let S be a semiring which has no zero-divisors, and let
k

A = > o;FE; be a nonzero matriz in M, (S), where each E; is a cell.
i=1
Then
(1) if all E; are diagonal, then A is idempotent if and only if each o

1s an idempotent element in S,

(2) if all weighted cells of A are off-diagonal, then A is non-idempotent.

Proof. (1) Suppose that A is idempotent in M,,(S). By Proposition 2.6,

we have
(B + -+ apEy)? =alE + -+ aiE, = By + - + ap By

Therefore a? = q; for all i. The converse is clear.

(2) Suppose that all weighted cells of A are off-diagonal. By (3.1),
A* is just sum of off-diagonal cells in M,,(B;). By Lemma 3.2, A* is
non-idempotent in M,,(B;). It follows from Lemma 3.1 that A is non-
idempotent in M,,(B;). |

Corollary 3.5. If a diagonal entry of A = [a;;] € M, (Zy) is greater

than 1, then A is non-idempotent.

Proof. Suppose that a;; > 1 for some i € {1,...,n}. Then we can
easily show that the (4,7)" entry of A? is greater than a; ;. Therefore the

(1,1)™ entries of A and A2 are distinct. Hence A is non-idempotent. m

11



Corollary 3.6. Let S be a semiring which has no zero-divisors, and let
A be idempotent in M, (S). If A has an off-diagonal weighted cell aF
(where E is a cell) such that E is not collinear with any diagonal cell in
A, then aF is in a pure frame with an ™ diagonal weighted cell and two
off-diagonal weighted cells 5;F and v;G in A. Furthermore, if I is the
set of all indices such i, then we have o =Y B;y;.
i€l

Proof. In the view of Corollary 3.4-(2), without loss of generality we
may assume that A has at least one nonzero diagonal entry. Let £ = Ej,
where b # c. Since A is idempotent in M,,(S), it follows from Lemma
3.1 that A* is idempotent in M,,(By). By the assumption, E,. is an
off-diagonal cell in A* such that it is not collinear with any diagonal cell
in A*. By Lemma 3.3,

Eii+Ey; +E .+ Ep.

is a pure frame in A* for some i € {1,...,n} different from b and c.

and (b,4)"™ off-diagonal entries of A are

Therefore we have that (i, c)
nonzero elements (3; and 7; in S, respectively. It follows that oF is
in a pure frame with an i*" diagonal weighted cell and two off-diagonal
weighted cells 5, E; . and v;Ep; in A. The rest follows from the arithmetic

rules in M,,(S). u

Example 3.7. Consider two matrices

€ Ms(Z+)

o

I
o O O = =
o O O O O
_ w o 8
SO = O N O
_ o O W O




and

0300
10y 3 i
B=10 0 0 0 0| € Ms(F),
004210
00201

where F is the fuzzy semiring. Then A and B are just sums of three
diagonal weighted cells and seven off-diagonal weighted cells. Also, we
can easily show that A is idempotent (if and) only if z = 19. In fact,
we note that the cell Ey3 in A is not collinear with all diagonal cells
Ey1,E44 and E55 in A. It follows from Corollary 3.6 that

xFEy3 = FEs1F1 35+ (2E24)(3Es3) + (3Ey5)(4F53)

is a necessary condition for A to be idempotent. Similarly, we obtain
that B is idempotent (if and) only if

Proposition 3.8. Let A be idempotent in M,,(S). If R; and C; are not
(i, 7)-disjoint, then E; ; C A.

Proof. Suppose that R; and C; are not (i, j)-disjoint. Then there
exist off-diagonal weighted cells aF;, T R; and BE,; & Cj; such that
(aE;.)(BE, ;) # O,. It follows from Proposition 2.6 that x = y and
E;,.E,; = E;;. Since A is idempotent, F; ; © A by Lemma 2.11. [

Lemma 3.9. Let S be a semiring which has no zero-divisors, and let
A = [a; ;] be idempotent in M,,(S) with a;; # 0 for somei. If |R;| = s+1

13



and |C;| =t + 1, then there exist exactly s -t frames in A dominating

E;;. In particular, if S = Z, then all frames are pure.

Proof. If s = 0 or t = 0, then the result is straightforward. Thus
we can assume that s,¢ > 1. Since A is idempotent, Lemma 2.11 and

Proposition 2.6 implies that for any cells
E.,,CR,CA and E;;CC;C A,

their product Ej;E;; = Ey; T A. Therefore, the four cells E;;, Ey;, E;;
and Ej; are in a frame in A for each £, [ such that E; C Aand E;; C A.
Thus A has at least s -t frames such that each frame dominates L.
It follows from the definition of frame that A has at most s -t frames
dominating £; ;.

Let S = Z,. Suppose that A has a frame dominating F;; such that
it is not pure. Then there exists an index j different from ¢ such that
Ei.i,E;i,Eij, E;; T A so that a;;a;,a;a;; # 0. Therefore the (4, 7)™
entry b; ; of A? becomes

n

bij = Z Qi > Q05 + a5, = (@5 + aj)ai; > 205 > a;j,

k=1

a contradiction. Hence we have that all frames dominating F;; are pure
for S=27,. ]

Example 3.10. Let B = By be the Boolean algebra of a two element
set S, and let

1 o1 09
A= 09 0 09 EM;;(]B%2).
o1 01 0

14



Then we can easily show that A is idempotent in M3(B5). Notice that
|R1| =2+ 1 =|C4]. But A has only two frames dominating F; ;. Thus,

the condition that S has no zero-divisors in Lemma 3.9 is needed. ]

Let A be idempotent in M,,(S), where S is a semiring which has no
zero-divisors. If a;; # 0, |[Ry| > 1 and |Cy| > 1, then Lemma 3.9 shows
that the i*" rectangle part of A exists.

Theorem 3.11. Let S be a semiring which has no zero-divisors. If A
is idempotent in M, (S), then every cell dominated by A is in either a

rectangle part or a line part of A.

Proof. It follows directly from Corollary 3.6 and Lemma 3.9. ]

15



4 The case of Boolean algebra

In this Section, we will characterize all idempotent matrices over the
general Boolean algebra B.

Let A = [a;;] € M,(S). Suppose that A has i"® and j* rectangle
parts RP(i) and RP(j) for some i and j with ¢ # j. We say that RP(7)
and RP(j) are disjoint if either R; and C; are (i, j)-disjoint or R; and
C; are (j,1)-disjoint or both.

In [5], Beasley et al. characterized all idempotent matrices over the

binary Boolean algebra B; as the following:

Theorem 4.1. Let A be in M,,(By). Then A is idempotent if and only

if the following two conditions are satisfied:

(1) there exist integers r,l > 0 such that A is a sum of r disjoint

rectangle parts and | line parts,

(2) if for some i # j R; and Cj are not (i, j)-disjoint, then E; ; T A.

Let B = B, be the Boolean algebra of all subsets of a k element set Si;
o1,...,0 are all singleton subsets of Si. For each matrix A € M,,(B),
the p™ constituent [11] of A, A,, is the n x n binary Boolean matrix

whose (i,7)™ entry is 1 if and only if a;; 2 0,. Via the constituents, A

k
can be written uniquely as ) 0,A4,, which is called the canonical form
p=1
of A. It follows from the uniqueness of the canonical form that for all
1<p<k
(i) (A+ B)p = A4, + By,
(ii) (AB)p = Ay By,

16



(ili) ad), = A,

for all matrices A, B in M,,(B) and for all « in B.
Let A be a matrix in M,,(B). Then a p™ constituent of A may be a

key concluding whether A is idempotent or not. For example, consider

oy o
J deMﬂM.
Then the 2" constituent of A is

AQI

0 1
€ My(By),
00] 2(B1)

and A, is non-idempotent in My(B;) by Lemma 3.2. Theorem 4.2 (be-
low) shows that A is non-idempotent in My (B,).

Theorem 4.2. Let A be a matriz in M, (B). Then A is idempotent if
and only if all p* constituents of A are idempotent in M, (By).

k
Proof. Let A= > 0,A, be the canonical form of A. If A is idempotent
p=1

in M,,(B), then we have
(A =)o AT+ -+ AL = 01 A+ o d(= A). (4.1)

If we multiply o, on both sides in (4.1), then we have 0,42 = 7,4, for all
p=1,...,k Suppose that some p'" constituent of A is not idempotent
in M, (B;) so that A2 # A,. Then there exist indices 7 and j such that
(,4)"™ entries of A, and A2 are different in By = {0,1}. If the (4, 7)™
entry of A, is 1, then that of A2 is 0. Thus the (¢, 7)™ entry of A contains
0,, while A? does not. Thus we have A% # A, a contradiction. Similarly,

if the (i,7)™ entries of A, and AIQ7 are 0 and 1, respectively, then we

17



have A% # A, a contradiction. Therefore all p'" constituents of A are
idempotent in M,,(B,).

The converse follows from the definition of the canonical form of A.

Thus we obtain the characterizations of all idempotent matrices over

the general Boolean algebra B.

18



5 The case of fuzzy semiring

We recall that for the fuzzy semiring I, two operations are defined as
r+y=max(z,y) and zy = min(x,y)

for all z,y € F.

Let « be a fixed member of F, other than 1. For each = € F, define
x* = 0if r < «, and 2 = 1 otherwise. Then the mapping z — x®
is a homomorphism of F onto B;. Its entrywise extension to a mapping
A — A* of M, (F) onto M,,(B;) preserves matrix sums and products
and multiplication by scalars. We call A* the a-pattern of A.

Let A = [a;;] be a matrix in M,,(F). Then an q; j-pattern of A may

be a key concluding whether A is idempotent or not. For example, let

L1
A= [(l@j] = [i i] S MQ(F)
2 1
Then the ass(= 1)-pattern of A is
11
Al = e Ms(By),
1 0] )

and A1 is not idempotent in My (B;) by Lemma 3.9. Theorem 5.1 (below)
shows that A is not idempotent in My (IF).

Theorem 5.1. Let A = [a; ] be a matriz in M, (F). Then A is idem-
potent if and only if all a; j-patterns of A are idempotent in M, (B;).

Proof. Let A be idempotent in M,,(F). Then all a; ;-patterns of A are
idempotent in M,,(B;) because each a; ;-pattern of A is a homomorphism

of M,,(F) onto M,,(B;).

19



Conversely, assume that each a; j-pattern A% of A is idempotent in
M,,(B;). Suppose that A% # A. Then for some (i, )™ entries of A and

A? we have

Qg 5 # Zai,kak,j- (5'1)
k=1

n
If a;; < Y a;xaxj, then the (7, 7)™ entry of A% is 0, but that of (A%7)2
k=1
is 1, a contradiction to the fact that a;;-pattern of A is idempotent in
n

M.,,(By). Hence we have a;; > > a;,a; ;. We notice that the right side
k=1
of (5.1) is just a;rax; for some k € {1,...,n}. Furthermore we have

n
Qi kg = Qi O ak ;. If ajrpap; = aip, then a;; > > aipar; = @iy,
k=1
and hence the (4,7)™ entry of A%* is 1, but that of (A%*)? is 0, a
contradiction. Similarly if a; xax; = ay;, then we have (A%i)? £ A%.i,

a contradiction. Therefore A is idempotent in M, (F). ]

Thus we characterize all idempotent matrices over the fuzzy semiring
F.

20



6 The case of nonnegative integers

In this section, Z, denote the semiring of all nonnegative integers.
Let A be an idempotent matrix in M,,(Z; ). Then Corollary 3.5 tell

us that all diagonal entries of A are either 0 or 1.

Lemma 6.1. Let A be a matriz in M, (Zy). Assume that E;; T A for
some t,j with i # j. If E;;, E; ; T A, then A is non-idempotent.

Proof. Since £;; C A and E;;, E;; T A, we have that a;;,a;; and a;;
are all nonzero. Assume that A is idempotent. Then we have a;; = a;; =

1. Thus we have

A = (Bii+a B+ Ej;+-)°
= Ei,i + 2ai7jEi,j + Ej,j 4+

So the (i,7)™ entry of A? is strictly greater than that of A, a contradic-

tion. Hence A is non-idempotent. [

Let RP(i) be an i'" rectangle part of A € M, (Zy). Then RP(i) is

called pure if it has only nonzero diagonal entry.

Proposition 6.2. If RP(i) is an i'" rectangle part of an idempotent
matrizc A € M, (Z.), then it is pure.

Proof. It follows from Lemma 6.1. ]

Lemma 6.3. Let A = [a;;] be a matriz in M, (Z;) with a;;a;; # 0
for some indices i and j. If R; and Cj are not (i, j)-disjoint, then A is

non-idempotent.

21



Proof. If ¢ # j, the result follows from Proposition 3.8 and and Lemma
6.1. So we may assume that ¢ = j. Suppose that A is idempotent
and, R; and C; are not (i, j)-disjoint. Then there exist at least two
off-diagonal weighted cells a;,F;, & R; and a,;E,; & C; such that
(i Ei)(ay;Ey;) # O,. By Proposition 2.6, we have z = y. Since
E,;C Aand E;, C A, their product E,,E; , = E;, is in A by Lemma
2.11 because A is idempotent. Thus we have E; , C A and E;;, £, , C A.

By Lemma 6.1, A is non-idempotent, a contradiction. [ ]

Example 6.4. Consider a matrix

€ My(Zy,).

o O W o=
o O O O
o O O N
= s O O

Then A is the sum of one 1% pure rectangle part and one 4" line part. But
R, and Cj, are not (1,4)-disjoint. By Lemma 6.3, A is non-idempotent.
|

Theorem 6.5. Let

m k
A=Y "aiBi+Y BiF
i=1 j=1

be a matriz in M, (Z), where E; are diagonal cells, and F}; off-diagonal
cells with nonzero scalars o; and 3; in Zy. Then A is idempotent if and
only if it is the sum of s disjoint pure rectangle parts and t disjoint line

parts of A, and the followings are satisfied:

(1) each rectangle part is idempotent,
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(2) each line part is idempotent,
By m=s+tando; =1 foralli=1,...,m,
(4) for any a,b € {1,...,n}, R, and Cy are (i, j)-disjoint.

Proof. The necessity is trivial. We now prove the sufficiency. Suppose
that A = [a; ;] is idempotent in M,,(Z, ). following Corollary 3.4-(2), we
may assume that m > 1. Let E; ; C A. It follows from Theorem 3.11 and
Proposition 6.2 that E; ; is in either a pure rectangle part or a line part
of A. So we may assume that A has s disjoint pure rectangle parts and
t disjoint line parts, where s,¢ > 0. Then we have m = s+t and o; = 1
foralli=1,...,m by Lemma 3.1. Thus (3) is satisfied. (4) follows from
Lemma 6.3. (1) and (2) are obvious by (4). u

Thus we obtain characterizations of all idempotent matrices over the

semiring of all nonnegative integers.
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