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<Abstract>

Characterizations of idempotent matrices

over semirings

In this paper, we extend the characterizations of idempotent matrices

over the binary Boolean algebra to those of idempotent matrices over several

semirings. In Section 2, relevant definitions and notations are presented. In

Section 3, we will give a sufficient condition of idempotent matrices over an

arbitrary semiring. In Section 4, we characterize idempotent matrix over the

general Boolean algebra. In Section 5, we characterize idempotent matrix

over fuzzy semiring. Finally in Section 6, we obtain characterizations of

idempotent matrix over nonnegative integer semiring.



1 Introduction

A semiring is essentially a ring in which only the zero is required

to have an additive inverse (a formal definition is given in Section 2).

Thus all rings are semirings. The set of all nonnegative integers, the

general Boolean algebra of subsets of a finite set, and the fuzzy scalars

are combinatorially interesting examples of semirings. The concepts of

algebraic operations on matrices over a semiring are defined as if the

underlying scalars were in a field.

There are many papers on the study of semiring matrix theory. In

particular, Beasley and Pullman [3] studied on linear operators that pre-

serve idempotent matrices over several semirings. Consequently they

showed that the semigroup of linear operators on the semiring matrices

strongly preserving idempotents (that map idempotents to idempotents

and non-idempotents to non-idempotents) is generated by transposition

and the similarity operators (those that map X to PXP T for some per-

mutation matrix P ).

But there are few papers on the characterizations of idempotent ma-

trices over a semiring. Recently Bapat et al. [2] obtained characteri-

zations of nonnegative real idempotent matrices, and Beasley et al. [5]

characterized all idempotent binary Boolean matrices.

In this paper, we extend the characterizations of idempotent matri-

ces over the binary Boolean algebra to those of idempotent matrices over

several semirings. In Section 2, relevant definitions and notations are

presented. In Section 3, we will give a sufficient condition of idempo-

tent matrices over an arbitrary semiring. In Section 4, we characterize

idempotent matrix over the general Boolean algebra. In Section 5, we

characterize idempotent matrix over fuzzy semiring. Finally in Section
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6, we obtain characterizations of idempotent matrix over nonnegative

integer semiring.
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2 Definitions and Notations

Definition 2.1. [7, 10] A semiring S consists of a set S and two binary

operations, addition +, and multiplication ·, such that

(1) S is an Abelian monoid under addition (identity denoted by 0);

(2) S is a monoid under multiplication (identity denoted by 1);

(3) multiplication is distributive over addition on both sides;

(4) s0 = 0s = 0 for all s ∈ S.

Definition 2.2. A semiring S is called antinegative if the zero element

is the only element with an additive inverse.

Let Z+ be the set of all nonnegative integers. Then Z+ is a commu-

tative antinegative semiring which has no zero-divisors.

Definition 2.3. Let B ≡ Bk be the (general) Boolean algebra of subsets

of a k element set Sk and σ1, σ2, . . . , σk denote the singleton subsets of Sk.

Union is denoted by +, and intersection by ·; 0 denote the null set and 1

the set Sk. Under these two operations, B is a commutative antinegative

semiring; all of its elements, except 0 and 1, zero-divisors.

In the above Definition, if k = 1, then B1 is just set {0, 1}, which is

called the binary Boolean algebra.

Definition 2.4. For F = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}, we define x + y

as max(x, y) and xy as min(x, y) for all x, y ∈ F. Then F becomes a
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commutative antinegative semiring that has no zero-divisors, and called

a fuzzy semiring.

Throughout this paper, we will assume that S is a commutative an-

tinegative semiring.

Let Mn(S) denote the set of all n×n matrices with entries in S. The

usual definitions for addition, multiplication by scalars, and the product

of matrices over fields are applied to S as well. The zero matrix is denoted

by On, the identity matrix by In and the matrix with all entries equal to

1 is denoted by Jn.

Definition 2.5. An n × n matrix with only one (i, j)th entry equal to

1 is called a cell, and denoted by Ei,j. A matrix E ∈ Mn(S) is called

a weighted cell if there exist a nonzero a ∈ S and a cell Ei,j such that

E = aEi,j. We say that the weighted cell aEi,j is in ith row and it is in jth

column. When i 6= j, we say that the weighted cell aEi,j is off-diagonal;

aEi,i is diagonal.

The following Proposition is an immediate consequence of the rules

of matrix multiplication.

Proposition 2.6. For any weighted cells aEi,j and bEu,v, we have

(aEi,j)(bEu,v) = abEi,v or On according as j = u or j 6= u.

Definition 2.7. A matrix E in Mn(S) is called idempotent if E2 = E.

Otherwise, E is called non-idempotent.

The matrices On and In are clearly idempotents inMn(S). By Propo-

sition 2.6, we have all diagonal cells are idempotents, but all off-diagonal
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cells are non-idempotents. The matrix Jn is idempotent over the general

Boolean algebra or the fuzzy semiring while it is not non-idempotent over

the nonnegative integers because J2
n = nJn in Mn(Z+).

Let A ∈ Mn(S) be a given matrix. For i = 1, . . . , n, we define an

ith row matrix Ri(A) of A as a matrix whose ith row is the same as the

ith row of A and the other rows are zero. Similarly, we can define a jth

column matrix Cj(A) of A for j = 1, . . . , n. If the matrix A is clear from

the context, we write Ri(A) and Cj(A) as Ri and Cj , respectively. Thus

we have

A = [aij] =
n∑

i=1

Ri(A) =
n∑

j=1

Cj(A) or A =
n∑

i=1

Ri =
n∑

j=1

Cj .

Let A = [ai,j] be any matrix in Mn(S). The matrix A can be written

uniquely as
n∑

i=1

n∑
j=1

ai,jEi,j. Thus the matrix A is the sum of some weighted

cells. If ai,j 6= 0 for some i and j, then we say that the cell Ei,j is in the

matrix A; ai,jEi,j is a weighted cell of A.

Definition 2.8. A line matrix is an ith row matrix or a jth column

matrix of a matrix.

Definition 2.9. Weighted cells E1, . . . , Ek are called collinear if
k∑

i=1

Ei

is a line matrix.

Definition 2.10. We say that a matrix A = [ai,j] ∈ Mn(S) dominates

a matrix B = [bi,j] ∈ Mn(S) if and only if bi,j 6= 0 implies that ai,j 6= 0,

and we write A w B or B v A.

Let A = [ai,j] be a matrix in Mn(S). For an arbitrary cell Ei,j, we

have that Ei,j v A if and only if Ei,j is in A if and only if ai,j 6= 0.
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Lemma 2.11. Let A be idempotent in Mn(S). If F and G are cells in

A, then FG v A.

Proof. If FG = On, then FG v A. If FG 6= On, then by Proposition

2.6, FG is a cell which is a summand for the matrix A2. By the addition

rules in S, there is no element that can cancel a nonzero summand. Thus

FG v A2 = A since A is idempotent. Thus the result follows.

By applying Lemma 2.11 repeatedly, it follows that

Corollary 2.12. Let A be idempotent in Mn(S). If k ≥ 2 and F1, . . . , Fk

are cells in A, then F1F2 · · ·Fk v A.

Lemma 2.13. Let A ∈ Mn(S) be idempotent and F be an off-diagonal

cell in A. Then there exist distinct cells G and H in A such that F = GH.

Moreover if both cells G and H are off-diagonal, then the cells F, G and

H are mutually distinct.

Proof. Since A is the sum of some weighted cells, we may assume that

A =
m∑

i=1

Ei, where each Ei is a weighted cell of A. Since A is idempotent,

we have
m∑

i=1

E2
i +

m∑

i,j=1,i 6=j

EiEj = A2 = A =
m∑

i=1

Ei.

Thus F is either a square of a cell or a product of two distinct cells.

Since F is off-diagonal, it follows from Proposition 2.6 that F is not a

square of a cell. Thus F is a product of two distinct cells G and H in A.

Furthermore, if G and H are off-diagonal, then F, G and H are mutually

distinct by Proposition 2.6.
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Definition 2.14. Let A = [ai,j] ∈ Mn(S). For 1 ≤ i, j ≤ n, Ri and Cj

are said to be (i, j)-disjoint if XY = On for any off-diagonal weighted

cell X of Ri and for any off-diagonal weighted cell Y of Cj .

Definition 2.15. A weight of A ∈ Mn(S) is the number of nonzero

entries of A and is denoted by |A|.

Definition 2.16. Let A ∈Mn(S) with |A| = 4. Then we say that A is a

frame if four nonzero entries in A constitute a rectangle with at least one

entry on diagonal; A is pure if it has only one nonzero diagonal entry.

For example, consider the following two frames in M3(S);

A =




1 0 1

1 0 1

0 0 0


 and B =




1 0 1

0 0 0

1 0 1


 .

Then A is pure, but B is not. If S = B or T, then we can easily show that

A and B are all idempotent. If S = Z+, then A is idempotent, while B

is not because B2(= 2B) 6= B.

Definition 2.17. Let A = [ai,j] ∈ Mn(S). We say that A has an ith

rectangle part if the following hold:

(1) there is a frame X in Mn(S) such that Ei,i v X and X v A;

(2) for any 1 ≤ k, l ≤ n, if El,i v A and Ei,k v A, then El,k v A.

Definition 2.18. If A ∈ Mn(S) has an ith rectangle part, then the

matrix in Mn(S) with the smallest number of nonzero elements which is

dominated by A and dominates all frames of A dominating Ei,i is called
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ith rectangle part of A and is denoted RP (i)[A] or RP (i), if A is clear

from the context.

Suppose that A = [ai,j] ∈ Mn(S) has the ith rectangle part RP (i).

Let

{Ei,i1 , . . . , Ei,it} and {Ej1,i, . . . , Ejs,i}
be the sets of all off-diagonal cells that are in Ri and Ci, respectively.

Then

RP (i) =
s∑

k=1

t∑

l=1

(α1Ei,i + α2Ei,il + α3Ejk,i + α4Ejk,il)

for some nonzero scalars α1, . . . , α4 ∈ S.

Let

A1 =




1 0 1 1

0 0 0 0

1 0 1 1

0 0 0 0




, A2 =




1 0 1 1

0 1 0 0

1 0 1 1

0 0 0 1




and A3 =




1 1 1

1 1 0

0 0 0


 .

Then A1 = RP (1)[A1] = RP (3)[A1] = RP (1)[A2] = RP (3)[A2] and

RP (2)[A3] = E1,1 + E1,2 + E2,1 + E2,2, however the 1st rectangle part of

A3 does not exist.

Definition 2.19. It is said that a matrix A = [ai,j] ∈ Mn(S) has an

ith line part if there exists i ∈ {1, . . . , n} such that ai,i 6= 0 and either

|Ri| = 1 or |Ci| = 1 or both |Ri| = 1 = |Ci|. In these cases Ri + Ci

is a line matrix dominating Ei,i which is called a line part of A and is

denoted by LP (i)[A]. If the matrix A is clear from the context, we write

LP (i)[A] as LP (i).
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Let A4 =

[
1 1

0 1

]
and A5 =

[
1 1

1 0

]
. Then LP (1)[A4] = E1,1 + E1,2,

LP (2)[A4] = E1,2 + E2,2, while A5 do not have line parts.
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3 Some results

In this section, we will give some properties of idempotent matrices

in Mn(S), where S is a commutative antinegative semiring. For this

purpose, we shall analyze the structures of the sums of weighted cells.

For any matrix A = [ai,j] in Mn(S), define the matrix A∗ = [a∗i,j] in

Mn(B1) as a∗i,j = 1 if and only if ai,j 6= 0. If S is a semiring which has

no zero-divisors, then we can easily show that

(A + B)∗ = A∗ + B∗, (AB)∗ = A∗B∗, and (αA)∗ = α∗A∗ (3.1)

for all A,B ∈ Mn(S) and for all α ∈ S. The following Lemma is an

immediate consequence of (3.1).

Lemma 3.1. Let S be a semiring which has no zero-divisors. If A is

idempotent in Mn(S), then A∗ is idempotent in Mn(B1).

In general, the converse of Lemma 3.1 may be not true. For example,

consider a matrix A =

[
1 1

1 1

]
in M2(Z+). Then A is non-idempotent in

M2(Z+) because A2 = 2A 6= A while A∗(= A) is idempotent in M2(B1).

The following two Lemmas are useful in characterizing idempotent

matrix in Mn(S) and have been proved in [5].

Lemma 3.2. Let A be a nonzero matrix in Mn(B1). If all cells in A

are off-diagonal, then A is non-idempotent .

Lemma 3.3. Let A be idempotent in Mn(B1). Assume that there exists

an off-diagonal cell F v A such that for any diagonal cell E v A, E and
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F are not collinear. Then F is in a frame with one diagonal cell and two

additional off-diagonal cells in A.

Corollary 3.4. Let S be a semiring which has no zero-divisors, and let

A =
k∑

i=1

αiEi be a nonzero matrix in Mn(S), where each Ei is a cell.

Then

(1) if all Ei are diagonal, then A is idempotent if and only if each αi

is an idempotent element in S,

(2) if all weighted cells of A are off-diagonal, then A is non-idempotent.

Proof. (1) Suppose that A is idempotent in Mn(S). By Proposition 2.6,

we have

(α1E1 + · · ·+ αkEk)
2 = α2

1E1 + · · ·+ α2
kEk = α1E1 + · · ·+ αkEk.

Therefore α2
i = αi for all i. The converse is clear.

(2) Suppose that all weighted cells of A are off-diagonal. By (3.1),

A∗ is just sum of off-diagonal cells in Mn(B1). By Lemma 3.2, A∗ is

non-idempotent in Mn(B1). It follows from Lemma 3.1 that A is non-

idempotent in Mn(B1).

Corollary 3.5. If a diagonal entry of A = [ai,j] ∈ Mn(Z+) is greater

than 1, then A is non-idempotent.

Proof. Suppose that ai,i > 1 for some i ∈ {1, . . . , n}. Then we can

easily show that the (i, i)th entry of A2 is greater than ai,i. Therefore the

(i, i)th entries of A and A2 are distinct. Hence A is non-idempotent.
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Corollary 3.6. Let S be a semiring which has no zero-divisors, and let

A be idempotent in Mn(S). If A has an off-diagonal weighted cell αE

(where E is a cell) such that E is not collinear with any diagonal cell in

A, then αE is in a pure frame with an ith diagonal weighted cell and two

off-diagonal weighted cells βiF and γiG in A. Furthermore, if I is the

set of all indices such i, then we have α =
∑
i∈I

βiγi.

Proof. In the view of Corollary 3.4-(2), without loss of generality we

may assume that A has at least one nonzero diagonal entry. Let E = Eb,c,

where b 6= c. Since A is idempotent in Mn(S), it follows from Lemma

3.1 that A∗ is idempotent in Mn(B1). By the assumption, Eb,c is an

off-diagonal cell in A∗ such that it is not collinear with any diagonal cell

in A∗. By Lemma 3.3,

Ei,i + Eb,i + Ei,c + Eb,c

is a pure frame in A∗ for some i ∈ {1, . . . , n} different from b and c.

Therefore we have that (i, c)th and (b, i)th off-diagonal entries of A are

nonzero elements βi and γi in S, respectively. It follows that αE is

in a pure frame with an ith diagonal weighted cell and two off-diagonal

weighted cells βiEi,c and γiEb,i in A. The rest follows from the arithmetic

rules in Mn(S).

Example 3.7. Consider two matrices

A =




1 0 1 0 0

1 0 x 2 3

0 0 0 0 0

0 0 3 1 0

0 0 4 0 1



∈M5(Z+)
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and

B =




1
2

0 1
3

0 0
1
4

0 y 2
3

3
4

0 0 0 0 0

0 0 4
5

1 0

0 0 5
6

0 1



∈M5(F),

where F is the fuzzy semiring. Then A and B are just sums of three

diagonal weighted cells and seven off-diagonal weighted cells. Also, we

can easily show that A is idempotent (if and) only if x = 19. In fact,

we note that the cell E2,3 in A is not collinear with all diagonal cells

E1,1, E4,4 and E5,5 in A. It follows from Corollary 3.6 that

xE2,3 = E2,1E1,3 + (2E2,4)(3E4,3) + (3E2,5)(4E5,3)

is a necessary condition for A to be idempotent. Similarly, we obtain

that B is idempotent (if and) only if

y =
1

4
· 1

3
+

2

3
· 4

5
+

3

4
· 5

6
=

3

4
· 5

6
=

3

4
.

Proposition 3.8. Let A be idempotent in Mn(S). If Ri and Cj are not

(i, j)-disjoint, then Ei,j v A.

Proof. Suppose that Ri and Cj are not (i, j)-disjoint. Then there

exist off-diagonal weighted cells αEi,x v Ri and βEy,j v Cj such that

(αEi,x)(βEy,j) 6= On. It follows from Proposition 2.6 that x = y and

Ei,xEy,j = Ei,j. Since A is idempotent, Ei,j v A by Lemma 2.11.

Lemma 3.9. Let S be a semiring which has no zero-divisors, and let

A = [ai,j] be idempotent in Mn(S) with ai,i 6= 0 for some i. If |Ri| = s+1
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and |Ci| = t + 1, then there exist exactly s · t frames in A dominating

Ei,i. In particular, if S = Z+, then all frames are pure.

Proof. If s = 0 or t = 0, then the result is straightforward. Thus

we can assume that s, t ≥ 1. Since A is idempotent, Lemma 2.11 and

Proposition 2.6 implies that for any cells

Ek,i v Ri v A and Ei,l v Ci v A,

their product Ek,iEi,l = Ek,l v A. Therefore, the four cells Ei,i, Ek,i, Ei,l

and Ek,l are in a frame in A for each k, l such that Ek,i v A and Ei,l v A.

Thus A has at least s · t frames such that each frame dominates Ei,i.

It follows from the definition of frame that A has at most s · t frames

dominating Ei,i.

Let S = Z+. Suppose that A has a frame dominating Ei,i such that

it is not pure. Then there exists an index j different from i such that

Ei,i, Ej,i, Ei,j, Ej,j v A so that ai,jaj,iai,jaj,j 6= 0. Therefore the (i, j)th

entry bi,j of A2 becomes

bi,j =
n∑

k=1

ai,kak,j ≥ ai,iai,j + ai,jaj,j = (ai,i + aj,j)ai,j ≥ 2ai,j > ai,j,

a contradiction. Hence we have that all frames dominating Ei,i are pure

for S = Z+.

Example 3.10. Let B = B2 be the Boolean algebra of a two element

set S2, and let

A =




1 σ1 σ2

σ2 0 σ2

σ1 σ1 0


 ∈M3(B2).
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Then we can easily show that A is idempotent in M3(B2). Notice that

|R1| = 2 + 1 = |C1|. But A has only two frames dominating E1,1. Thus,

the condition that S has no zero-divisors in Lemma 3.9 is needed.

Let A be idempotent in Mn(S), where S is a semiring which has no

zero-divisors. If ai,i 6= 0, |R1| > 1 and |C1| > 1, then Lemma 3.9 shows

that the ith rectangle part of A exists.

Theorem 3.11. Let S be a semiring which has no zero-divisors. If A

is idempotent in Mn(S), then every cell dominated by A is in either a

rectangle part or a line part of A.

Proof. It follows directly from Corollary 3.6 and Lemma 3.9.
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4 The case of Boolean algebra

In this Section, we will characterize all idempotent matrices over the

general Boolean algebra B.

Let A = [ai,j] ∈ Mn(S). Suppose that A has ith and jth rectangle

parts RP (i) and RP (j) for some i and j with i 6= j. We say that RP (i)

and RP (j) are disjoint if either Ri and Cj are (i, j)-disjoint or Rj and

Ci are (j, i)-disjoint or both.

In [5], Beasley et al. characterized all idempotent matrices over the

binary Boolean algebra B1 as the following:

Theorem 4.1. Let A be in Mn(B1). Then A is idempotent if and only

if the following two conditions are satisfied:

(1) there exist integers r, l ≥ 0 such that A is a sum of r disjoint

rectangle parts and l line parts,

(2) if for some i 6= j Ri and Cj are not (i, j)-disjoint, then Ei,j v A.

Let B = Bk be the Boolean algebra of all subsets of a k element set Sk;

σ1, . . . , σk are all singleton subsets of Sk. For each matrix A ∈ Mn(B),

the pth constituent [11] of A, Ap, is the n × n binary Boolean matrix

whose (i, j)th entry is 1 if and only if ai,j ⊇ σp. Via the constituents, A

can be written uniquely as
k∑

p=1

σpAp, which is called the canonical form

of A. It follows from the uniqueness of the canonical form that for all

1 ≤ p ≤ k

(i) (A + B)p = Ap + Bp,

(ii) (AB)p = ApBp,
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(iii) αA)p = αpAp

for all matrices A,B in Mn(B) and for all α in B.

Let A be a matrix in Mn(B). Then a pth constituent of A may be a

key concluding whether A is idempotent or not. For example, consider

A =

[
σ1 σ2

0 0

]
∈M2(B2).

Then the 2th constituent of A is

A2 =

[
0 1

0 0

]
∈M2(B1),

and A2 is non-idempotent in M2(B1) by Lemma 3.2. Theorem 4.2 (be-

low) shows that A is non-idempotent in M2(B2).

Theorem 4.2. Let A be a matrix in Mn(B). Then A is idempotent if

and only if all pth constituents of A are idempotent in Mn(B1).

Proof. Let A =
k∑

p=1

σpAp be the canonical form of A. If A is idempotent

in Mn(B), then we have

(A2 =)σ1A
2
1 + · · ·+ σkA

2
k = σ1A1 + · · ·+ σkAk(= A). (4.1)

If we multiply σp on both sides in (4.1), then we have σpA
2
p = σpAp for all

p = 1, . . . , k. Suppose that some pth constituent of A is not idempotent

in Mn(B1) so that A2
p 6= Ap. Then there exist indices i and j such that

(i, j)th entries of Ap and A2
p are different in B1 = {0, 1}. If the (i, j)th

entry of Ap is 1, then that of A2
p is 0. Thus the (i, j)th entry of A contains

σp, while A2 does not. Thus we have A2 6= A, a contradiction. Similarly,

if the (i, j)th entries of Ap and A2
p are 0 and 1, respectively, then we

17



have A2 6= A, a contradiction. Therefore all pth constituents of A are

idempotent in Mn(B1).

The converse follows from the definition of the canonical form of A.

Thus we obtain the characterizations of all idempotent matrices over

the general Boolean algebra B.
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5 The case of fuzzy semiring

We recall that for the fuzzy semiring F, two operations are defined as

x + y = max(x, y) and xy = min(x, y)

for all x, y ∈ F.

Let α be a fixed member of F, other than 1. For each x ∈ F, define

xα = 0 if x ≤ α, and xα = 1 otherwise. Then the mapping x → xα

is a homomorphism of F onto B1. Its entrywise extension to a mapping

A → Aα of Mn(F) onto Mn(B1) preserves matrix sums and products

and multiplication by scalars. We call Aα the α-pattern of A.

Let A = [ai,j] be a matrix in Mn(F). Then an ai,j-pattern of A may

be a key concluding whether A is idempotent or not. For example, let

A = [ai,j] =

[
1
2

1
2

1
2

1
4

]
∈M2(F).

Then the a2,2(=
1
4
)-pattern of A is

A
1
4 =

[
1 1

1 0

]
∈M2(B1),

and A
1
4 is not idempotent inM2(B1) by Lemma 3.9. Theorem 5.1 (below)

shows that A is not idempotent in M2(F).

Theorem 5.1. Let A = [ai,j] be a matrix in Mn(F). Then A is idem-

potent if and only if all ai,j-patterns of A are idempotent in Mn(B1).

Proof. Let A be idempotent in Mn(F). Then all ai,j-patterns of A are

idempotent inMn(B1) because each ai,j-pattern of A is a homomorphism

of Mn(F) onto Mn(B1).
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Conversely, assume that each ai,j-pattern Aai,j of A is idempotent in

Mn(B1). Suppose that A2 6= A. Then for some (i, j)th entries of A and

A2, we have

ai,j 6=
n∑

k=1

ai,kak,j. (5.1)

If ai,j <
n∑

k=1

ai,kak,j, then the (i, j)th entry of Aai,j is 0, but that of (Aai,j)2

is 1, a contradiction to the fact that ai,j-pattern of A is idempotent in

Mn(B1). Hence we have ai,j >
n∑

k=1

ai,kak,j. We notice that the right side

of (5.1) is just ai,kak,j for some k ∈ {1, . . . , n}. Furthermore we have

ai,kak,j = ai,k or ak,j. If ai,kak,j = ai,k, then ai,j >
n∑

k=1

ai,kak,j = ai,k,

and hence the (i, j)th entry of Aai,k is 1, but that of (Aai,k)2 is 0, a

contradiction. Similarly if ai,kak,j = ak,j, then we have (Aak,j)2 6= Aak,j ,

a contradiction. Therefore A is idempotent in Mn(F).

Thus we characterize all idempotent matrices over the fuzzy semiring

F.
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6 The case of nonnegative integers

In this section, Z+ denote the semiring of all nonnegative integers.

Let A be an idempotent matrix in Mn(Z+). Then Corollary 3.5 tell

us that all diagonal entries of A are either 0 or 1.

Lemma 6.1. Let A be a matrix in Mn(Z+). Assume that Ei,j v A for

some i, j with i 6= j. If Ei,i, Ej,j v A, then A is non-idempotent.

Proof. Since Ei,j v A and Ei,i, Ej,j v A, we have that ai,j, ai,i and aj,j

are all nonzero. Assume that A is idempotent. Then we have ai,i = aj,j =

1. Thus we have

A2 = (Ei,i + ai,jEi,j + Ej,j + · · · )2

= Ei,i + 2ai,jEi,j + Ej,j + · · · .

So the (i, j)th entry of A2 is strictly greater than that of A, a contradic-

tion. Hence A is non-idempotent.

Let RP (i) be an ith rectangle part of A ∈ Mn(Z+). Then RP (i) is

called pure if it has only nonzero diagonal entry.

Proposition 6.2. If RP (i) is an ith rectangle part of an idempotent

matrix A ∈Mn(Z+), then it is pure.

Proof. It follows from Lemma 6.1.

Lemma 6.3. Let A = [ai,j] be a matrix in Mn(Z+) with ai,iaj,j 6= 0

for some indices i and j. If Ri and Cj are not (i, j)-disjoint, then A is

non-idempotent.
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Proof. If i 6= j, the result follows from Proposition 3.8 and and Lemma

6.1. So we may assume that i = j. Suppose that A is idempotent

and, Ri and Ci are not (i, j)-disjoint. Then there exist at least two

off-diagonal weighted cells ai,xEi,x v Ri and ay,iEy,i v Ci such that

(ai,xEi,x)(ay,iEy,i) 6= On. By Proposition 2.6, we have x = y. Since

Ex,i v A and Ei,x v A, their product Ex,iEi,x = Ex,x is in A by Lemma

2.11 because A is idempotent. Thus we have Ei,x v A and Ei,i, Ex,x v A.

By Lemma 6.1, A is non-idempotent, a contradiction.

Example 6.4. Consider a matrix

A =




1 0 2 0

3 0 6 0

0 0 0 4

0 0 0 1



∈M4(Z+).

Then A is the sum of one 1st pure rectangle part and one 4th line part. But

R1 and C4 are not (1, 4)-disjoint. By Lemma 6.3, A is non-idempotent.

Theorem 6.5. Let

A =
m∑

i=1

αiEi +
k∑

j=1

βjFj

be a matrix in Mn(Z+), where Ei are diagonal cells, and Fj off-diagonal

cells with nonzero scalars αi and βj in Z+. Then A is idempotent if and

only if it is the sum of s disjoint pure rectangle parts and t disjoint line

parts of A, and the followings are satisfied:

(1) each rectangle part is idempotent,
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(2) each line part is idempotent,

(3) m = s + t and αi = 1 for all i = 1, . . . , m,

(4) for any a, b ∈ {1, . . . , n}, Ra and Cb are (i, j)-disjoint.

Proof. The necessity is trivial. We now prove the sufficiency. Suppose

that A = [ai,j] is idempotent in Mn(Z+). following Corollary 3.4-(2), we

may assume that m ≥ 1. Let Ei,j v A. It follows from Theorem 3.11 and

Proposition 6.2 that Ei,j is in either a pure rectangle part or a line part

of A. So we may assume that A has s disjoint pure rectangle parts and

t disjoint line parts, where s, t ≥ 0. Then we have m = s + t and αi = 1

for all i = 1, . . . ,m by Lemma 3.1. Thus (3) is satisfied. (4) follows from

Lemma 6.3. (1) and (2) are obvious by (4).

Thus we obtain characterizations of all idempotent matrices over the

semiring of all nonnegative integers.
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<국문 초록>

반환상의 재귀행렬의 구조 분석

  본 논문에서는 이항 부울 대수상의 행렬이 재귀행렬(idempotent matrix)이 

되기 위한 필요충분조건에 대한 연구결과를 다양한 반환상의 행렬들로 확장

하여 연구한다. 

  제 2절에서는 본 연구에 필요한 정의와 그들의 표시방법을 제시한다. 

  제 3절에서는 영인자(zero-divisor)가 없는 반환 상에서, 한 행렬이 재귀행

렬이 되기 위한 충분조건을 제시하고, 이를 증명한다. 

  제 4절에서는 일반적인 부울 대수 위에서, 한 행렬이 재귀행렬이 되기 위

한 필요충분조건은 그 행렬의 각 성분별 행렬(constituent matrix)들이 이항 

부울 대수 위에서 재귀행렬이 되는 것임을 밝힌다.    

  제 5절에서는 퍼지 반환 상에서, 한 행렬이 재귀행렬이 되기 위한 필요충

분조건은 그 행렬의 각 원소별 형식행렬(pattern matrix)들이 이항 부울 대

수 위에서 재귀행렬이 되는 것임을 밝힌다.

  끝으로, 제 6절에서는 비음의 정수반환상상에서, 한 행렬이 재귀행렬이 되

기 위한 필요충분조건은 그 행렬이 직사각형 행렬부분과 선분행렬부분의 합

으로 나타나면서 4가지 조건을 만족하는 것임을 밝힌다.
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