A THESIS FOR THE DEGREE OF MASTER OF SCIENCE

Characterization of genes from abalone cDNA library

Helani Munasinghe

Department of Marine Biotechnology GRADUATE SCHOOL CHEJU NATIONAL UNIVERSITY

2004. 06. 29

Characterization of genes from abalone cDNA library

Helani Munasinghe (Supervised by Professor Jehee Lee)

A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science

2004. 06.

This thesis has been examined and approved.

Thesis director, Choon Bok Song, Prof. Marine Biotechnology

In-Kyu Yeo, Prof. of Marine Biotechnology

Jehee Lee, Prof. of Marine Biotechnology

Date

Department of Marine Biotechnology GRADUATE SCHOOL CHEJU NATIONAL UNIVERSITY

Contents

국문초록ii
LIST OF FIGURES
LIST OF TABLES
INTRODUCTION
Part I. Construction of abalone expressed sequence tag
library and sequence analysis
Abstract4
Materials and Methods
Construction of abalone digestive gland cDNA library5
Analysis of cDNA sequences5
Results7
Abalone digestive gland cDNA library sequence analysis7
Discussion
제주대학교 중앙노서관
Part II.Characterization of genes
Abstract
Materials and Methods26
Selection of clones for further characterization and full length
sequencing
Amplification of the coding sequences and subcloning into
pBlueScript SK-I vector27
Cloning into pET16b expression vector and protein expression
Results
Discussion
SUMMARY
REFERENCES
ACKNOWLEDGEMENTS

국문초록

인간 게놈 연구에서 선보였던 expressed sequence taq (EST) 방법은 게놈 서열 분석을 위해 많은 cDNA의 클로닝과 cDNA 서열을 분석 할 수 있다. 본 논문에서는 전복의 소화선에서 cDNA library를 제작하고, 900개 의 clone의 염기서열을 분석하여 841개의 expressed sequence tag을 획득 하였다. 이들을 유사한 서열의 cluster로 분류한 결과 331개의 EST 서열은 122개의 cluster와 510개의 singleton에 해당하였다. 본 논문에서 제작한 EST의 redundancy는 39%였으며, 이는 전체 전복 cDNA library의 45%에 비해 낮았다. BLAST-X와 BLAST-N 프로그램으로 데이터베이스에 등록 된 서열과 비교한 결과 632개의 transcript중 354개는 이미 알려진 서열과 매우 유사하였다. 그러므로, 이 중 278개의 transcripts를 클로닝하고 분석 하였다. 이들은 새로운 gene을 확인하기 위한 분자 marker로서 유용하게 이용될 수 있을 것이다. 예상대로 소화선 cDNA library에서 획득한 서열의 대부분은 효소를 암호화하였다. 질병 조건과 세포 해독과 관련된 추정상의 효소인 glutathine transferase, arylsulfatase와 fucosidase는 full length 서 열을 E. coli 발현벡터인 pET16b에 클로닝하여 분석되었다. Glutathione transferase는 soluble한 형태로 많은 양이 발현되었으며, 염기서열 분석 결 과 N과 C GST를 갖는 Mu protein class에 속하고, conserved domains인 thioredoxin fold와 five-helices를 갖고 있었다. 이와는 달리, arylsulfatase 는 insoluble한 형태로 발현되었으며, denaturation 조건하에서의 정제 산물 은 inactive하였고, sulfatase domain과 유사한 부분을 갖는 약 54 kDa였 다. 컴퓨터 프로그램으로 fucosidase 서열을 분석한 결과 L focosidase conserved domain의 아미노 말단과 prematurely 말단 번역을 유도하는 여 러 nonsense mutation이 확인되었다. 이 유전자에 대한 보충 연구는 그 유 전자의 활성과 질병에 대한 분자적인 특성을 이해하는데 도움이 될 것이 다. Arylsulfatase와 fucosidase는 촉매제로서 산업 분야에 유용하게 이용될 것이며, glutathione transferase는 양식산업에서 생체이물질이 축적되어 있 지 않은 독성물질에 저항력을 갖는 어류의 개발을 가능하게 할 것이다.

List of Figures

- Fig. 1-1. Graph plotted length of ESTs (bp) vs EST sequence.
- Fig. 1–2. Classification of disk abalone digestive gland ESTs, showing the proportions of transcripts from different genes according to their putative biological role.
- Fig. 1–3. Classification of disk abalone digestive gland ESTs with significant similarity to known enzymes.
- Fig. 2-1. Analysis of glutathione transferase (GST) protein expressed in *Escherichia coli* (BL21) cells following purification in a 12% denaturing polyacrylamide gel. Cells were grown at 15°C and induced with 1 mM IPTG. Recombinant protein was purified under native conditions by Ni column.
- Fig. 2–2. A schematic diagram depicting thioredoxin fold. a-helices are shown as cylinders and a-sheets as arrows. In glutathione transferases, domain 2 is connected to the C-terminus via a short linker peptide (Sheehan *et al.*, 2000).
- Fig. 2–3. Nucleotide and deduced amino acid sequence of glutathione transferase. The secondary structures composing two domains are indicated and the active site Tyr-6 and *cis*-proline in *cis*-Pro loop are given in bold letters. The poly(A) tail and the poly(A) signal sequence are shown in simple case letters. The stop codon is marked with an asterisk.
- Fig. 2-4. Analysis of arylsulfatase protein expressed in *Escherichia coli* (BL21)DE3 cells following purification in a 12% denaturing polyacrylamide gel. Cells were grown at 15°C and induced with 1 mM IPTG. Recombinant protein was purified under denaturing conditions by Ni column.
- Fig. 2-5. Nucleotide and deduced amino acid sequence of arylsulfatase

B. The putative signal peptide sequence is underlined. Poly(A) tail and the poly(A) signal sequence are shown in simple case letters. The stop codon is indicated with an asterisk.

- Fig. 2–6. CLUSTAL W (1.82) multiple sequence alignment of arylsulfatase coding sequences.
- Fig. 2-7. CLUSTAL W (1.82) multiple sequence alignment of arylsulfatase amino acid sequences.
- Fig. 2–8. Nucleotide and deduced amino acid sequence of L-fucosidase. The putative signal peptide sequence is underlined. The poly(A) signal sequence is shown in bold simple case letters. The stop codon in the cloned fragment is indicated with an asterisk.
- Fig. 2–9. CLUSTAL W (1.82) multiple sequence alignment of abalone fucosidase putative amino acid sequence with known L-fucosidase sequences.
- Fig. 2–10. CLUSTAL W (1.82) multiple sequence alignment of abalone fucosidase full length sequence with coding sequences of other L-fucosidases. Possible nonsense mutations identified in the full length sequence of abalone fucosidase which align with the coding sequence of other fucosidases are underlined. The codon which may have functioned as the stop codon in an ancient active form is given in bold.

List of Tables

- Table 1-1. ESTs with similarities to sequences in NCBI databases with an E value less than 10^{-5} in BLAST X analysis
- Table 1-2. ESTs with similarities to sequences in NCBI databases with an E value less than 10^{-5} in BLAST N analysis
- Table 2-1. Primers used to sequence full lengths.
- Table 2-2. Primers used to amplify coding sequences.
- Table 2–3. Restriction enzymes used for the determination of insert orientation
- Table 2-4. The Highest and lowest % identities seen within coding regions of GSTs from same class and with abalone GST. Some classes had same identity between different sequences and zeta class had only one sequence for comparison.
- Table 2–5. The Highest and lowest % identities seen within amino acid sequences of GSTs from same class and with abalone GST. Some classes had same identity between different sequences and zeta class had only one sequence for comparison.

INTRODUCTION

Abalones are univalve marine gastropods, which are highly prized as a food and a source of pearl. The worldwide popularity of abalone has led to the decline of many fisheries through commercial over-fishing. This led to an increase in hatchery rearing during the past decades, which made it possible to improve selected strains for breeding. Research on abalone to date has focused mainly on environmental factors such as culture techniques, tank design and nutrition (Powers *et al.*, 1996). Very little is done on the genetic improvement of abalone due to lack of knowledge on genetic aspects of these animals. Powers *et al.* (1996) developed triploid abalone with enhanced growth showing the importance of genetic improvement of abalone in aquaculture.

Partial cDNA sequencing to generate expressed sequence tags (ESTs) has provided a fast and efficient way of unraveling new genes in various organisms. This method provides a quantitative method to measure specific transcripts within a cDNA library. The low cost of generating ESTs and their usefulness in discovering new genes, genomic mapping, and identifying coding regions in genomic sequences (NCBI staff, 2002) have led to the exponential growth of sequences in EST database (http://www.ncbi.nlm.nih.gov/). To exploit this untapped genetic source, we constructed a cDNA library from disk abalone (Haliotis discus discus) digestive gland. Most of the genes identified during this study correspond to enzymes and we further characterized enzymes implicated in disease conditions and cellular several detoxification including fucosidase, sulfatase (ASB) and a glutathione transferase (GST).

Alpha-L-fucosidase responsible is for hydrolyzing the alpha-1,6-linked fucose joined to the reducing-end N-acetylglucosamine carbohydrate of moieties of the glycoproteins (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) and is involved in fucosidosis, an autosomal recessive lysosomal storage disease caused by defective alpha-L-fucosidase with accumulation of fucose in the tissues. Different phenotypes include clinical features such as neurologic deterioration, growth retardation, visceromegaly, and seizures in a severe early form; coarse facial features, angiokeratoma corporis diffusum, spasticity and delayed psychomotor development in a longer surviving form; and an unusual spondylometaphyseoepiphyseal dysplasia in yet another form.

ASB is involved in the desulfation of 4-sulfate groups occuring at the non-reducing terminal N-acetyl galactoseamine-4 sulfate of oligosaccharides derived from dermatan sulfate or chondroitin-4-sulfate (Leznicki and Bailkowski, 1997). Lack of this enzyme results in mucopolysaccharidosis V1. Recent discovery of new sulfated compounds with commercial importance has resulted in a demand for sulfatases, which could be used either as a means of understanding the functional implications of sulfate groups or to remove sulfate groups for better product quality. For example, it has been identified that sulfated homopolysaccharides are more potent than sulfated heteropolysaccharides as antiviral agents and the presence of sulfate group is necessary for anti-HIV activity of these compounds and the potency increases with the degree of sulfation (Schaeffer et al., 2000). On the other hand, sulfate groups in agar adversely affect the strength and melting temperature of commercial agarose (Mollet et al., 1998).

GSTs are major phase II detoxification enzymes which catalyse the conjugation of glutathione (GSH) to various xenobiotic compounds increasing their solubility and excretion. GSTs are dimeric enzymes with each subunit containing a GSH binding domain (G-site) and a variable electrophilic substrate binding domain (H-site). Depending on the H-site, they can catalyze nucleophilic aromatic substitutions, Michael additions to <code>q,p-unsaturated</code> ketones and epoxide ring-opening reactions resulting GSH conjugates. Expression of different class GSTs has been implicated in organism resistance to herbicides, fungicides and insecticides. They are also involed in detoxification of chemicals released during host pathogen interactions (Sheehan *et al.*, 2001). Considering these commercial and biological values we selected the

above genes for further characterization.

Part I

Construction of abalone expressed sequence tag library and sequence analysis

Part I

Construction of abalone expressed sequence tag library and sequence analysis

1. ABSTRACT

Deciphering the function of proteins is the main task in molecular biology and biochemistry. The increasing flow of genomic information makes the contribution of bioinformatics very relevant for proposing possible new protein functions based on prior information. Identification of coding regions is the first step in functional annotation of proteins they code. Partial cDNA sequencing to generate expressed sequence tags (ESTs) provides a fast and efficient way of unraveling the coding sequences.

As the first step towards functional annotation of unknown genes in abalone, 900 clones from an abalone digestive gland cDNA library were partially sequenced from the 5' end. A total of 841 clones were successfully sequenced and, after removal of vector and unreliable data, they were assembled into 122 clusters by using TIGR Assembler. Each cluster consisted of at least two ESTs and was considered to be derived from the same gene. The clusters contained a total of 331 sequences, whereas 510 remained as singletons. This resulted in a 39% redundancy, which was much less than the redundancy (45%) of the whole abalone cDNA library we generated. This may be due to the suppression of organ specific mRNA percentages in whole animal tissue by the products of genes which carry out basic functions of all cells. The 632 unique transcripts were compared against the National Center for Biotechnology Information databases by BLAST-X and BLAST-N programs. Out of the 632 unique transcripts, 354 were significantly similar to sequences in the databases with an E-value less than 10^{-5} . Thus, 278 transcripts are cloned and reported for the first time in this study. These may be useful as molecular markers as well as in the identification of novel genes.

2. MATERIALS AND METHODS

2. 1. Construction of abalone digestive gland cDNA library

The cDNA library was constructed from digestive glands of disk abalone (Haliotis discus discus) obtained from an aquarium. Total RNA was extracted from digestive glands (RNeasy Maxi Kit, QIAGEN, Germany) and mRNA was isolated using FastTrack® 2.0 mRNA isolation system (Invitrogen, USA). cDNA synthesis was carried out according to ZAP-cDNA synthesis protocol (Stratagene, USA). The library was constructed by the directional cloning method with EcoRI site on the 5' end and XhoI site on the 3' end. cDNAs larger than 0.5 kb were selected by size fractionation with Sepharose CL-2B column, and packaged with Gigapack III Gold packaging extract. Gel analysis of twenty randomly picked plaques showed 85% cloning efficiency with insert size distribution of 0.5 - 3.0 kb (Fig. 1-1) in the primary lambda phage library. Mass excision resulted in a phagemid library with a yield of 7.0 x 10^5 colony forming unit/mL with 90% white colonies. Randomly picked 900 white colonies were sequenced after plasmid preparation (AccuPrepTM plasmid extraction kit, Bioneer, Korea) using the vector primer AB (5'-CAAAAGCTGGAGCTCCACC-3').

2. 2. Analysis of cDNA sequences

The ESTs were edited to remove vector sequences and unreliable data using cross_match and PHRED programs. Assembly of the individual ESTs into groups of sequences (clusters) representing unique transcripts was performed by using the TIGR Assembler (Sutton *et al.*, 1995). The resulting data were compared against the National Center for Biotechnology Information (NCBI) nonredundant protein database by using the program BLAST-X on the BLAST network service at NCBI. Sequences that did not match sequences in the protein database were further analyzed by searching for similarities at the nucleotide level by

using the BLAST-N program against the nonredundant nucleotide sequence database (Altschul *et al.*, 1990). Sequences with an E-value less than 10^{-5} were considered significant and top-scoring genes were used to group the transcripts by their putative function.

3. RESULTS

3. 1. Abalone digestive gland cDNA library sequence analysis

To gain insight into the abalone transcriptome, we generated 900 EST sequences from disk abalone digestive gland. After removal of low quality data, 841 sequences were selected for further analysis. A total of 122 clusters were formed with these fragments by TIGR Assembler 2.0 (Sutton *et al.*, 1995). Each cluster contained at least two ESTs and was considered to be derived from the same gene by taking sequence ambiguities into account. The clusters contained a total of 331 sequences, whereas 510 remained as singleton ESTs, not similar to any other sequence in the data set. This resulted in 632 unique transcripts but it can be an overestimation since some fragments can be non-overlapping segments of the same transcript.

The digestive gland cDNA library had a 39% redundancy, which was much less than the redundancy (45%) of the whole abalone cDNA library we generated (Unpublished data). Out of the 632 sequences, 354 showed a significant similarity to sequences in the data bases (Table 1–1 and Table 1–2). Out of this, 240 sequences had significant similarity to database sequences with known or putative functions. These included 71 different enzymes/ isoenzymes or different enzyme subunits, 30 nucleic acid binding proteins/ transcription factors, 18 structural/ cytoskeleton proteins and several other functional proteins as summarized in (Fig. 1–2). There were 114 unique sequences similar to sequences in databases with unknown function.

Fig.1-1. Graph plotted length of ESTs vs EST sequence.

ES T	Putative identification	AC	% Identity
2-E10-AB.ab1	2210023K21Rik protein	AAH04572.1	47
pst_2_jhLee_433	2-4-dienoyl-Coenzyme A reductase 2	NP_741993.1	52
06-D04-AB.ab1	40S ribosomal protein	AAO43049.1	84
pst_2_jhLee_95	40S Ribosomal protein S3a	P 4 9 3 9 5 R S3 A _ A P L C A	85
pst_2_jhLee_155	40S ribosomal protein S5	AAK95187.1 AF402813_1	88
	4-nitrophenylphosphatase		
3-D10-AB.ab1	domain and non-neuronal SNAP25-like	NP_032724.1	46
09-B04-AB.ab1	6030466N05Rik protein	AAH31719.1	58
04-F01-AB.ab1	60S acidic ribosomal protein P1	AAL62466.1	49
10-B02-AB.ab1	acid alpha glucosidase	BAA25884.1	50
pst_2_jhLee_79	acidic ribosomal protein P0, cytosolic	R5RT10	76
2-H05-AB.ab1	Actin-depolymerizing factor (ADF)	P30175 ADF_LILLO	32
3-F10-AB.ab1	acyltransferase 3 family (5Q785)	NP_507118.1	33
2-G10-AB.ab1	adipose differentiation-related protein	AAF76320.2 AF234676_1	31
pst_2_jhLee_29	ADP/ATP carrier	AAC23561.1	66
	alkaline phosphatase,		
4-C05-AB.ab1	145K - Synechococcus sp. (strain PCC 7942)	A47026	36
07-F08-AB.ab1	alpha 1 type XXII collagen [Homo sapiens]	AAN03620.1 AF406780_1	24
	Alpha-methylacyl-CoA racemase		
4-C12-AB.ab1	(2-methylacyl-CoA racemase)	P70473 AMAC_RAT	58
pst_2_jhLee_237	ALR protein - human	T 03455	51
2 DOC AD 11	ankyrin repeat protein E4_8	1 1 0 2 5 (0 2 1	15
3-D06-AB.ab1	[synthetic construct]	AAO25692.1 AAC28440.1	45
3-C04-AB.ab1	apextrin [Heliocidaris erythrogramma]		26
07-B11-AB.ab1	arginine kinase [Aplysia kurodai]	BAB41095.1	82
08-D07-AB.ab1	aryl sulfotransferase [Rattus norvegicus]	CAA48604.1	44
2-B01-AB.ab1	arylacetam ide deacetylase fam ily	ND 501702 1	35
	member (4K352) [Caenorhabditis	NP_501702.1 XP_283156.1	48
2-C02-AB.ab1	arylsulfatase B [Mus musculus] AT 3g51050/F24M12 90	XP_283156.1	48
08-E08-AB.ab1	[Arabidopsis thaliana]	AAL58934.1 AF462847 1	23
pst 2 jhLee 232 ATPase subunit 6 [Littorina saxatilis]		CAA10596.1	50
pst_2_jiil.ee_252	B-cell translocation gene 2,	CAA10590.1	50
06-H05-AB.ab1	anti-proliferative [Mus musculus]	NP 031596.1	59
2-G01-AB.ab1	Beta-glucuronidase precursor	O18835 BGLR_CANFA	61
	betaine-homocysteine methyltransferase		
pst 2 jhLee 401	[Oceanobacillus iheyensis	NP 691612.1	47
1-G02-AB.ab1	beta-tubulin [Meriones unguiculatus]	CAB91644.1	100
05-G02-AB.ab1	calmodulin [Metridium senile]	BAB61794.1	100
06-C11-AB.ab1	calponin homolog [Schistosoma mansoni]	AAB47536.1	65
pst_2_jhLee_252	calreticulin precursor - California sea hare	JH0795	68
pst_2_jhLee_153	carbonyl reductase [Cricetulus griseus]	BAB07797.1	48
por	Caspase 10 isoform a preproprotein;		
4-C11-AB.ab1	FADD-like ICE2; apoptotic	NP 001221.1	30
pst 2 jhLee 410	catalase [Melopsittacus undulatus]	AA072713.1	76
	cathepsin L-like cysteine proteinase		
pst_2_jhLee_476	A [Rhipicephalus	AAQ16117.1	58
1-F05-AB.ab1	cathepsin Q2 [Rattus norvegicus]	AAO27844.1 AF456460_1	39
	CCAAT enhancer-binding protein -		
2-B07-AB.ab1	California sea hare	A 5 3 0 6 6	27
	CD109; Gov system alloantigens	N.B. 500000 4	
2-F10-AB.ab1	on platelets [Homo sapiens]	NP_598000.1	40
pst_2_jhLee_268	cellulase [Haliotis discus]	BAC67186.1	91
06-H02-AB.ab1	cellulase [Haliotis discus]	BAC67186.1	47
1-A05-AB.ab1	cellulase [Haliotis discus]	BAC67186.1	47
08-B05-AB.ab1	cellulase EGX [Ampullaria crossean]	AAP31839.1	51
05-A09-AB.ab1	CG1458-PA [Drosophila melanogaster]	NP_651684.1	43
3-B03-AB.ab1	CG14996-PB [Drosophila melanogaster]	NP_647860.1	56
2-B05-AB.ab1	CG16707-PA [Drosophila melanogaster]	NP_729535.1	71
07-D01-AB.ab1	CG16726-PA [Drosophila melanogaster]	NP_648342.1	33
07-A11-AB.ab1	CG18377-PA [Drosophila melanogaster]	NP_610588.2	28
3-A05-AB.ab1	CG3699-PA [Drosophila melanogaster]	NP_569875.2	45
05-D11-AB.ab1	CG4386-PA [Drosophila melanogaster]	NP_611611.1	33
	CG4821-PA [Drosophila melanogaster]	NP_648288.1	23

Table 1–2. ESTs with similarities to sequences in NCBI data bases with an E value less than 10^{-5} in BLAST X analysis 9

pst_2_jhLee_138	CG4928-PB [Drosophila melanogaster]	NP_573179.1	54
06-A05-AB.ab1	CG5167-PA [Drosophila melanogaster]	NP_650190.1	50
1-H06-AB.ab1	CG5446-PA [Drosophila melanogaster]	NP_609565.1	71
pst_2_jhLee_347	CG6847-PA [Drosophila melanogaster]	NP_573259.1	37
	Chain A, Fasciculin2 - Mouse	1 34 4 11 4	20
pst_2_jhLee_420	Acetylcholinesterase Complex Chain A, Methionine Adenosyltransferase	1MAH A	29
07-G02-AB.ab1	Complexed With A	1QM4 A	70
1-E08-AB.ab1	checkpoint protein Hus1 [Xenopus laevis]	AAM90260.1 AF516928 1	58
09-E09-AB.ab1	chitin synthase A [Drosophila melanogaster]	CAC83726.1	26
pst 2 jhLee 245	chitinase [Tenebrio molitor]	CAD31740.4	24
07-F04-AB.ab1	chitinase [Tenebrio molitor]	CAD31740.4	24
04-C07-AB.ab1	Cholinesterase 1	Q95000 CHL1 BRALA	45
06-G04-AB.ab1		AAD05373.1	45 51
00-G04-AB.ab1	cholinesterase 1 [Branchiostoma floridae] chondroitin sulfate proteoglycan 3	AAD033/3.1	51
08-B09-AB.ab1	(neurocan) [Homo sapiens]	NP 004377.1	35
00-007-110.001	Coatomer epsilon subunit		55
1-E12-AB.ab1	(epsilon-coat protein) (epsilon-cop)	Q60445 COPE CRIGR	66
06-D08-AB.ab1	collagen pro alpha-chain [Haliotis discus]	BAA75668.1	99
pst_2_jhLee_126	collagen pro alpha-chain [Haliotis discus]	BAA75669.1	89
pst_2_jhLee_240	collagen pro alpha-chain [Haliotis discus]	BAA75669.1	87
pot_2_jii200_210	conserved hypothetical protein	51117000711	
08-F06-AB.ab1	[Xanthomonas axonopodis pv. citri	NP 641707.1	49
pst_2_jhLee_186	CRYSTAL PROTEIN PRECURSOR	P21837 CRYS DICDI	38
	cubilin; cubilin (intrinsic factor-		
06-G03-AB.ab1	cobalamin receptor) [Rattus	NP_445784.1	29
	CuZn superoxide dismutase		
pst_2_jhLee_167	[Apis mellifera ligustica]	AAP93581.1	52
	cyclin L1; cyclin ania-6a; cyclin L		
2-D02-AB.ab1	[Mus musculus]	NP_064321.1	45
4-B03-AB.ab1	Cystatin precursor (Ovarian cystatin) (P12)	P35481 CYT_CYPCA	34
08-F12-AB.ab1	Cyt19 protein; likely ortholog of rat methyltransferase Cyt19;	NP 065733.1	49
05-D05-AB.ab1	and the second s	CAA10599.1	77
	cytochrome b [Littorina saxatilis]		-
pst_2_jhLee_125	cytochrome b [Penaeus monodon] cytochrome c oxidase subunit I	NP_038299.1 CYTB_15276	65
pst_2_jhLee_110	[Katharina tunicata]	NP 008173.1 COX1 10528	73
pst_2_jiilee_iiio	cytochrome c oxidase subunit III	M	15
pst 2 jhLee 69	[Melanocetus murrayi]	NP 739782.1	64
	cytochrome c oxidase subunit III		
pst_2_jhLee_107	[Platynereis dumerilii]	NP_009242.1 COX3_15124	63
	cytochrome oxidase subunit II		
pst_2_jhLee_408	[Littorina saxatilis]	CAA10594.1	59
	cytochrome oxidase subunit II		
pst_2_jhLee_214	[Littorina saxatilis]	CAA10594.1	50
pst 2 jhLee 24	cytochrome-c oxidase (EC 1.9.3.1) chain I - Katharina tunicata	IS50327	74
2-H08-AB.ab1	cytoplasmic actin [Oikopleura longicauda]	BAA86216.1	98
			54
1-B10-AB.ab1	dendritic cell protein [Homo sapiens] deoxyribonuclease II alpha;	NP_006351.2	54
2-A10-AB.ab1	deoxyribonuclease II [Mus musculus]	NP 034192.1	36
	EF-9 polyadenylation variant II		
pst_2_jhLee_590	[Mus musculus]	AAM77638.1 AF517107_1	27
07-B10-AB.ab1	effete CG7425-PA [Drosophila melanogaster]	NP_731941.1	91
4-G10-AB.ab1	effete CG7425-PA [Drosophila melanogaster]	NP_731941.1	90
pst_2_jhLee_121	ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA)	P19039 EF1A_APIME	85
	embryo cathepsin L-associated protein		
pst_2_jhLee_509	[Artemia franciscana]	AAP69998.1	29
	embryo cathepsin L-associated protein		
05-C11-AB.ab1	[Artemia franciscana]	AAP69998.1	29
pst_2_jhLee_358	endo-1,4-beta-glucanase [Mytilus edulis]	CAC59694.1	49
1-C10-AB.ab1	endo-1,4-mannanase [Mytilus edulis]	CAC81056.1	44
3-A01-AB.ab1	ENSANGP0000003537 [Anopheles gambiae]	XP_313587.1	48
09-H06-AB.ab1	ENSANGP0000009390 [Anopheles gambiae]	XP_308333.1	39
2-A12-AB.ab1	ENSANGP00000010440 [Anopheles gambiae]	XP_315834.1	79
06-D10-AB.ab1	ENSANGP00000011058 [Anopheles gambiae]	XP_311928.1	72
08-G12-AB.ab1	ENSANGP00000012201 [Anopheles gambiae]	XP_313869.1	41
pst_2_jhLee_154	ENSANGP00000012979 [Anopheles gambiae]		48
08-B03-AB.ab1	ENSANGP00000014346 [Anopheles gambiae]		39
		_	

07-G08-AB.ab1	ENSANGP00000014833 [Anopheles gambiae]	XP_318983.1	52
04-A12-AB.ab1	ENSANGP0000014885 [Anopheles gambiae]	XP_312551.1	57
pst_2_jhLee_87	ENSANGP0000015684 [Anopheles gambiae]	XP_314051.1	92
05-E12-AB.ab1 08-H06-AB.ab1	ENSANGP00000015968 [Anopheles gambiae] ENSANGP00000018575 [Anopheles gambiae]	XP_308535.1	61 58
06-F12-AB.ab1	ENSANGP00000018575 [Anopheles gambiae] ENSANGP00000018629 [Anopheles gambiae]	XP_317654.1	58 41
06-A11-AB.ab1		XP_315795.1 XP_308198.1	52
06-E05-AB ab1	ENSANGP00000020729 [Anopheles gambiae] ENSANGP00000020956 [Anopheles gambiae]	XP_308198.1 XP_321840.1	72
00-E03-AB.ab1	ergosterol biosynthesis ERG4/ERG24	XP_321840.1	12
06-G12-AB.ab1	family protein [Coxiella	NP 820155.1	57
00 012 115.001	eukaryotic translation initiation factor 5A;	020100.1	57
09-D09-AB.ab1	eIF5AI [Homo sapiens]	NP_001961.1	66
pst_2_jhLee_161	fatty acid binding protein [Clonorchis sinensis]	AAN04089.1 AF527454_1	28
pst_2_jhLee_47	fatty acid binding protein [Clonorchis sinensis]	AAN04089.1 AF527454_1	28
pst_2_jhLee_265	Fatty acid-binding protein, retina (R-FABP)	Q05423 FABB_CHICK	38
pst_2_jhLee_64	ferritin GF2 [Crassostrea gigas]	AAP83794.1	80
3-G11-AB.ab1	ferritin-like protein [Pinctada fucata]	AAQ12076.1	81
06-A03-AB.ab1	flice [Mus musculus]	CAA04196.1	46
08-C06-AB.ab1	ganglioside M2 activator protein precursor - mouse	835613	32
07-D04-AB.ab1	gelsolin-like protein [Lumbricus terrestris]	CAD43405.1	49
05-A03-AB.ab1	glutathione peroxidase	2204226A	44
05-E07-AB.ab1	glutathione S-transferase, mu 2;	NP_032209.1	55
	gly ceraldehy de-3-phosphate		
05-G10-AB.ab1	dehydrogenase [Daphnia pulex]	CAB94909.1	78
	GLY cosylation related,		
08-G06-AB.ab1	UDP-N-acetyl-D-galactosamine:polypeptide	NP_499504.1	28
08-F04-AB.ab1	GM2 ganglioside activator protein [Rattus norvegicus]	NP 758838.1	34
08-F04-AB.a01	GM2 ganglioside activator protein	NF_/38838.1	54
10-A02-AB.ab1	[Rattus norvegicus]	NP 758838.1	35
	GM2 ganglioside activator protein		
pst_2_jhLee_378	precursor; cerebroside sulfate	NP_000396.1	28
	guanine nucleotide-binding protein	안도서과	
pst_2_jhLee_241	[Petromyzon marinus]	AAM88904.1	84
10-F03-AB.ab1	guanine nucleotide-binding protein	AAM88904.1	84
10-F03-AB.ab1	[Petrom yzon marinus] H3 histone, family 3A	AAM88904.1	84
05-E05-AB.ab1	[Homo sapiens]	NP 002098.1	100
	Hemagglutinin/amebocyte		
2-A01-AB.ab1	aggregation factor precursor (18K-LAF)	Q01528 HAAF_LIMPO	40
pst_2_jhLee_184	heparanase [Homo sapiens]	AAD54516.1 AF084467_1	35
06-C02-AB.ab1	heparanase-like protein [Bombyx mori]	BAB85191.1	29
	Homo sapiens ATP synthase,		
3-F12-AB.ab1	H+ transporting, mitochondrial F1	AAP36942.1	89
09-H11-AB.ab1	hypothetical protein [Clostridium thermocellum ATCC 27405]	ZP 00060309.1	26
pst_2_jhLee_82		ZP_00000309.1 ZP_00119937.1	
	hypothetical protein [Cytophaga hutchinsonii]	-	34
pst_2_jhLee_40	hypothetical protein [Cytophaga hutchinsonii]	ZP_00119937.1	31
pst_2_jhLee_40 pst_2_jhLee_46	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii]	ZP_00119937.1 ZP_00119937.1	31 31
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1	31 31 31
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.abl	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1	31 31 31 33
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1	31 31 31 33 99
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1	31 31 31 33 99 28
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1	31 31 31 33 99
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-Cl1-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 P_00119937.1 BAB62213.1 BAB62213.1 BAB69753.1	31 31 31 33 99 28 63
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1	31 31 31 33 99 28
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1 ZP_00068378.1	31 31 31 33 99 28 63 32 32
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Nostoc punctiforme]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1	31 31 31 33 99 28 63 32
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-Cl1-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1 3-D09-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Nostoc punctiforme] hypothetical protein	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1 ZP_00068378.1 ZP_00106518.1	31 31 31 33 99 28 63 32 32 32 32
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 09-D01-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1 3-D09-AB.ab1 pst_2_jhLee_542	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Oryza sativa (japonica cultivar-group)]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1 ZP_00066378.1 ZP_00106518.1 AAO39872.1	31 31 33 99 28 63 32 32 32 32 32 35
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-Cl1-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1 3-D09-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Oryza sativa (japonica cultivar-group)] hypothetical protein [Plasmodium falciparum 3D7]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1 ZP_00068378.1 ZP_00106518.1	31 31 31 33 99 28 63 32 32 32 32
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1 3-D09-AB.ab1 3-D09-AB.ab1 pst_2_jhLee_542 07-B07-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Nostoc punctiforme] hypothetical protein [Oyza sativa (japonica cultivar-group)] hypothetical protein [Plasmodium falciparum 3D7] hypothetical protein	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB62753.1 ZP_00066788.1 ZP_00066378.1 ZP_00106518.1 AA039872.1 NP_473058.1	31 31 33 99 28 63 32 32 32 32 33
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 09-D01-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1 3-D09-AB.ab1 pst_2_jhLee_542	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Oryza sativa (japonica cultivar-group)] hypothetical protein [Plasmodium falciparum 3D7] hypothetical protein [Trichodesmium erythracum IMS101]	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1 ZP_00066378.1 ZP_00106518.1 AAO39872.1	31 31 33 99 28 63 32 32 32 32 32 35
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 2-D09-AB.ab1 3-D09-AB.ab1 3-D09-AB.ab1 pst_2_jhLee_542 07-B07-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Escherichia coli K12] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Nostoc punctiforme] hypothetical protein [Oyza sativa (japonica cultivar-group)] hypothetical protein [Plasmodium falciparum 3D7] hypothetical protein	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 NP_417460.1 BAB62213.1 BAB62753.1 ZP_00066788.1 ZP_00066378.1 ZP_00106518.1 AA039872.1 NP_473058.1	31 31 33 99 28 63 32 32 32 32 33
pst_2_jhLee_40 pst_2_jhLee_46 pst_2_jhLee_58 09-C11-AB.ab1 08-D02-AB.ab1 09-D01-AB.ab1 4-F05-AB.ab1 3-E09-AB.ab1 3-E09-AB.ab1 3-D09-AB.ab1 3-D09-AB.ab1 07-B07-AB.ab1 07-G01-AB.ab1	hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Cytophaga hutchinsonii] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Macaca fascicularis] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Microbulbifer degradans 2-40] hypothetical protein [Oryza sativa (japonica cultivar-group)] hypothetical protein [Cryze sativa (japonica rultivar-group)] hypothetical protein [Trichodesmium erythracum IMSI01] hypothetical protein KIAA0684	ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 ZP_00119937.1 DP_417460.1 BAB62213.1 BAB69753.1 ZP_00066788.1 ZP_00066378.1 ZP_00106518.1 AAO39872.1 NP_473058.1 ZP_00074867.1	31 31 31 33 99 28 63 32 32 32 32 35 33 29

			1
1-H12-AB.ab1	Hypothetical protein ZK337. 1b [Caenorhabditis elegans]	CAB05007 2	46
1-1112-715.001	hypothetical protein,	C/1005007.2	40
09-F06-AB.abl	putative universal stress protein Usp AAP06495.1		38
	hypothetical protein,		
pst_2_jhLee_23	putative universal stress protein Usp intermediate filament protein A,	AAP06495.1	34
pst_2_jhLee_164	cytosolic - California sea hare	824545	46
	intermediate filament protein A,	 I	
3-H08-AB.ab1	cytosolic - California sea hare	S24545	39
10-A04-AB.ab1	KIAA0002 [Homo sapiens]	BAA07652.1	67
08-E11-AB.ab1	KIAA0698 protein [Homo sapiens]	BAA31673.2	42
03-H01-AB.ab1	Kruppel-like factor 15 [Rattus norvegicus]	NP_445988.1	74
07-D05-AB.ab1	LD24380p [Drosophila melanogaster]	AAD27865.2 AF132566_1	58
4-B06-AB.ab1	let-23 Fertility Effector/regulator LFE-2, L-iditol 2-dehydrogenase (EC 1.1.1.14)	NP_491503.1	46
pst_2_jhLee_37	- sheep (tentative sequence)	S10065	44
1 ··· 2 25 ··· 2 ···	low density lipoprotein-related protein	P	
06-B10-AB.ab1	1B (deleted in tumors); low	NP_443737.1	37
pst_2_jhLee_189	LP12301p [Drosophila melanogaster]	AAK93491.1	48
4 1104 4 11	lysosomal cofactor/neurotrophic	A A L 5 4 3 8 1 1 A F 3 7 (0 0 (- 1	42
4-H04-AB.ab1 06-D05-AB.ab1	factor prosaposin [Danio rerio]	AAL54381.1 AF276996_1	42 52
09-F07-AB.abl	Macrophage receptor MARCO MEGF7 [Homo sapiens]	Q9WUB9 MRCO_MESAU BAA32468.1	42
1-B04-AB.ab1	metalloproteinase 2 [Hydra vulgaris]	AAD33860.1 AF140020_1	39
1-004-AD.a01	methionine adenosyltransferase	AAD55800.1 AT 140020_1	59
pst_2_jhLee_426	(EC 2.5.1.6) - mouse	A47151	75
	mitochondrial malate dehydrogenase		
pst_2_jhLee_100	precursor [Nucella lapillus]	AAG17699.1 AF280052_1	75
09-H09-AB.abl	msp130 protein [Heliocidaris erythrogramma]	CAC20358.1	34
08-F01-AB.ab1	multicystatin - common sunflower	JC7333	30
pst_2_jhLee_333	Multicystatin precursor (MC)	P37842 CYTM_SOLTU	25
pst_2_jhLee_317	Myc homolog [Crassostrea virginica]	AAB34577.1	43
pst_2_jhLee_576	Myc homolog [Crassostrea virginica]	AAB34577.1	43
08-D08-AB.ab1 4-A01-AB.ab1	Myc homolog [Crassostrea virginica] Myc homolog [Crassostrea virginica]	AAB34577.1 AAB34577.1	43 38
4-B05-AB.ab1	Myc homolog [Crassostrea virginica]	AAB34577.1	41
pst 2 jhLee 382	Myc homolog [Crassostrea virginica]	AAB34577.1	32
06-F05-AB.abl	Myc homolog [Crassostrea virginica]	AAB34577.1	43
3-C09-AB.ab1	Myc homolog [Crassostrea virginica]	AAB34577.1	43
08-F08-AB.ab1	Myc homolog [Crassostrea virginica]	AAB34577.1	42
06-H04-AB.ab1	myosin:SUBUNIT=essential light chain	1803425A	66
	Na+/Cl- dependent neurotransmitter		
2-B04-AB.ab1	transporter-like protein	AAM09083.1	54
06 D11 AD -11	N-acetyl-beta-glucosaminidase	A A A 5 1 9 2 9 1	48
06-D11-AB.ab1	prepro-polypeptide NADH dehydrogenase subunit 2	AAA51828.1	48
07-E03-AB.ab1	[Loligo bleekeri]	NP 062838.1	33
	NADH dehydrogenase subunit 4		
2-D12-AB.ab1	[Loligo bleekeri]	NP_062842.1	49
04-H12-AB.ab1	NG5 [Homo sapiens]	AAB47496.1 AAB47496	48
09-H02-AB.abl	outer arm dynein light chain 4 [Anthocidaris crassispina]	BAA24152.1	74
09-H02-AB.ab1	peptidylprolyl isomerase A (cyclophilin A)	BAA24132.1	/4
pst 2 jhLee 284	[Rattus norvegicus]	NP 058797.1	71
	peroxiredoxin V protein	-	
2-C10-AB.ab1	[Branchiostoma belcheri tsingtaunese]	AAM18076.1 AF498232_1	58
00 E12 AB 11	Peroxisomal sarcosine oxidase (PSO)	ODDATION MOUSE	10
08-E12-AB.ab1	(L-pipecolate oxidase) placental protein 11 related	Q9D826 SOX_MOUSE	48
06-E07-AB.ab1	[Mus musculus]	NP_032928.1	31
08-D06-AB.abl	placenta-specific 8 [Homo sapiens]	NP_057703.1	41
06-F11-AB.ab1	pol [Drosophila melanogaster]	CAC16871.1	31
	poly(A) binding protein, cytoplasmic 1		
4-D01-AB.ab1	[Rattus norvegicus]	NP_599180.1	65
06-H12-AB.abl	polymerase (RNA) II (DNA directed) polypeptide G [Mus musculus]	AAH05580.2	82
2-E02-AB.abl	polyubiquitin [Schistosoma mansoni]	AAD02414.1	100
2 L02-11D.a01	pory aciquitin [constrosoma mansoni]		

2 E0(AD -11	national and the descelor (Distlyle of)	ND 9679451	42
2-F06-AB.ab1 06-A10-AB.ab1	probable L-proline 4-hydroxylase [Pirellula sp.] PROFILIN	NP_867845.1 P18321 PROF_CLYJA	42 30
10-D05-AB.ab1	prostaglandin transporter [Bos taurus]	NP_777254.1	28
10-205-112.001	protein convertase subtilisin / kexin,		20
pst_2_jhLee_156	type I; prohormone convertase	NP_058787.1	52
	protein-glutamine gamma-glutamyltransferase		
3-C03-AB.ab1	(EC 2.3.2.13) - horseshoe	A45321	28
05-G03-AB.ab1	protocadherin-psil [Homo sapiens]	AAK51618.1 AF217751_1	28
06-B07-AB.ab1	putative CD209L1 protein [Hylobates lar]	AAL89528.1	27
05-D02-AB.ab1	putative protein kinase [Mus musculus]	CAB61344.1	39
05-B11-AB.ab1	putative RNA-binding protein [Patella vulgata] RAS-like, estrogen-regulated,	AAK32728.1 AF361436_1	44
4-B11-AB.ab1	growth-inhibitor [Homo sapiens]	NP 116307.1	46
pst_2_jhLee_60	Ras-related protein Rab-1A	Q05974 RAB1_LYMST	96
1-B11-AB.ab1	ribosomal protein L10 [Rattus norvegicus]	NP_112362.1	81
07-B08-AB.ab1	ribosomal protein L12 [Argopecten irradians]	AAN05610.1	79
2-G02-AB.ab1	Ribosomal protein L17 [Danio rerio]	AAH55097.1	76
	ribosomal protein L34		
07-E08-AB.ab1	[Branchiostoma belcheri tsingtaunese]	AAO31772.1	75
pst_2_jhLee_42	ribosomal protein L4, cytosolic [validated] - rat	JC4277	76
2-F04-AB.ab1	ribosomal protein L5 [Argopecten irradians]	AAN05603.1	70
pst_2_jhLee_325	ribosomal protein L7 [Crassostrea gigas]	CAD89885.1	73
09-G04-AB.ab1	ribosomal protein L7a [Argopecten irradians]	AAN05607.1	81
pst_2_jhLee_32	ribosomal protein S2 [Chlamys farreri]	AAM94271.1	90
10-D01-AB.ab1	ribosomal protein S30 [Argopecten irradians]	AAN05597.1	62
pst_2_jhLee_388	ribosomal protein S4 [Argopecten irradians]	AAN05593.1	83
3-G12-AB.ab1	RIKEN cDNA 6430526J12; LDLR dan [Mus musculus]	ND 766256 2	31
08-F05-AB.ab1	Selenoprotein M precursor (SelM protein)	NP_766256.2 Q8VHC3 SELM_MOUSE	31
pst 2 jhLee 118	SHG [Littorina littorea]	AAM20843.1 AF369699 1	25
pst_2_jhLee_38	SHG [Littorina littorea]	AAM20843.1 AF369699_1	23
pst_2_jhLee_38 pst_2_jhLee_187	SHG [Littorina littorea]	AAM20843.1 AF369699_1	24
pst_2_jhLee_105	SHG [Littorina littorea]	AAM20843.1 AF369699_1	23
pst_2_jii2ce_105	similar to 20 kDa adinoauto		25
pst_2_jhLee_370	complement-related protein [Rattus	XP_139092.2	31
	Similar to actin related protein 2/3 complex,		
06-E02-AB.ab1	subunit 1A, 41kDa	AAH41267.1	55
08-B07-AB.ab1	Similar to aldehyde dehydrogenase 7 family,	A A 1144267 1	72
08-B0/-AB.a01	member A1 [Danio rerio] similar to alpha-L-fucosidase	AAH44367.1	12
pst_2_jhLee_556	[Schistosoma japonicum]	AAP05896.1	62
	Similar to anaphase promoting		
2-G04-AB.ab1	complex subunit 5 [Homo sapiens]	AAH34243.1	32
	similar to brain-specific protein p25		
09-A01-AB.ab1	alpha [Homo sapiens] [Rattus	XP_217738.1	56
09-D11-AB.ab1	Similar to chaperonin containing TCP1, subunit 5 (epsilon) [Xenopus	AAH44997.1	70
09-011-AD.a01	Similar to COP9 constitutive	AA1144997.1	70
07-D09-AB.ab1	photomorphogenic homolog subunit 3	AAH45415.1	52
	Similar to deleted in malignant		
07-A12-AB.ab1	brain tumors 1 [Mus musculus]	AAH49835.1	28
4 G02 4 D 14	similar to elicitor-like mating		
4-G02-AB.ab1	protein M81 [Phytophthora Similar to high density lipoprotein	XP_225445.1	31
07-H02-AB.ab1	binding protein (vigilin)	AAH44314.1	46
07 1102 112.001	Similar to high density lipoprotein		
07-A04-AB.ab1	binding protein (vigilin) [Homo	AAH14305.1 AAH14305	50
	Similar to hydroxyprostaglandin		
4-D11-AB.ab1	dehydrogenase 15-(NAD) [Danio	AAH52123.1	43
08 C05 AD -11	similar to hypothetical protein FLJ20375	VD 222144 1	2.0
08-G05-AB.ab1	[Homo sapiens] [Rattus similar to hypothetical protein FLJ40597	XP_233144.1	38
1-E11-AB.ab1	[Homo sapiens] [Rattus	XP 221401.1	42
	Similar to integrin beta 4 binding protein		
pst_2_jhLee_439	[Danio rerio]	AAH49488.1	86
	similar to repeat organellar protein-related		
1-G10-AB.ab1	[Plasmodium yoelii	XP_219238.1	22
05-B06-AB.ab1	Similar to RIKEN cDNA 4430402G14 gene [Xenopus laevis]	AAH41528.1	48
0.0 - D00 - 11D.a01	Serie Frenchas metris]		1.0

	similar to sulfotransferase family 1A,		
07-H05-AB.ab1	phenol-preferring, member 2	XP 065757.2	35
1-D02-AB.ab1	Similar to yolk sac gene 2 [Danio rerio]	AAH49448.1	45
pst 2 jhLee 174	SLC25A3 protein [Homo sapiens]	AAH51367.1	67
pst_2_jiilee_1/4	Sodium/potassium-transporting ATPase	AAII51507.1	07
3-D05-AB.ab1	alpha chain (Sodium pump)	P17326 AT1A_ARTSF	74
pst 2 jhLee 177	Soma ferritin	P42577 FRIS LYMST	70
	Sorbitol dehydrogenase-2 CG4649-PA		
07-H04-AB.ab1	[Drosophila melanogaster]	NP_524311.1	62
	succinate dehydrogenase complex,		
09-G09-AB.ab1	subunit D precursor; succinate	NP_002993.1	42
09-F08-AB.ab1	sulfatase 1 precursor [Helix pomatia]	AAF30402.1 AF109924_1	49
pst_2_jhLee_375	sulfatase 1 precursor [Helix pomatia]	AAF30402.1 AF109924_1	42
06-E08-AB.ab1	sulfatase 1 precursor [Helix pomatia]	AAF30402.1 AF109924_1	38
	sulfotransferase family, cytosolic, 1A,		2.5
pst_2_jhLee_522	phenol-preferring, member SWI/SNF-related matrix-associated	NP_001045.1	35
08-C02-AB.ab1	actin-dependent regulator of	NP 003070.3	88
1-G07-AB.ab1	target of Jun 3 [Coturnix coturnix]	AAG16624.1	75
2-G06-AB.ab1	tetraspanin-CD63 receptor [Geodia cydonium]	CAA77025.1	33
2-000-AD.a01	translation Elongation FacTor (94.8 kD)	CAA77025.1	55
10-A03-AB.ab1	(eft-2) [Caenorhabditis	NP 492457.1	77
09-G10-AB.ab1	transposase homolog [Haemonchus contortus]		32
	transposase, Tc1/Tc3 and Integrase,		
pst_2_jhLee_337	catalytic domain containing	NP_497684.1	36
05-B05-AB.ab1	tubulin, beta, 2 [Homo sapiens]	AAH29529.1	90
09-G05-AB.ab1	tumor rejection antigen 1gp96 [synthetic construct]	AAQ02595.1	68
	ubiquitin/ribosomal protein S27a		
05-G05-AB.ab1	fusion protein [Branchiostoma	AAL55470.1	75
	Unknown (protein for IMAGE:3544292)	15.61.7340	
08-H07-AB.ab1	[Homo sapiens] Unknown (protein for IMAGE:5269996)	AAH03577.1 AAH03577	92
05-F05-AB.ab1	[Homo sapiens]	AAH28610.1	48
05-105-AB.a01	Unknown (protein for IMAGE:6881027)	AA1120010.1	40
06-G07-AB.ab1	[Xenopus laevis]	AAH53826.1	53
	Unknown (protein for MGC:53465)		
pst_2_jhLee_440	[Xenopus laevis]	AAH46271.1	71
	Unknown (protein for MGC:53465)		
08-G03-AB.ab1	[Xenopus laevis]	AAH46271.1	79
ant 2 ibl an 460	Unknown (protein for MGC:55617)	A A 114 4 200 1	78
pst_2_jhLee_469	[Danio rerio] Unknown (protein for MGC:9625)	AAH44200.1	/8
3-F01-AB.ab1	[Homo sapiens]	AAH16295.1 AAH16295	79
3-D02-AB.ab1	unknown [Homo sapiens]	AAC19158.1	60
04-H09-AB.ab1	unnamed protein product [Homo sapiens]	BAB15189.1	46
09-D05-AB.ab1	unnamed protein product [Homo sapiens]	BAC05050.1	33
1-D08-AB.ab1	unnamed protein product [Macaca fascicularis]	BAB01686.1	40
2-H07-AB.ab1	unnamed protein product [Mus musculus]	BAB25726.1	51
4-G09-AB.ab1	unnamed protein product [Mus musculus]	BAB25726.1	49
1 007 115.001	upregulated in colorectal	51152572011	
pst_2_jhLee_266	cancer gene 1 protein precursor;	NP_060019.1	29
	upregulated in colorectal		
05-A08-AB.ab1	cancer gene 1 protein precursor;	NP_060019.1	32
	variable region-containing chitin-binding		
05-C09-AB.ab1	protein 2 [Branchiostoma	AAN62849.1	38
net 2 ihLog 212	variable region-containing chitin-binding	A AN62011 1	43
pst_2_jhLee_213	protein 5 [Branchiostoma	AAN62911.1	
06-A09-AB.ab1	Xrcc5 [Rattus norvegicus]	BAB83859.1	36
09-A08-AB.ab1	xylose isomerase [Pirellula sp.]	NP_865078.1	57
2-B11-AB.ab1	Yolk sac gene 2 [Mus musculus]	AAH07136.1	34
3-G06-AB.ab1	ZP2 [Carassius auratus]	CAA96576.1	40
2-D07-AB.ab1	ZP2 [Carassius auratus]	CAA96576.1	46

Table 1–2. ESTs with similarities to sequences in NCBI data bases with an E value less than 10^{-5} in BLAST N analysis

EST	Putative identification	AC	% Identity
	Arabidopsis thaliana genomic DNA,		
4-H03-ABab1	chromosome 3, P1 clone: MDC8	AP000373.1	86
07 500 40 44	Chromobacterium violaceum	4 50100151	100
07-F03-AB.ab1	strain ATCC 12472 section 6 of 16 of the Cloning vector TLF97-3, phage	AE016915.1	100
pst_2_jhLee_264			100
001_2_11200_20	Cyprinus carpio clone cL41a	000200.101000200	100
pst_2_jhLee_293	- 5	AY117540.1	89
	Hrubra mRNA for putative		
10-F02-AB.ab1	abalone protein (628bp)	X 92692.1 HRMRNA 628	94
07-B05-AB.ab1	Haliotis discus discus DNA, CA repeat region	AB025396.1	86
10-C01-AB.ab1	Haliotis discus discus DNA, CA repeat region	AB025396.1	91
pst_2_jhLee_563	Haliotis discus discus DNA, CA repeat region	AB025369.1	93
07-D02-ABab1	Haliotis discus discus DNA, CA repeat region	AB025369.1	88
OF DOZ ADADI	Haliotis discus discus gene.	AB020000.1	00
3-E11-AB.ab1	microsatellite Hd201	AB085642.1	97
	Haliotis discus hdcel-1 gene for		
3-H07-AB.ab1	cellulase, partial cds	AB092979.1	88
	Haliotis diversicolor 16S ribosomal		
pst_2_jhLee_298		U51989.1 HDU51989	90
pst_2_jhLee_54	Haliotis diversicolor 16S ribosomal RNA gene, mitochondrial gene	U51989.1 HDU51989	90
psi_2_jii200_04	Haliotis diversicolor 16S ribosomal	031303.1112031303	50
pst_2_jhLee_92	RNA gene, mitochondrial gene	U51989.1 HDU51989	89
	Haliotis fulgens fertilization protein		
09-C10-AB.ab1	precursor, gene, exon 1 and	AF076836.1 HFGAFP1	88
	Haliotis fulgens lysin precursor, gene,		
3-C01-AB.ab1	exon 4 and partial cds	AF076835.1 HFGALP3	88
07 407 40	Haliotis kamtschatkana clone Hka48	A V 01 05 70 1	92
07-A07-ABab1	microsatellite sequence Haliotis kamtschatkana clone Hka56	AY013578.1	92
1-E07-ABab1	microsatellite sequence	AY013579.1	83
	Haliotis rubra clone 220 microsatellite		
1-B01-AB.ab1	VNTR sequence	AF302830.1 AF302830	91
Haliotis rubra clone 220 microsatellite		고 주아드셔	21-
09-D07-AB.ab1	VNTR sequence	AF302830.1 AF302830	94
	Haliotis rubra clone 220 microsatellite		00
05-E09-ABab1	V NTR sequence Haliotis rufescens from La Jolla, CA,	AF302830.1 AF302830	90
4-F02-AB.ab1	G-alpha signal transducing	AF070959.1 HRGALJ1	94
TTOE HEADT	Haliotis rufescens from La Jolla,	, a crococh phraiteor	
4-G05-AB.ab1	CA, G-alpha signal transducing	AF070959.1 HRGALJ1	95
	Haliotis rufescens from La Jolla,		
07-A09-AB.ab1	CA, G-alpha signal transducing	AF070959.1 HRGALJ1	88
	Haliotis rufescens from La Jolla,		00
05-B12-AB.ab1	CA, G-alpha signal transducing Haliotis rufescens from La Jolla, CA,	AF070959.1 HRGALJ1	89
06-H07-AB.ab1	G-alpha signal transducing	AF070959.1 HRGALJ1	88
	Haliotis rufescens from La Jolla, CA,		00
05-C02-ABab1	G-alpha signal transducing	AF070959.1 HRGALJ1	84
	Haliotis rufescens from La Jolla, CA,		
07-C05-ABab1	G-alpha signal transducing	AF070959.1 HRGALJ1	82
4 E00 AD 114	Haliotis rufescens from La Jolla, CA,		0.4
1-E09-AB.ab1	G-alpha signal transducing Haliotis rufescens from La Jolla, CA,	AF070959.1 HRGALJ1	84
2-G03-AB.ab1	G-alpha signal transducing	AF070959.1 HRGALJ1	90
2 000 //8.001	Haliotis rufescens from La Jolla, CA,		00
05-F08-AB.ab1			86
	Haliotis rufescens from Mendocino,	AF070959.1 HRGALJ1	
09-C01-AB.ab1	CA, G-alpha signal transducing	AF070957.1 HRGAME1	93
	Haliotis rufescens from Mendocino, CA,		0.5
05-C03-AB.ab1	G-alpha signal transducing	AF070958.1 HRGAME2	95
04-E03-AB.ab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	93
04-A05-AB.ab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	90
04-H07-AB.ab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	95

pst_2_jhLee_459	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	95
pst_2_jhLee_2	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
05-B07-ABab1	Haliotis rufescens lustrin A mRNA.	AF023459.1 AF023459	92
08-H09-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
03-B05-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
07-C06-ABab1			91 91
	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	
pst_2_jhLee_10	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
pst_2_jhLee_9	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
02-G12-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
08-A08-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
pst_2_jhLee_18	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
07-D06-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	91
08-A02-ABab1	Haliotis rufescens lustrin A mRNA.	AF023459.1 AF023459	91
	,		89
08-G07-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	
08-C07-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	92
03-H06-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	92
04-G08-ABab1	Haliotis rufescens lustrin A mRNA,	AF023459.1 AF023459	92
	Haliotis rufescens lysin precursor,		
06-A01-AB.ab1	gene, exons 4 and 5 and partial	AF076824.1 AF076824	89
0 407 40 14	Haliotis rufescens lysin precursor, gene,		
2-A07-ABab1	exons 4 and 5 and partial Haliotis rufescens lysin precursor, gene,	AF076824.1 AF076824	88
06-D06-ABab1	exons 4 and 5 and partial	AF076824.1 AF076824	88
00 D00 ADD01	Haliotis rufescens lysin precursor, gene,	AT 070024.1 AT 070024	00
4-E10-AB.ab1	exons 4 and 5 and partial	AF076824.1 AF076824	90
	Haliotis rufescens lysin precursor, gene,	·	
08-C08-AB.ab1	exons 4 and 5 and partial	AF076824.1 AF076824	84
	Haliotis rufescens lysin precursor, gene,		
06-H08-AB.ab1	exons 4 and 5 and partial	AF076824.1 AF076824	86
	Haliotis rufescens lysin precursor, gene,		07
2-A09-ABab1	exons 4 and 5 and partial Haliotis rufescens lysin precursor, gene,	AF076824.1 AF076824	87
2-E05-ABab1	exons 4 and 5 and partial	AF076824.1 AF076824	90
E ECO ABADI	Haliotis tuberculata partial H1 gene		00
3-C02-ABab1	for hemocyanin, exons 1-17	AJ252741.1 HTU252741	86
-	Homo sapiens laminin receptor 1		111
4-D12-ABab1	(ribosomal protein SA, 67kDa), mRNA	BC013827.2	87
	Mouse DNA sequence from clone RP23-	LINIVEDETTY LIND	LON .
05-E02-AB.ab1	201H16 on chromosome 13, complete	AL590870.14	97
	Nucella emarginata cytochrome b	1100700 (1151 100700	
pst_2_jhLee_202	(cytb) gene, mitochondrial gene	U69726.1 NEU69726	81
05-C01-ABab1	Rana tigrina ranavirus, complete genome	AF389451.1	96
UJ-CUI-ABADI	complete genome Suberites domuncula mRNA for	AF309431.1	30
3-H10-ABab1	gelsolin (gels gene)	AJ344135.1 SDO344135	93
5 0 / DADT	Zebrafish DNA sequence from	1.0011001100001100	
4-C06-ABab1	clone DKEY-248K5, complete sequence	BX 005440.3	100

Fig. 1–2. Classification of disk abalone digestive gland ESTs, showing the proportions of transcripts from different genes according to their putative biological role.

Fig. 1–3. Classification of disk abalone digestive gland ESTs with significant similarity to known enzymes.

4. DISCUSSION

Despite their fragmentary and inaccurate nature, ESTs were found to be an invaluable resource for the discovery of new genes (Sikela and Auffray, 1993). To gain information on the composition of expressed transcripts in abalone digestive gland, we analysed 841 high quality ESTs.

Digestive gland is a mass of branching tubules bathed in blood in the visceral haemocoel. Ducts from these glands open into the stomach. They are not known to secrete digestive juices but they do take up food particles from the fluid that flows up the ducts into the glands and digest them in food vacuoles (Villee *et al.*, 1968). The intimate juxtaposition of digestive gland and gonad makes it difficult to study either organ separately (Carefoot et al., 1998). We encountered several gonad specific gene transcripts in digestive gland cDNA library, indicating its contamination by gonad tissue. There were two clones of egg membrane protein ZP2, which forms zona pellucida with ZP1 and ZP3 in mammals. ZP2 acts as a secondary sperm receptor. It is proteolytically cleaved after fertilization, and this modification, along with presumed changes in ZP3 is thought to play an important role in the postfertilization block to polyspermy (Liang and Dean, 1993). So far, ZP1, ZP2, or ZP3 like proteins have not been detected in invertebrate vitelline envelopes. Instead, invertebrate vitelline envelopes are composed of completely different proteins, such as VERL in the abalone (Evans, 2000). This unexpected sequence similarity could be due to inaccuracy of ESTs and further studies involving cloning of full-length cDNA and analyzing its product could verify this. We also found cyclins, cathepsin, lysine and a fertilization protein. Cyclins play an important role in egg maturation, in meiosis as well as in the normal cell cycle (Casas et al., 1999). Cathepsins are likely to be involved in processing of egg yolk protein precursor, vitellogenins (Carnevali et al., 1999).

Lysin is a protein released by the sperm acrosome reaction and it nonenzymatically and species selectively creates a hole in the egg vitelline envelope (Vacquier *et al.*, 1997) by binding to a high molecular weight glycoprotein (Swanson and Vacquier, 1997). This species specificity is important to prevent cross-fertilization in heterospecific mixtures of sperm and eggs since many marine invertebrate species, including abalone, spawn gametes into seawater. The 18-kDa fertilization protein also released from the sperm acrosome, appears to mediate fusion of the sperm with the egg membrane (Swanson and Vaquier, 1995; Evans, 2000).

In the digestive gland cDNA library we generated, most of the unique sequences coded for enzymes (Fig. 1-3). Enzymes, the workhorses of the cell, are often overlooked in analysis of tissue expression patterns in favor of other groups, such as transcription factors and receptors (Wistow et al., 2002). However they are clearly of great importance and, for the digestive gland and gonad, they have special significance in some key areas. Morse et al., 1977 found that highly reactive and short-lived free radical oxidants could cause the induction of spawning in mollusks. Presence of these chemicals in excess can also cause gametes to be non-viable. Being a high metabolically active organ, as indicated by a large proportion of mRNA expressed being related to metabolism, digestive gland generates a large number of reactive oxygen species and it needs to detoxify these harmful by-products of aerobic respiration. Although cytochrome coxidase and other proteins that reduce O₂ are remarkably successful in not releasing intermediates, small amounts of superoxide anion and hvdrogen peroxide are unavoidably formed during respiration. Superoxide dismutase scavenges superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen (Berg et al., 2002). Glutathione peroxidase is another enzyme involved in detoxification of hydrogen peroxide and organic peroxides by catalyzing the reaction between these reactive species and glutathione (Siegel et al., 1999). Peroxiredoxin-5 is a recently discovered mitochondrial, peroxisomal and cytosolic thioredoxin peroxidase able to reduce hydrogen peroxide and alkyl hydroperoxides (Tien and Knoops, 2003). All of these enzymes were found in the cDNA library of digestive gland, which reflects the importance of these antioxidants in the proper functioning of these organs.

As expected, most of the sequences were coding for digestive enzymes with a ratio of 6:3:1 for carbohydrate : protein : lipid. This can be an indication of the composition of their diet. The enzymes involved in carbohydrate metabolism included cellulase, chitin synthase A, alpha-L-fucosidase, beta-agarase and chitinase. Because kelp and other macroalgae comprise the bulk of the natural diet, abalone may be expected to digest complex carbohydrates such as agar, fucoidan and cellulose (Monje and Viana, 1998). The origin of the invertebrate cellulases was initially explained as products of symbiotic microorganisms in the intestine or contamination by foods (Cleveland 1924; Martin and Martin, 1978). However, those cellulases have been considered to be the products of invertebrates themselves, as animals bred in the presence of antibiotics could produce cellulases (O'Brien et al., 1979). Present study supports the idea that cellulases are products of abalone itself, since it had higher homology to Haliotis discus hannai cellulase (Suzuki et al., 2003) than to any other cellulase. Chitinases cleave the 1-1,4-glycosidic bonds of chitin, a 1-1,4-linked, unbranched polymer of N-acetylglucosamine, which is a major component of insect exoskeletons, shells of crustaceans, and fungal cell walls. These enzymes have been detected in a variety of organisms, including organisms that do not contain chitin as a structural component, such as bacteria, plants, and animals. The production of chitinases by plants is thought to be involved in defense reactions against chitin-containing pathogens. Bacteria utilize chitinases for assimilation of chitin as a carbon and nitrogen source, and these enzymes play an important ecological role in the degradation of chitin (Wu et al., 2001). They have been used in a number of applications, including biocontrol of pests and as agents for the control of phytopathogenic fungi. Other useful enzymes identified in this study include several sulfatases, proteases and phosphatases.

Among the most abundant cDNAs in the data set are several nucleic acid binding proteins and transcription factors. These included Kruppel-like factor-15, which is suggested to be involved in type I collagen synthesis and tissue fibrosis (Uchida *et al.*, 2000) as well as

Myc homologs and poly(A)-binding protein. Poly(A)-binding protein is well known for its ability to bind with high affinity to poly(A) tails of mRNAs, prerequisite for mRNA stabilization and stimulation of translational initiation (Mohr *et al.*, 2001). Proto-oncogene product c-Myc has a direct role in both metazoan cell growth and division. RNA polymerase III (pol III) is involved in the generation of transfer RNA and 5S ribosomal RNA, and these molecules must be produced in bulk to meet the need for protein synthesis in growing cells. c-Myc binds to TFIIIB, a pol III-specific general transcription factor, and directly activates pol III transcription (Gomez-Roman *et al.*, 2003). Other sequences identified with clinical value are several genes involved in apoptosis, acid alpha glucosidase and RAS related proteins.

Assembly of ESTs into clusters with overlapping fragments revealed a high redundancy in whole abalone cDNA library than in digestive gland cDNA library we generated. Since whole abalone cDNA library contains sequences from genes expressed in almost all tissues except shell, it is expected to give an indication of average expression level of genes in the whole body. Therefore products of genes that carry out basic functions in every cell type are expected to be more prevalent in the whole abalone library than in digestive gland cDNA library.

To our knowledge, this is the first description of an abalone digestive gland cDNA library. The results show that the library contains clones for several mRNAs related to metabolism as expected. The occurrence of several transcripts (35%) without any significant similarity to known genes within the library makes it a valuable resource with high sequence complexity for unraveling new genes related to digestion and reproduction.

Part II

Characterization of genes

Part II

Characterization of genes

1. ABSTRACT

Putative functions could be assigned manually to 65% of the 354 sequences which had significant similarity to known genes from the abalone digestive gland cDNA library. Three clones from this coding for a putative glutathione transferase, sulfatase and fucosidase were selected for further characterization for their predicted functions. Glutathione transferases are a family of multifunctional enzymes involved in detoxification of xenobiotic agents, drug biotransformation and protection of cells against peroxidative damage. Sulfatase and fucosidase are implicated in disease conditions and are useful as catalysts in industry. Glutathione transferase is expressed in E. coli in the soluble form with the theoretically expected molecular weight of 24.6 kDa catalytic with high activity towards 1-chloro-2,4-dinitrobenzene, the universal substrate of all glutathione transferases except theta class. Comparison of its amino acid sequence with pdb protein structure database reveals it to contain the GST N and C conserved domains with the thioredoxin fold and five a-helices and sequence homology with other known glutathione transferases asignes it to Mu class. Unlike glutathione transferase, sulfatase expressed in the insoluble form with an expected molecular weight of 54 kDa and purification under denaturing conditions resulted in an inactive form towards p-nitrocatechol sulfate, the chromogenic substrate of most of the arylsulfatases. This could be due to several reasons including lack of posttranslational modifications, different substrate specificity, or its being coded for a different product than sulfatase. An interesting finding of sulfatase was the presence of a very short 3' end composing only of 41 bp. Fucosidase did not express in E. coli and sequence analysis showed it to contain several nonsense mutations in the coding sequence with the cloned fragment coding only for the amino end of L-fucosidase domain. Further knowledge on these enzymes would help to elucidate their biological significance and glutathione transferase will provide a means of improving resistance of plants and animals to environmental pollutants and less accumulation of environmental toxins in food products and will also help in prevention of oxidative damage.

2. MATERIALS AND METHODS

2. 1. Selection of clones for further characterization and full length sequencing

Sequences with a significant similarity (E< 10^{-60}) to known useful enzymes were compared with full length coding sequences available at NCBI Genebank for the genes with corresponding putative function. The presence of full length coding sequence was determined by the alignment of each EST with the 5' end of coding sequence of known gene, including the start codon. Availability of assay systems for further characterization was also a main determining factor in the selection process. Three clones with putative GST, ASB and L-fucosidase functions were selected from the digestive gland cDNA library. XLI-Blue MRF' cells were transformed with plasmid DNA of each clone and plasmids were isolated by AccuprepTM plasmid extraction kit (Bioneer Co., Korea). Insert size of each clone was determined by restriction digestion of 2 ng miniprep DNA with *Xho*1 and *EcoR*I followed by analysis on a 1% agarose gel.

Full length of each clone was determined by several sequencing reactions carried out with the primers given in Table 2–1.

Putative gene name	First sequencing primer	Second sequencing primer
Glutathione transferase	5'agaataatgcagcctggc3'	5'gattctgtcttagacgtgctg3'
Arylsulfatase B	5'tacctggcgtaccaagctg3'	5'gtacggcaatgtctggtc3'
L-fucosidase	5'agcgagaagtacaagcctg3'	

Table 2-1. Primers used to sequence full lengths.

2. 2. Amplification of the coding sequences and sub cloning into pBlueScript SK-I vector

Full length sequences derived were compared with coding sequences of known genes to identify the start sites. This was further verified by the presence of an open reading frame with a length of expected size range as compared to known sequences. After considering the restriction sites of each insert, primers containing *Xho*I for L-fucosidase and *Nde*I sites for both GST and ASB were synthesized (Table 2–2).

Table 2-2. Primers	used	to	amplify	coding	sequences
--------------------	------	----	---------	--------	-----------

Putative gene	Primer for the amplification of	Primer for the amplification of	
name	5'end	3'end	
Glutathine S	5'gacatatgcctactcttggatactggg3'	5'gacatatgtcacttgaacagtgcactcttg'	
transferase	5 gacalalgeelacteliggalactggg5	5 gacalalgicacligaacagigcaciclig	
Arylsulfatase B	5'gacatatgtttgtccagttattatgc3'	5'gacatatgtcaacaccagccagg3'	
L-fucosidase	5'gactcgagatgaagaggttccttgaagg3'	5'gactcgagctattgaagtgcagtaagtttg3'	

These were used to amplify the coding sequences of each clone. Each 50 µL PCR reaction mixture contained 2.5 units Takara Ex Taq polymerase (Takara Korea Biomedical Inc., Korea), 5 µL 10x Ex Taq buffer, 4 µL of 2.5 mM each dNTP, 50 ng of template and 50 pmol of each primer. After initial denaturation at 94°C for 10 min, each reaction was subjected to cycling conditions of danaturation at 94°C for 30 s followed by 30 s of annealing at 51°C for GST, 49°C for L-fucosidase and 45°C for ASB. The extension was carried out at 72°C for 30 s for GST and 1 min for both L-fucosidase and ASB. After 20 cycles, the final extension was carried out at 72°C for 5 min. The PCR products were purified with AccuPrepTM gel purification kit (Bioneer Co., Korea) and were phosphorylated at 37°C for 1 hr in a 50 µL reaction by adding 5 µL 10x kinase buffer, 5 µL of 10 mM ATP, and 1 µL Takara kinase (Takara Korea Biomedical Inc., Korea) into 39 µL of purified PCR product. The phosphorylated products were dissolved in 28.5 µL distilled water each and were trimmed with 2.5 units of T4 DNA polymerase (Takara Korea Biomedical Inc., Korea) in 40 µL reaction mixtures

contaning 4 μ L of 10 × T4 DNA polymerase buffer, 0.1% BSA and 3 μ L 2.5 mM dNTP at 37°C for 5 min. The products were then purified from a 1% agarose gel using QiaexII gel purification kit (QIAGEN Inc., USA). The vector pBlueScript SK-I was prepared by digesting 2 μ g of vector with 20 units of *Hinc*II enzyme (Takara Korea Biomedical Inc., Korea) in a 40 μ L reaction containing 4 μ L of 10x H buffer.

Each PCR product was ligated to the prepared pBlueScript SK-I in a 10 μ L reaction each containing 10 units of Takara DNA ligase (Takara Korea Biomedical Inc., Korea), 1x T4 DNA ligase buffer, 0.7 μ g of PCR product and 100 ng of the vector at 16°C overnight. The ligated products were transformed into XLIBlue cells and the transformants were identified by blue white screening.

2. 3. Cloning into pET16b expression vector and protein expression.

The inserts digested with respective restriction enzymes were ligated to dephosphorylated pET16b vector. The dephosphorylation of the vector was carried out twice at 37°C for 15 min followed by heat inactivation of the enzyme at 50°C for 15min. After gel purification it was ligated with the gel purified inserts. The ligated products were transformed into XLI-BlueMRF' cells and transformants were selected by ampicilin. Transformants containing inserts were identified by colony cracking and the orientation of insert was determined by restriction digestion with the enzymes as given in Table 2-3. Plasmids purified from clones containing the insert in correct orientation were transformed into E. coli BL21(DE3) cells and each protein was induced at 15°C and 37°C. The amount of expressed GST protein was higher at 37°C than 15°C and was found in both soluble fraction and insoluble fraction of cell lysate. ASB was in inclusion bodies at both temperatures. GST was purified from soluble fraction using His Bind Kits (Novagen, USA) using mechanical disruption method from columns containing 500 **µ**L of settled bed volume His binding resin under native conditions. ASB was purified from a similar way but from inclusion bodies under denaturing conditions containing urea. After purification, GST was

dialysed against PBS (pH5.2) buffer and ASB with Tris.HCl (pH 7.2) buffer.

Table 2–3. Restriction enzymes used for the determination of insert orientation

Putative gene name	Restriction enzyme	Expected size if the insert is in the correct orientation (bp)	Expected size if the insert is in the opposite orientation (bp)
Glutathione transferase	<i>NCo</i> l	368	400
Arylsulfatase	HindIII	420	1624
L-fucosidase	Xba1	228	752

3. RESULTS

Fig. 2–1. Analysis of glutathione transferase (GST) protein expressed in *Escherichia coli* (BL21) cells following purification in a 12% denaturing polyacrylamide gel. Cells were grown at 15°C and induced with 1 mM IPTG. Recombinant protein was purified under native conditions by Ni column.

Fig. 2–2. A schematic diagram depicting thioredoxin fold. **u**-helices are shown as cylinders and **p**-sheets as arrows. In glutathione transferases, domain 2 is connected to the C-terminus via a short linker peptide (Sheehan *et al.*, 2000).

Table 2–4. The Highest and lowest % identities seen within coding regions of GSTs from same class and with abalone GST. Some classes had same identity between different sequences and zeta class had only one sequence for comparison.

Class	Alpha	Beta	Insec t	Kapp a	Microsom al	Omeg a	Pi	Tau	Theta	Zeta	Mu
Lowest % Identity (with abalone GST)	7	1	3	5	2	3	9	2	3	3	54
Highest % Identity (with abalone GST)	14	4	9	13	7	5	40	6	9		59
Lowest % Identity (within class)	59	5	12	89	3	3	30	75	82		84
Highest % Identity (within class)	91	30	44		79	80	93				91

Table 2–5. The Highest and lowest % identities seen within amino acid sequences of GSTs from same class and with abalone GST. Some classes had same identity between different sequences and zeta class had only one sequence for comparison.

Class	Alpha	Beta	Insect	Kappa	Microsom al	Omeg a	Pi	Tau	Theta	Zeta	Mu
Lowest % Identity (with abalone GST)	23	9	8	5	2	9	30	8	14	8	48
Highest % Identity (with abalone GST)	27	20	14	8	6	13	31	13			50
Lowest % Identity (within class)	53	12	9	78	2	14	47	64	80		82
Highest % Identity (within class)	88	36	38		82	77	97				86

1	GTTGACTTGAGTGTTACTGTGCCAGCCTCGCCCCAAACCACATC	52
53	ATGCCTACTCTTGGATACTGGGCTATTCGCGGCTTGGCACAGCCTATTCGTCTGCTGCTGCAGAATATGCTGGAGAAGATTTCGACGATGTTATGTACGAGCGGGGGGGG	184
1	M P T L G M W A I R G L A Q P I R L L L K Y A G E D F D D V M Y E Q G D A P E Y S R E S	44
	$\alpha 1$ $\beta 2$ Mu loop region $\alpha 2$	
185		316
45	W T K V K F T I G I P I P N I P Y V D G N I K I T O S N A I I R Y I A R K H O I I G F	88
40	$\frac{m + k \cdot v}{B3} = \frac{m + k \cdot 1}{B3} = \frac{m + k + 1}{B3} = m + k + 1$	00
317		448
89	K E E E R V K V D V M L D T A M D F R N G I V G L C Y N P E F E K K K A A Y F E A L P A	132
09	$\frac{1}{\alpha^4}$	102
449		580
133	K L E M F K S F L G D Q Q F F A G S K V T V C D F P I Y E L L D Q T R I M Q P G S L D A	176
155	KLEMFKSFLGDQQFFAGSKVI <u>VCDFPITELLDQIKI</u> MQPGSLDA helical region	170
E01		710
581		/ 1Z
713	F <u>PTLLAFMGRIE</u> ALPAIKTFMSSAKFIRRPINNKSALFK * α7	215
710	제구네일표 중장도시원	044
/13		844
845		976
977	TGCCATCAGGCTGGAAACCTGGCCAACTTCAAACCAGGCAGTTATTGCTAGTCAGCATTATGTGGCAGCACACTCATGTACTGAATATATTTGCATCAAGCTTTTTTCCCGGTGTTACCATTATTATTGATG	
1109		
1241	1 GAGGTACAACATGGCAGCCACTGGCAAGCATCAGCAAGCA	
1373	3 CTGAATTGTTTTACTCATTGTGCGAGGAATGAAAATCAGGTGCACGCTGATCCAGTGACTGGGGTATAATAAGATCTGTCATGGTCTTAGCGCATTTGAGCAGTTGTTGGAAAGTGCCATATACAACTTCAT	
1505	5 TAAATGTTATTGTCATATGCATCTCCACAAACTAATGTTTGTAAAAGTGAATAGTTTTCTTTACACAGTTTTTTCCGATTCAGCCAAGGTTTCCTTCTTTGTTTTGTTTTGGCAATGGTGCAATTGATTG	1636
1637	7 CTTTTAATTTAAACATCAAGAAGTATATAGAGGGAAACATTTTTATTAAATTGGAGGTACTTTTGTATGTGTATTTGATATTGCATCCCTCAGCTGTGCCAAACAGACCCGGGCCATGGGTTAGAATCCAGG	1768
1769	ATTTCAACCCATTTTGCACCATGGGATAAAGTAAATAGCTGTTTACAGTTTGTTT	1900
1901	1 AAAAGATAaataaaGGAAAATTTTTTCTTTCaaaaaaaaaaaaaaaaaaaa	1953
Fig.	. 2-3. Nucleotide and deduced amino acid sequence of glutathione transferase. The secondary structures composing two domains	ains

Fig. 2-3. Nucleotide and deduced amino acid sequence of glutathione transferase. The secondary structures composing two domains are indicated and the active site Tyr-6 and *cis* proline in *cis*-Pro loop are highlighted. The poly(A) tail and the poly(A) signal sequence are shown in simple case letters. The stop codon is marked with an asterisk.

Fig. 2-4. Analysis of arylsulfatase protein expressed in *Escherichia coli* BL21(DE3) cells following purification in a 12% denaturing polyacrylamide gel. Cells were grown at 15°C and induced with 1 mM IPTG. Recombinant protein was purified under denaturing conditions by Ni column.

1 AGAAATAGGAAACCAACGTGTAATTCCTGTCCACGGAAGGAGAG	44
45 ATGTTTGTCCAGTTATTATGCACAGTTTTGGTCATCAACCTCTGTGATGACGTTTCTGCAGCAGGACGTCCACGCCATATTGTGTTCATCGTGGCGGATGATCTCGGATGGAACGACATTGGCTTTCAC	176
1 M F V Q L L C T V L V I I N L C D D V S A A G R P R H I V F I V A D D L G W N D I G F H	44
177 AACCCCGATATAATCACACCCAACATCGACAAGCTGGCAAGAGAAGGCTTGCTT	308
45 NPDIITPNIDKLAREGLLLNHHYVQPLCSPSRAAFMSGYYPFKT	88
309 GGTCTGCAGCACTCGGTCATTCTGGAGAACCAGCCCGTCTGTCT	440
89 GLQHSVILENQPVCLPLNITILPQKLKELGYATHIVGKWHNGFC	132
441 AGTTGGAATTGCACCCCGACGTACCGTGGCTTTGACAGCTTCTTTGGCTACTACGGCGCCATGGAAGACTACTACACCCACGTCATTCGTGGCTTCCTTGACTACCGTAACAACACCACCCCCGTTTGGACC	572
133 SWNCTPTYRGFDSFFGYYGAMEDYYTHVIRGFLDYRNNTTPVWT	176
573 GACAACGGCACTTACTCAACGCTTCGGTTTACTGACGTAGCCACTGACATCATCGAGCGTCACAACCAGAGTCAGCCATTGTTTCTGTACCTGGCGTACCAAGCTGTCCACGGACCTATTGAGGTTCCCGCA	704
177 DNGTYSTLRFTDVATDIIERHNQSQPLFLYLAYQAVHGPIEVPA	220
705 AAGTATGAAGCAATGTATCCAAACATTAAATCAGAAAATCGTCGAAAGTTTTCGGGAATGGTCTCTGCTCTTGATGAAGCAGTTGGTAACGTAACGTAAAACGTTAAGACAAAGAGGGTTAATGGACGACACG	836
221 KYEAMYPNIKSENRRKFSGMVSALDEAVGNVTKTLRQRGLMDDT	264
837 CTGATTCTGTTCACTGCCGATAATGGCGGCGGGGTCGACGAATCTGGGAACAACTACCCTCTGCGTGGAAGCAAGTTTACCGTGTACGAAGGCGGAACGAGAGCTGTGGGCTTCATGTATGGATCGGGTCC	968
265 LILFTADNGGGVDESGNNYPLRGSKFTVYEGGTRAVGFMYGSGL	308
969 CAAAAGACTGGAACTGTATTTGACGGGATGATCCACGCCGTGGACTGGCTGCCCACCCTGACAGCAGCTGCCGGGGGGGCCCCCAGTGTCCGACCGTGACGGCATCAATCTGTGGCCTAGTCTCAGCACAGCC	1100
309 QKTGTVFDGMIHAVDWLPTLTAAAGGTPVSDRDGINLWPSLSTA	352
1101 TCCCCGTCCCCCGCACTGAGGTCGTCTACAACTACGACTCGCACCCCCAGCCCGTTCAAGGACACGCTGCCATCAGAGTGGGTGACTACAAACTGATCGATGGCTACCCGGGACCCTTCCCTGATTGGTAC	1232
353 SPSPRTEVVYNYDSHPQPVQGHAAIRVGDYKLIDGYPGPFPDWY	396
1233 AAGCCTGAACAAGTCACATCTAGTTTGAACACCAGATTCAGCAGGGATTCGGCCAATCAGTATCAGCTGTTCAATTTGAAAGATGACCCCAATGAGCGCAACGACCTCTCCAACTTTCGTCCGGACATGGTA	1364
397 KPEQVTSSLNTRFSRDSANQYQLFNLKDDPNERNDLSNFRPDMV	440
1365 AAGAAGCTTGCTGCCAGACTGGCCTGGTATAAGAAGCAGGCAG	1496
405 K K L A A R L A W Y K K Q A V P P N F P E T P D D L S N P A L Y G N V W S P G W C *	481
1497 CTTGTTGTACTGTCACTGaataaaGTCGATATGTGaaaaaaaaaaaaaaaaaaaaaaaaaa	1557
Fig. 2-5. Nucleotide and deduced amino acid sequence of arylsulfatase B. The putative signal peptide sequence is underlinedPe	ly(A)

tail and the poly(A) signal sequence are shown in simple case letters. The stop codon is indicated with an asterisk.

Abalone	ATGTTTGTC- 9
AF109924 M32373 NM_198709 NM_009712	ATGTGCAAGTGTTTGCTCGTTTTGATCG 28 ATGGGTCCGCCGGCGCGCGCGCGTTTGCCCCGAGCCCCGGGCCGCGGG 51 ATGGGTCCGCGCGGCGCGCGCGGCGTTGCCCCGAGCCTCGGCGG 51 ATGGGCAAGCTTAGCCCGTGCAGGCGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGG
Abalone AF109924 M32373 NM_198709 NM_009712	CAGTIATIATGCACAGTITIGGTCAT-CATCAACC-TCTGTGATGACGTTTCTGCAGCAG 67 CCATCATCACCGCCTGTGTGTGGCT-GACCAGTCGTCTGCATCAGCAGGAACGAGGCAA 87 CTGCTCTCCCCGTCGTCTCCGCGTCTGCTGCTGCTGTGTTGT
Abalone AF109924 M32373 NM_198709 NM_009712	GACGTCCACGCCATATTGTGTTCATCGTGGCGGATGATCTCGGATGG 114 GATGCCGGTCAACCCAACATTGTGTTTGTTCTAGCAAGAGCACTTCGGTTTC 138 GGCCCCGGGGCCACCCGGCCGCCCCACTGTGTCTTTGTCTGGCAGAGCACCTAGGCTGG 171 GGCCCCGGGGCCAGCCGGCCCCCCCGGTCTTCTTGCTGGCAGACGACCTAGGCTGG 171 GCCTCCGGAGCTACCCAGCCTCCCCATGTGGTCTTCGTGCTGGCAGAACGACCTAGGCTGG 174 * * * * * * * * * * * * * * * * * * *
Abalone AF109924 M32373 NM_198709 NM_009712	AACGACATTGGCTTTCACAACCCCGATATAATCACACCCCAACA-TCGACAAGCTGGCAAG 173 CATGACGTCGGTTACCATGGTTCCGAGATCCACAC-CCCAACACTTGATGCGCTGTCCGG 197 AACGACGTCGGCTTCCACGGCTCCCGCATCCGCACGCCGCACC-TGGACGGCGTGGCGGC 230 AACGACGTCGGCTTCCACGGCTCCCGCATCCGCACGCCGCACC-TGGATGCGCGCTGGCGGC 230 AACGACGTTGGGCTTCACCGGCTCCGCGATCCGCACGCCGCACC-TGGATGCGCGCGCC 230 AACGACGTTGGGTTTCACGGCTCGTCATCCGCACGCCGCACC-TGGATGCGCTGGCGGC 233
Abalone AF109924 M32373 NM_198709 NM_009712	AGAAGGCTIGCTICTGAATCATCACTATGTICAACCACTCTGCAGTCCATCGAGAGCTGC 233 CAGCGGCGGCATCAGGCTGGGAAACTACTACGTGCAGCCGATTIGCACCCCGGACGCAGGAGTCA 257 CGGCGGGGGTGCTCCTGGACAACTACTACACACGAGCCGCTGTGCACGCCGCGCGCG
Abalone AF109924 M32373 NM_198709 NM_009712	CTITATGTCCGGCTACTACCCCTTCAAGACAGGTCTGCAGCACTCGGTCATTCTGGAGAA 293 GCTCATGTCCGGGAGATATCAGATACATACTGGGCTTCAACATGGTATTATTAATAGTTG 317 GCTGCTCACTGGCCGCTACCAGATCCGTACAGGTTTACAGCACCAAATAATCTGGCCCTG 350 GCTGCTCACTGGCCGCTACCAGATCCGTACAGGTTTACAGCACCAAATAATCTGGCCCTG 350 GCTGCTCACCGGCCGCTACCAGATCCGTACAGGTTTACAGCACTAACTCTAATCTGGCCCTG 350 GCTGCTCACCGGCCGCTACCAGATCCGTTACCAGCATTACCTCATCACCTG 353
Abalone AF109924 M32373 NM_198709 NM_009712	CCAGCCCGTCTGTCTACCCCTGAATATCACAATCCTGCCACAGAAACTGAAGGAGCTTGG 353 TCAGCCCAACGCTCTTCCAATGACAGTCCGACTTTGGCAGATAAACTGAAGGAGCTGG 377 TCAGCCCAGCTGTGTTCCTCTGGGATGAAAAACTCCTGCCCCAGCTCCTAAAAGAAGCAGG 410 TCAGCCCAGCTGTGTTCCCTCTGGATGAAAAACTCCTGCCCCCAGCTCCTAAAAGAAGCAGG 410 TCAGCCCAGCTGTGTTCCCCTAGACGAAAAACTCCTGCCCCAGCTCTTAAAAGAAGCAGG 410 TCAGCCCAGCTGTGTTCCCCTAGACGAAAAACTCCTGCCCCAGCTTTTAAAGGAAGCAGG 410
Abalone AF109924 M32373 NM_198709 NM_009712	ATATGCAACACACATTGTCGGCAAGTGGCACAATGGGTTCTGTAGTTGGAATTGCACCCC 413 CTACGCCACACACATGGTTGGCAAGTGGCACCTAGGATTCTTACAACAGGATACTTGCC 437 TTATACTACCCATATGGTCGGAAAATGGCACCTGGGAATGATACCTGCGAAAGAATGCCTTCC 470 TATACTACCCATATGGTCGGAAAATGGCACCTGGGAATGTACCGGAAAGAATGCCTTCC 470 CTATGCTACCCATATGGTCGGCAAATGGCACCTGGGAATGTACCGGAAAGAATGCCTTCC 470 CTATGCTACCCACATGGTCGGCAAATGGCACCTGGGAATGTACCGGAAAGAATGCCTTCC 470
Abalone AF109924 M32373 NM_198709 NM_009712	GACGTACCGTGGCTTTGACAGCTTCTTTGGCTACTACGGCGCCATGGAAGACTACTACAC 473 TTGGAACCGAGGCTTCGACACTTACTTTGGTATCTTAATGCTGCTGAGGACTACTTTAA 497 AACCCGCCGAGGATTGATACCTACTTGGATATCTCCTGGGTAGTGAAGATTATTATTC 530 GACCGCCGAGGATTGATACCTACTTGGATATCTCCTGGGTAGGAAGACTATTATTATC 530 GACCGCCGAGGATTGATACCTACTTGGATACCTCCTGGGAGGCAGGAGGACTATTACAC 533
Abalone AF109924 M32373 NM_198709 NM_009712	CCACGTCATTCGTGGCTTCCTTGACTACCG 503 CCACAAGTACCTTGGAGACAAGTGCGCTTCCTTGACCTCAG 539 CCATGAACGCTGTACATTAATTGACGCTCGAATGTACACGATGTGCTCTTGATTTCG 590 CCATGAAGCCTGTACATTAATTGACGCTCGTAATGTCACAGGATGTGCTCTGATTTAG 590 CCACGAGGCCTGTGCGCCGATTGAGTCTTTGAATGGTACCGCGCTGTGGCTTGACTTAAG 593 ***
Abalone AF109924 M32373 NM_198709 NM_009712	TAACAACACCACCCCCGTITGGACCGACAACGGCACTTACTCAACGCTTCGGTITACTGA 563 AGATAACAACGGACCCGTGAGAAACGGAAACTGGGCAGTATTCAGCTCACCTGTTCACCGG 599 AGATGGCGAACAGATTGCAACAGGATATAAAAATATGTATTCAACAAACA
Abalone AF109924 M32373 NM_198709 NM_009712	CGTAGCCACTGACATCATCGAGCGTCACAACCAGAGTCAGCCATTGTTTCTGTACCTGGC 623 CAAAGGCATTGATGTTGTACAGTCACACAACACCATCCAAGCGGCTATTCTTGTACCTGGC 659 AAGGGCTATAGCCCTCATAACTAACCATCCACCAGAGAAGCCTCTGTTTCTGTACCTGGC 710 AAGGGCTATAGCCCTCATAACTAACCATCCACCAGAGAAGCCTCTGTTTCTTACCTTGC 710 AAGGGCTACAACCGTCATAGCTAACCACCACCACGAGAAAGCCACTGTTTCTTACCTTGC 713
Abalone AF109924 M32373 NM_198709 NM_009712	GTACCAAGCTGTCCACGGACCTATTGAGGTTCCCGCAAAGTATGAAGCAATGTATCCAAA 683 CTACCAGTCCGTGCACGCCCCACTTGAGGTGCCAGAAAAGTACGAACCAAGTATAGAAA 719 TCTCCAGTCTGTGCATGAGCCCCTTCAGGTCCCTGAGGAATACTTGAAGCCATATGACTT 770 TCTCCAGTCTGTGCATGAGCCCCTTCAGGTCCCTGAGGATACTTGAAGCCATATGACTT 770 TTTCCAGTCTGTCCACGATCCCTTGCAGGTCCCTGAGGATACATGGAACCATATGGCTT 773
Abalone AF109924 M32373 NM_198709 NM_009712	CATTAAATCAGAAAAATCGTCGAAAGTTTTCGGGAATGGTCTCTGCTCTTGATGAAGCAGT 743 CATCACAGACAAAAACAGGCGCACTTTCGCGGGTATGGTCTCAGCCCTGGATGAGGGGGT 779 TATCCAAGACAAGAACAGGCATCACTATGCAGGAATGGTGTCCCTTATGGATGAAGCAGT 830 CATCCAAGACAAGAACAGGCATCACTATGCAGGAATGGTGTCCCTTATGGATGAAGCAGT 830 CATCCAAGACAAGAACAGGCATCACTATGCAGGAATGGTGTCCCTTATGGATGAAGCAGT 830 CATCCAAGACAAGAACAGCATCACTATGCAGGAATGGTGTCCCTTATGGATGAAGCAGT 830

Abalone AF109924 M32373 NM_198709 NM_009712	TGGTAACGTAACTAAAACGTTAAGACAAAGAGGGTTAATGGACGACACGCTGATTCTGTT AGCCAACTTAACCCAGGCACTCAAAGACAAGGGACTCTGGAACAATACTGTCTTGATATT AGGAAATGTCACTGCAGGCTTTAAAAAGCAGTGGGCTCTGGAACAACACGGTGTTCATCTT AGGAAAATGTCACTGCAGCTTTAAAAAGCAGTGGGCTCTGGAACAACACGGTGTTCATCTT GGGAACGTCACTGCAGCACTTGAAAAGCCACGGGCTCTGGAACAACACGGTGTTCATCTT GGGAACGTCACCAAAGCCTTGAAAAGCCACGGGCTCTGGAACAACACGGTCTTCATCTT GGGAACGTCACCAAAGCCTTGAAAAGCCACGGGCTCTGGAACAACACGGTCTTCATCTT	803 839 890 890 893
Abalone AF109924 M32373 NM_198709 NM_009712	CACTGCCGATAATGGCGGCGGGGTCGACGAATCTGGGAACAACTACCCTCTGCGTGGAAG TTCTACAGACAATGGCGGCAGATACATGCTGGAAGGAACAATTATCCTCTTCGTGGCTG TTCTACAGATAACGGAGGGCAGATTGGCAGGGGGTAATAACTGGCCCCTTCGAGGAAG TTCTACAGATAACGGAGGGCAGACTTTGGCAGGGGGTAATAACTGGCCCCTTCGAGGAAG CTCCACAGATAACGGTGGGCAGACTAGGTCTGGAGGGCAACAACTGGCCCCTTCCGAGGAAG CTCCACAGATAACGGTGGGCAGACTAGGTCTGGAGGCAACAACTGGCCCCTCCGAGGAAG	863 899 950 950 953
Abalone AF109924 M32373 NM_198709 NM_009712	CAAGTTTACCGTGTACGAAGGCGGAACGAGAGCTGTGGGCTTCATGTATGGATCGGGTCT GAAGGCATCGCTGTGGGAGGGTGGATTTCATGGTGTTGGGTCGTGTGGAGGAGCACT AAAATGGAGCCTGTGGGAAGGAGGGGCCCCAGGGGGGGGCTTTGTGGCAAGCCCCTTGCT GAAGGGGACCCTGTGGGAAGGAGGGCCCCCGAGGGGGGGG	923 959 1010 1010 1013
Abalone AF109924 M32373 NM_198709 NM_009712	CCAAAAGACTGGAACTGTATTTGACGGGATGATCCACGCCGTGGACTGGCTGCCCACCCT GAAACGGAGTGGABCTGTCAGTAAAGGATGATTCATTCAGTTTCTGATTGGTTCCCTACTT GAAGCGABAGGGGGTGAAGAACCGGGACTCATCCACTTCTGATTGCTTCCCACTGC GAAGCAGAAAGGGCGTGAAGAACCGGGAGCTCATCCACACTCTCTGACTGCTGCCACACCT GAAGCAGAAAGGGCGTGAAGAACCGGGAGCTCATCCACACTCTCTGACTGGCTGCCCACACCT GAAGCAGAAAGGGCGTGAAGAACCGGGAACTCATGCACACTCACCCACTTGGCTGCCCACACCT CAACGAGAAGGGCGTGAAGAGCCGGGAACTCATGCACACTCACCCACTTGGCTGCCCACACCT CAACGAGAAGGGCTGAAGAGCCGGGAACTCATGCACACTCACCCACTTGGCTGCCCACCACT CAACGACTGCACCTGACTGACGAGCCGGAACTCATGCACACTCCCCACTTGGCTGCCCACACCT CAACGAGAAGGGCTGAAGACCGGGAACCCGGAACTCACTC	983 1019 1070 1070 1073
Abalone AF109924 M32373 NM_198709 NM_009712	GACAGCAGCTGCCGG-GGGGACCCCAGTGTCCGACCGTGACGGCATCAATCTGTG AGTAACACTAGCTGGTGGAAATTTGAATGGAACCAAGCCATTGGATGGTTTTAACCAATG CGTGAAGCTGGCCAGGGGACCACCACATGCCACTGGATGGCTTCGACATGTG CGTGAAGCTGGCCAGGGGACACACCAATGGCACCAAAGCCTCTGGATGGCTTCGACGTGTG CGTAGATCTGGCCAGGGGAAGCACTAATGGAACCAAACCTCTGGATGGCTTCGACATGTG CGTAGATCTGGCCAGGGGAAGCACTAATGGAACCAAACCTCTGGATGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACTAATGGAACCAAACCTCTGGATGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCTCTGGATGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCTAGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCTAGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAACCACGACCAATGGCACCAAACCTAGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCTAGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCAAACCTAGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCAAACCTAGGCTAGGCTTCAACATGTG CGTAGATCTGGCCAGGGGAAGCACCAATGGCACCAAACCAAACCTAGGCTAGGCTACGACTGACGCACGACCAATGGCACCAAACCAAACCAAACCAAACCAAACCAAACCAAACCAAACGACCAAACGCAAGCACAACCAAACGACCAAACCAAACGCAAGCACCAAACGCAAGCACAACCAAACAACAACAACAACAACAACAACAAACAACAAAA	1037 1079 1130 1130 1133
Abalone AF109924 M32373 NM_198709 NM_009712	GCCTAGTCTCAGCACAGCCTCCCCGTCCCCCCGCACTGAGGTCGTC GGATACATCAGCAACGAGACTCCTTCGCGAGGGAAATCCTTCTC GAAAACCATCAGTGAAGGAAGCCCATCCCCCAGAATTGAGCTGCTG GAAAACCATCAGTGAAGGAAGCCCATCCCCCAGAATTGAGCTGCG GAAAACCATCAGCCCTGTGACAGGAGACCCCTGGCACGCTGAAGGCGAACTGGCCTGGCA GAAGACAATCAGCCCTGTGACAGGAGACCCCTGGCACGCTGAAGGCGAACTGGCCTGGCA * * ****	1083 1125 1176 1176 1193
Abalone AF109924 M32373 NM_198709 NM_009712	TACAACTACGACTCGCACCCCCAGCCCGTTCAAGGACAC	1122 1185 1225 1225 1225 1246
Abalone AF109924 M32373 NM_198709 NM_009712	GCTGCCATCAGAGTGGGTGACTACAAACTGATCGATGGCTACCCGGGA ACGAGGGCTAGGGCAGCTATCAGAGTGGGGACTACAAGCTGATTACCGGGGACCCAGG GCATGGC	1170 1244 1283 1242 1296
Abalone AF109924 M32373 NM_198709 NM_009712	CCCTTCCCTGATTGGTACAAGCCTGAACAAGTCACATCTAGTTTGAACACCAGATTCAGC -CAATGGCAGCTGGGTGCCTCCACCTGATGGCCACCTGTATTTTGTACCTGAAATCCAAG TGTCCATGCTGCAATTAGACATGGAAATTGGAAACTCCTCACGGGCTACCCAGGCTGTGG	1230 1303 1343
Abalone AF109924 M32373 NM_198709 NM_009712	AGGGATTCGGCCAATCAGTATCAGCTGTTCAATTTGAAAGATGACCCCAATGAGGGCAAC AATCGGCTGCGAAAAAACGTGT-GGCTGTTTAACATCACCGCCGACCCAAACGAGGATAAT TTACTGGTTCCCTCCACCGTCTCAATACAATGTTTCTGAGATACCCTCATCAGACCCACC	1290 1362 1403
Abalone AF109924 M32373 NM_198709 NM_009712	GACCT-CTCCAACTITCGTCCGGACATEGTAAAGAAGCTTGCTGCCAG-ACTGGCCTGG GATCT-GTCCAGTGAGAAACCACTIGAGGTCCTGAGACT-GCTGCAAATACTGGTCCAG AACCAAGACCCTCTGGCTCTTTGATATTGATCGGGACCCTGAAGAAAGA	1348 1420 1463
Abalone AF109924 M32373 NM_198709 NM_009712	ATAAGAAGCAGGCAGTACCACCCCAACTTCCCTGAGACCCCCGACGACCACCTGAGCAACCCTG TTAACAATACAGCAGTGCCACCTAGATACCCCGCACCAGACCCCAGGTGCGACCCAG CAGAGAATATCCTCACATCGTCACAAAGCTCCTGTCCCGCCTACAGTTCTACCATAAACA	1408 1477 1523
Abalone AF109924 M32373 NM_198709 NM_009712	CACTGTACCGCAATGTCTCGGTCTCCTGGCTGGTGTTGA CTCTGCATGGTGATGTCTGGGGACC—GTGGGAATAG CTCAGTCCCCGTGTACTTCCCTGCACAGGACCCCCGCTGTGATCCCAAGGCCACTGGGGT	1446 1512 1583
Abalone AF109924 M32373 NM_198709 NM_009712	GTGGGGCCCTTGGATGTAG 1602	

Fig. 2-6. CLUSTAL W (1.82) multiple sequence alignment of arylsulfatase coding sequences. Identical residues are indicated with an asterisk.

Abalone AAF30402 AAA51779 NP_942002 NP_033842		46 57 57
Abalone AAF30402 AAA51779 NP_942002 NP_033842	ND IGFHNPD I I TPN I DKLAREGLLLNHHYVQPLCSPSRAAFMSGYYPFKTGLQHSVILEN HDVGYHGSE I HTPTLDALSASGVRLENYYVQPI CTPTRSQLMSGRYQ1 HTGLQHG I I NSC NDVGFHGSR I RTPHLDALAGGVLLDNYYTQPLCTPSRSQLLTGRYQ1 RTGLQHQ1 I WPC NDLGFHGSR I RTPHLDALAGGVLLDNYYTQPLCTPSRSQLLTGRYQ1 RTGLQHQI I WPC NDLGFHGSV I RTPHLDALAGGVLLDNYYTQPLCTPSRSQLLTGRYQ1 HTGLQHQI I WPC	106 117 117
Abalone AAF30402 AAA51779 NP_942002 NP_033842	QPVCLPLNITILPQKLKELGYATHIVGKWHNGFCSWNCTPTYRGFDSFFGYYGAMEDYYT QPNALPNDSPTLADKLKESGYATHWVGKWHLGFYKQEYLPWNRGFDTYFGYLASEDYFN QPSCVPLDEKLLPQLLKEAGYTHWVGKWHLGWYRKECLPTRRGFDTYFGYLLGSEDYYS QPSCVPLDEKLLPQLLKEAGYTHWVGKWHLGWYRKECLPTRRGFDTYFGYLLGSEDYYS QPSCVPLDEKLLPQLLKEAGYATHWVGKWHLGWYRKECLPTRRGFDTYFGYLLGSEDYYT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	166 177 177
Abalone AAF30402 AAA51779 NP_942002 NP_033842	HVVPWRQVRYLDLRDNNGPVRHETGQYSALLFTDVATDI I ERHNQSQPLFLYLA HNVPWRQVRYLDLRDNNGPVRHETGQYSAHLFTGKA I DVVQSHNTSKPLFLYLA HERCTL I DALNVTRCALDFROGEVATGYKNWYSTNI FTKRA I AL I TNHPPEKPLFLYLA HERCTA DALNVTRCALDFROGEVATGYKNWYSTNI FTKRA I AL I TNHPPEKPLFLYLA HERCTA DALNVTRCALDFROGEVATGYKNWYSTNI FTKRA I AL I TNHPPEKPLFLYLA ***********************************	220 237 237
Abalone AAF30402 AAA51779 NP_942002 NP_033842	YQAVHGP I EVPAKYEAMYPN I KSENRRKFSGMVSAL DEAVGNVTKTLRQRGLMDDTL I LF YQSVHAPLEVPEKYEHKYRN I TDKNRRTFAGMVSALDEGVANL TOALKDKGLWNNTVL I F LQSVHEPL QVPEEYL KPYDFI DQKNRHHYAGMVSL MDEAVGNVTAALKSSGLWNNTVF I F LQSVHEPL QVPEEYL KPYDFI QDKNRHHYAGMVSL MDEAVGNVTAALKSSGLWNNTVF I F FQSVHDPL QVPEEYW KPYDFI QDKNRHHYAGMVSL MDEAVGNVTAALKSSGLWNNTVF I F ***********	280 297 297
Abalone AAF30402 AAA51779 NP_942002 NP_033842	TADNGGGVDESGNNYPLRGSKFTVYEGGTRAVGFMYGSGLQKTGTVFDGMIHAVDWLPTL STDNGGQI HAGGNNYPLRGIWKASLWEGGFHGVGFVSGGALKRSGAVSKGL HVSDWFPTL STDNGGQTLAGGNNIPLRGKWSLWEGGVRGVFLVGLKUKKGVKNREL HI SDWIPTL STDNGGQTLAGGNNIPLRGRKWSLWEGGVRGVFLVASPLLKQKGVKNREL HI SDWIPTL STDNGGQTRSGGNNWPLRGRKGTLWEGGIRGTGFVASPLLKQKGVKNREL HI SDWIPTL	340 357 357 358
Abalone AAF30402 AAA51779 NP_942002 NP_033842	TAAAGGTPVSDRDG INLWPSLSTASPSPRTEVVYNYDSHPQPVQGHAA IR VTLAGGNLNGTKPLDGFNOWDT I SNETPSPRE ILLHNI DI LYPQKQVPL YSN VKLARGHTNGTKPLDGFNWKT I ISEGSPSPR I ELLHNI DPNFVDSSPCPRNSMAPAKDDS VKLARGHTNGTKPLDGFNWKT I SEGSPSPR I ELLHNI DPNFVDSSPV	392 417 405
Abalone AAF30402 AAA51779 NP_942002 NP_033842	WGDYKL I DGYPGPFPDWYKPEQVTSSLNTRFSRDSANQYQLFN TWDTRVRAA I RVGDYKL I TGDPGNGS-WVPPPDGHL YFVPF I DESAAKNVWLFN SLPEYSAFNTSVHAA I RHGNWKLL TGYPGCGY-WFPPPSQVNVSE I PSSDPPTKTLWLFD 	445 476 413
Abalone AAF30402 AAA51779 NP_942002 NP_033842	LKDDPNERNDLSNFRPDWVKKLAARLAWYKKQAVPPNFPETPDDLSNPALYGNVWSPGWC I TADPNEHNDLSSEKPLEVLRLLQI LVQFNNTAVPPRYPA-PDPRCDPALHGDVWGP-WE I DRDPEERHDLSREYPH I VTKLLSRLQFYHKHSVPVYFPA-QDPRCDPKAT-GVWGP-WM	503

Fig. 2–7. CLUSTAL W (1.82) multiple sequence alignment of arylsulfatase amino acid sequences. Identical residues are shown in asterisks. Conserved substitutions depending on functionality are indicated with colon and the semi-conserved residues with a dot.

1	AG 2
3 ATGAAGAGGTTCCTTGAAGGCTCTCTGCTTTTTGCCTTTGTCTGTC	CTG 134
1 <u>MKRFLEGSLLFAFVCLCVA</u> TPTAKDKAKFTRYEPNWASIDSRP	L 44
135 CCAGCATGGTACGATGAAGCCAAACTTGGAATCTTCATTCA	ATG 266
45 PAWYDEAKLGIFIHWGIFSVPSYGSEWFWWLWQGQKVPDVVAF	M 88
267 AAAGACAATTACCGACCAGACTGGACATATGCTGATTTTGCCAGGGATTTTACAGCTGAGTTTTTCGATCCAGTACAGTGGGCCAACATCTTCAATGCATCCGGTGCACAATACGCTGTGTTAGTCAGC	AG 398
89 K D N Y R P D W T Y A D F A R D F T A E F F D P V Q W A N I F N A S G A Q Y A V L V S	K 132
399 CATCATGAAGGTTTCTGCAACTGGCCAACGAATGTCTCCTTCAACTGGAACTCCCAGATGCTTGGACCCAACAGAGATCTCGTGGGTGAACTAGCAGCGGCGATACGAGGAAACACTAACATCCGCTTT	GT 530
133 HHEGFCNWPTNVSFNWNSQMLGPNRDLVGELAAAIRGNTNIRF	G 176
531 CTCTACCACTCCCTGTTTGAATGGTTCCATCCCCTGTACCTTCAAGACAAGGCCAACAACTTTTCTACATCACGCTTTGTTGATGAGAAAACAATTCCTGAGTTGATTGA	CCT 662
177 LYHSLFEWFHPLYLQDKANNFSTSRFVDEKTIPELIEISEKYK	P 220
663 GAAGTAATTTGGTCTGACaGtGACTGGGAgGCACCTTcCTcCTCTGGAAATCTGCAGAATTTCTGGCCTGGC	ATG 794
221 E V I W S D S D W E A P S S G N L Q N F W P G Y I M K V P P R T L W *	255
795 CCACATGTCATCATGGAGGTTTCCTCACCTGCATGGACAGATACAACCCAGGAACACTACAGCCCCGTAAGTTTGAGAATGCCATGACAATAGACAAGAAGTCATGGGGTTTCCGGCGTAATGCTGATC	TGG 926
927 CAGCCTACCTCAACATGGAAGAAATCTTAAGTACATTTGCCGAGACCATCAGTTGTGGAGGCAACATGCTCATCAATGTAGGGCCAACCAA	GCC 1058
1059 AACTAGGCGGATGGTTGAGTGTCAATGGTGAGGGCATCTATTCCACAAAACCATGGACCTCCCAGAATGACACAGTGACCAAAGGAATCTGGTATGTACAGAAGCAGAGCAATGTCTATGCCATTGTAC	FGA 1190
1191 ACTGGCCGGATGCAGAGCTTCAGCTCGGGGCACCCAAGACAACTGCAGCTACTACAGTCAGT	CTC 1322
1323 CAATCCCCATCAACAAAATGCCATGTGAATGGGCATGGATCTTCAAACTTACTGCACTTCAATAGACTAGATACTAGTATGCCAACTGGTTCTTGCAATATTTGTGTATAGATTTCATGTACAGATGTG	AG 1454
1455 TTACTGAATGTGAACATATAATACTCAAAATGTATATACAGAGCTACTGAAATAAAATATTTTGAAaataaaA	1527

Fig. 2–8. Nucleotide and deduced amino acid sequence of L-fucosidase. The putative signal peptide sequence is underlined. The poly(A) signal sequence is shown in simple case letters. The stop codon in the cloned fragment is indicated with an asterisk.

Fig. 2–9. CLUSTAL W (1.82) multiple sequence alignment of abalone fucosidase putative amino acid sequence with known L-fucosidase sequences. Identical residues are shown in asterisks. Conserved substitutions depending on functionality are indicated with colon and the semi-conserved residues with a dot.

Abalone	AGATGAAGAGGTTCCTTGAAGGCTCTCTGCTTTTTGCCTTTGTCTGTC	54
NM 012562	ATGTGGGACCTGAAAAGTGAGTGGTGGGCGGTGGGCTTCGGGCTTCTGCTGCTACTGG	
NM_000147	ATGAGGTCGCGGCCGGCGGGTCCCGCGCTGTTGCTGCTGCTGCT	
NM_024243	ATGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT	
NW_024240		20
	* * * * * *	
Abalone	TAGCAACACCAACAGCAAAGGACAAAGCAAAATTCAC-TCGATATGAACCTAACTGGG	
NM_012562	CAGCTTCGGCCCAGGCAGGGGGGCTTGGCTCCGCACCACTACACTCCGGACTGGC	112
NM_000147	GAGCGGCCGAGTCGGTGCGTCGGGCCCAGCCTCCGCGCCGCTACACCCCAGACTGGC	109
NM_024243	TGGCTGCGGCCCAGGCAGTGGCCCTGGCTCCGCGCCGCTTCACTCCGGACTGGC	82
-	** * ** ** * * * * * ** **	
Abalone	CTTCTATAGATTCTAGACCTCTGCCAGCATGGTACGATGAAGCCAAACTTGGAATCTTCA	171
NM_012562	CGAGCTTGGACTCGCGACCACTGCCGAGATGGTTCGACGAGGCCAAGTTCGGGTTGTTCG	
NM_000147	CGAGCCTGGATTCTCGGCCGCCTGCCGGCCTGGTTCGACGAAGCCAAGTTCGGGGTGTTCA	
NM_024243	AGAGCTTGGACTCGCGGCCACTGCCGAGCTGGTTCGATGAGGCCAAGTTCGGGGTGTTCG	142
	* ** ** * ** ***** **** *** ** ***** * *	
Abalone	TTCACTGGGGTATCTTTTCCGTGCCCAGTTATGGTTCTGAGTGGTTCTGGTGGCTCTGGC	231
NM_012562	TGCATTGGGGGGTGTACTCGGTGCCCGCCTGGGGCAGCGAGTGGTTCTGGTGGCACTGGC	232
NM_000147	TCCACTGGGGCGTGTTCTCGGTGCCCGCCTGGGGCAGCGAGTGGTTCTGGTGGCACTGGC	229
NM_024243	TGCACTGGGGGGTGTTCTCGGTGCCCGCCTGGGGCAGTGAATGGTTCTGGTGGCACTGGC	
1111_02 12 10	* ** ***** * * ** ****** * ** ** ******	LUL
Al I		000
Abalone	AAGGGCAGAAGGTTCCAGACGTTGTTGC-TTTCATGAAAGACAATTACCGACCAGACTGG	
NM_012562	A-GGGCGAGCAGTCGTCGGCGTACGTGCGCTTCATGAAAGAAA	
NM_000147	A-GGGCGAGGGGGGGGGCGGCAGTACCAGCGCTTCATGCGCGACAACTACCCGCCCG	288
NM_024243	A-GGGCGATCGGATGCCGGCCTACCAGCGCTTCATGACAGAAAACTACCCGCCCG	261
	* **** * * * ** ****** ** ** ****	
Abalone	ACATATGCTGATTTTGCCAGGGATTTTACAGCTGAGTTTTTCGATCCAGTACAGTGGGCC	350
NM 012562	AGCTACGCCGACTTTGCACCGCAGTTTACAGCGCGCTTCTTCCATCCGGAGGAGTGGGCA	
NM 000147		
-	AGCTACGCCGACTTCGGACCGCAGTTCACTGCGCGCTTCTTCCACCCGGAGGAGTGGGCC	
NM_024243	AGCTACGCCGACTTCGCACCGCAGTTCACAGCGCGCTTCTTCCACCCGGATCAGTGGGCC	
	* ** ** ** ** * * ** ** ** ** ** ** **	
	JEJU NATIONAL UNIVERSITY	
Abalone	AACATCTTCAATGCATCCGGTGCACAATACGCTGTGTTAGTCAGCAAGCA	410
NM_012562	GACCTCTTCCAGGCTGCCGGGGCCAAGTATGTCGTCCTGACCGCAAAGCATCACGAAGGC	411
NM_000147	GACCTCTTCCAGGCCGCGGGCGCCAAGTATGTAGTTTTGACGACAAAGCATCACGAAGGC	408
NM_024243	GAACTCTTTCAGGCTGCCGGGGCCAAGTACGTCGTCCTGACCACAAAGCATCATGAAGGC	381
_	* **** * ** * ** * ** * ** * ** *	
Abalone	TTCTGCAACTGGCCAACGAATGTCTCCTTCAACTGGAACTCCCAGATGCTTGGACCCAAC	470
NM_012562	TTCACAAACTGGCCAAGCGCCGTGTCTTGGAACTGGAACTCGAAGGACGTGGGGCCCCAC	
	TTCACAAACTGGCCGAGTCCTGTGTCTTGGAACTGGAACTCCAAAGACGTGGGGCCTCAT	
NM_000147		
NM_024243	TTCACAAACTGGCCAAGCCCTGTGTCTTGGAACTGGAACTCGAAGGACGTGGGGCCCCAC	441
	*** ****** * ** ** ********* * * ** **	
Abalone	AGAGATCTCGTGGGTGAACTAGCAGCGGCGATACGAGGAAACACTAACATCCGCTTTGGT	530
NM_012562	CGTGATTTGGTCGGTGAGTTGGGAGCAGCTGTGCGGAAGAGGAACATACGATACG	528
NM_000147	CGGGATTTGGTTGGTGAATTGGGAACAGCTCTCCGGAAGAGGAACATCCGCTATGGA	525
NM_024243	CGTGATTTGGTCGGTGAGTTGGGAGCAGCTGTGCGGAAGAGGAACATACGCTACGGC	498
	* *** * ** **** * * * * * * * * * * * *	
Abalone	CTCTACCACTCCCTGTTTGAATGGTTCCATCCCCTGTACCTTCAAGACAAGGCCAACAAC	590
NM_012562	CTCTACCACTCGCTCTTTGAGTGGTTCCATCCACTCTACCTAC	
NM_000147	CTATACCACTCACTCTTAGAGTGGTTCCATCCACTCTACTAGATAAAAAAAA	
NM_024243	CTCTACCACTCGCTCTTGGAATGGTTCCATCCACTCTACCTAC	558
	** ****** ** ** ** ** ******** ** ** **	
Abalone	TTTTCTACATCACGCTTTGTTGATGAGAAAACAATTCCTGAGTTGATTGA	
NM_012562		640
NW_012302	CTCAAGACTCAGCATTTCGTCAGTACAAAAACAATGCCAGAGCTGTACGACCTCGTGAAT	040
NM_000147	CTCAAGACTCAGCATTTCGTCAGTACAAAAACAATGCCAGAGCTGTACGACCTCGTGAAT TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC	
-		645
NM_000147	TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC	645
NM_000147	TTCAAAACACAGGATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC TTCAAAACTCAGCATTTCGTCAGGGCAAAAACAATGCCAGAGCTGTATGACCTTGTTAAC	645
NM_000147 NM_024243	TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC TTCAAAACTCAGCATTTCGTCAGGGCAAAAACAATGCCAGAGCTGTATGACCTTGTTAAC * ** * ** ** ** ** ** ** ** ** ** ** **	645 618
NM_000147 NM_024243 Abalone	TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC TTCAAAACTCAGCATTTCGTCAGGGCAAAAACAATGCCAGAGCTGTATGACCTTGTTAAC * ** * * **** * ***** **************	645 618 709
NM_000147 NM_024243 Abalone NM_012562	TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC TTCAAAACTCAGCATTTCGTCAGGGCAAAAACAATGCCAGAGCTGTATGACCTTGTTAAC * ** * * * * ** ** ** **************	645 618 709 708
NM_000147 NM_024243 Abalone NM_012562 NM_000147	TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC TTCAAAACTCAGCATTTCGTCAGGGCAAAAACAATGCCAGAGCTGTATGACCTTGTTAAC * ** * * * * ** * ******************	645 618 709 708 705
NM_000147 NM_024243 Abalone NM_012562	TTCAAAACACAGCATTTTGTCAGTGCAAAAACAATGCCAGAGCTGTACGACCTTGTTAAC TTCAAAACTCAGCATTTCGTCAGGGCAAAAACAATGCCAGAGCTGTATGACCTTGTTAAC * ** * * * * ** ** ** **************	645 618 709 708 705

* ** ** ***** * ** ***** ** * ** ***** ** **

	* ** ** ***** * ** ***** ** * ** ***** ** *	
Abalone	AAATCTGCAGAATTTCTGGCCTGGCTATATAATGAAAGTCCCACCAAGGACTCTGTGG <u>TG</u> 769	
NM_012562	AACTCCACGGAGTTCCTTGCTTGGCTCTACAATGAAAGCCCGGTCAAGGATCAGGTGGTA 768	
NM_000147	AACTCCACAAATTTTCTTTCATGGCTCTACAATGACAGCCCTGTCAAGGATGAGGTGGTA 765	
NM_024243	AACTCCACCAGCTTCCTTGCTTGGCTCTACAACGATAGCCCTGTCAAGGATGAGGTGATA 738	
	** ** * ** ** * ***** ** ** ** ** ** **	
Abalone	ACCAACGACCGATGGGGAAAAGATGCCACATGTCATCATGGAGGTTTCCTCACCTGCATG 829	
NM_012562	GTGAATGACCGGTGGGGTCAGAACTGCTCCTGTCGTCACGGAGGGTACTACAACTGTGAA 828	
NM_000147	GTAAATGACCGATGGGGTCAGAACTCTTCCTGTCACCATGGAGGATACTATAACTGTGAA 825	
NM_024243	GTGAATGACCGGTGGGGCCAGAACTGCTCCTGTCATCATGGAGGGTACTACAACTGTCAA 798	
	** **** **** * * * * **** ** ****	
Abalone	GACAGATACAACCCAGGAACACTACAGCCCCGTAAGTTTGAGAATGCCA <u>TGA</u> CAA <u>TAG</u> AC 889	
NM_012562	GACAAATACAGACCACACAGCCTGCCAGACCACAAGTGGGAGATGTGCACCAGCGTTGAC 888	
NM_000147	GATAAATTCAAGCCACAGAGCTTGCCAGATCACAAGTGGGAGATGTGCACCAGCATTGAC 885	
NM_024243	GACAAATACAAGCCACAGAGCTTGCCAGACCACAAGTGGGAGATGTGCACCAGCATGGAC 858	
	** * ** ** * * * * * **** **** ** * * *	
Abalone	AAGAAGTCATGGGGTTTCCGGCGTAATGCTGATCTGGCAGCCTACCTCAACATGGAAGAA 949	
NM_012562	AAGGCGTCCTGGGGCTATCGGAGAGACATGAGCATGTCTACCATCGTCGACGAAAATGAA 948	
NM_000147	AAGTTTTCCTGGGGCTATCGTCGTGACATGGCATTGTCTGATGTTACAGAAGAATCTGAA 945	
NM_024243	AGAGCATCCTGGGGCTATCGAAAAGACATGACCATGTCGACCATCGCCAAGGAAAATGAA 918	
	* ** **** * ** * ** * ***	
Abalone	ATCT <u>TAA</u> GTACATTTGCCGAGACCATCAGTTGTGGAGGCAACATGCTCATCAATG <u>TAG</u> GG 1009	
NM_012562	ATCATTGAGGAATTGGTTCAGACAATAAGTCTGGGAGGCAACTATCTTCTCAACATCGGA 1008	
NM_000147	ATCATTTCGGAACTGGTTCAGACAGTAAGTTTGGGAGGCAACTATCTTCTGAACATTGGA 1005	
NM_024243	ATCATCGAGGAATTGGTTCAGACGGTAAGTTTGGGAGGCAACTATCTTCTCAACATTGGA 978	
	*** * * * **** * *** ******* ** * * * *	
Abalone	CCAACCAAATACGGTA <u>TGA</u> TCAGTGCTCTCTATGAGGAAAGACTGCGCCAAC <u>TAG</u> GCGGA 1069	
NM_012562	CCGAATAAAGACGGCGTGATCGTCCCCATCTTCCAGGAAAGGCTCCTTGCTGTTGGCAAG 1068	
NM_000147	CCAACTAAAGATGGACTGATTGTTCCCATCTTCCAAGAAAGGCTTCTTGCTGTTGGGAAA 1065	
NM_024243	CCAACTAAAGATGGTCTGATCGTCCCCATCTTCCAAGAAAGGCTTCTTGCTGTCGGCAAG 1038	
	** * *** * ** **** * *** * **** * * * *	
Abalone	TGGT <u>TGA</u> GTGTCAATGGTGAGGGCATCTATTCCACAAAACCATGGACCTCCCAGAATGAC 1129	
NM_012562	TGGCTGCAGATCAACGGGGAGGCCATCTATGCCTCCAAACCATGGAGGGTGCAGTCTGAA 1128	
NM_000147	TGGCTGAGCATCAATGGGGAGGCTATCTATGCCTCCAAACCATGGCGGGTGCAATGGGAA 1125	
NM_024243	TGGCTGCAGATCAACGGGGAGGCCATCTATGCCTCCAAACCCTGGAGGGTGCAGTCGGAA 1098	
	*** ** **** ** **** ***** ** * ***** *** **	
Abalone	ACAGTGACCAAAGGAATCTGGTATGTACAGAAGCAGAGCAATGTCTATGCCATTGTACTG 1189	
NM_012562	AGGAACAAGACAGTTGTGTGGTACACCACTAAAGACTCGGCTGTTTATGCCACTTTTCTG 1188	
NM_000147	AAGAACACAACATCTGTATGGTATACCTCAAAGGGATCGGCTGTTTATGCCATTTTTCTG 1185	
NM_024243	AAGAACAAGACGGTTGTGTGGTACACTACTAAAAACACAAACTGTTTACGCCACTTTCCTG 1158	
	* * * * **** ** *** *** ****	
Al 1		
Abalone	AACTGGCCGGATGCAGAGCTTCAGCTCGGGGCACCCAAGACAACTGCAGCTACTACA 1246	
NM_012562	CACTGGCCAGAAGATGGAGTGGTAAACCTCCAATCTCCCAAAATGACATCGGCCACAAAG 1248	
NM_000147	CACTGGCCAGAAAATGGAGTCTTAAACCTTGAATCCCCCATAACTACCTAC	
NM_024243	TACTGGCCAGAAAATGGGATCGTCAACCTCAAATCCCCCAAAACGACCTCGGCCACAAAG 1218	
	***** ** ** * * * * * * * * * * * * * *	
Al 1		
Abalone	GTCAGTTTGCTCGGATACGACGGTAACTTCAGCTTTCAAGAACGAGCGGAGGGGGC 1303	
NM_012562	ATAACGATGCTAGGAATGGAAGGAGAACTGCACTGGACCCAGGACCCACTGGAAGGCGTC 1308	
NM_000147	ATAACAATGCTGGGAATTCAAGGAGATCTGAAGTGGTCCACAGATCCAGATAAAGGTCTC 1305	
NM_024243	ATAACAATGCTAGGACTAGAAGGAGACCTGAGCTGGACCCAGGATCCACTGGAGGGCGTC 1278	
	* * *** * * * * * * * * * * *	
Abolono		
Abalone	ATAACCATAGAGATTCCTCCAATCCCCATCAACAAAATGCCATGT-GAATGGGCATGGAT 1362	
NM_012562	CTCATCACTCTGCCCCAGTTGCCACCAGGCACTTTCCCAGTGGAGTCTGCCTGGAC 1364	
NM_000147	TTCATCTCTCTACCCCAGTTGCCACCCTCTGCTGTCCCCCGCAGAGTTTGCTTGGAC 1361	
NM_024243	CTCATCTCTCTGCCACAGTTGCCACCTACCGTTCTGCCGGTGGAGTTTGCGTGGAC 1334	
	* * * * * * * * * * * * * * * ****	
Abalone		
	CTTCAAACTTACTGCACTTCAATAGACTAGATACTAGTATGCCAACTGGTTCTTGCAATA 1422 TCTAAAGCTGACAAAAGTGAACTGA 1389	
NM_012562	то гладоо годолала от бало годе	

NM_000147 NM_024243	TATAAAGCTGACAGGAGGTGAAGTAA TCTGAAGCTGACAAAGGGGAACTGA * ** ** ** ** * * * *	1386 1359
Abalone NM_012562 NM_000147 NM_024243	TTTGTGTATAGATTTCATGTACAGATGTGAAGTTACTGAATGTGAACATATAATACTCAA	1482
Abalone NM_012562 NM_000147 NM_024243	AATGTATATACAGAGCTACTGAAATAAAATATTTTGAAAATAAAA 1527	

Fig. 2–10. CLUSTAL W (1.82) multiple sequence alignment of abalone fucosidase full length sequence with coding sequences of other L-fucosidases. Possible nonsense mutations identified in the full length sequence of abalone fucosidase which align with the coding sequence of other fucosidases are underlined. The codon which may have functioned as the stop codon in an ancient active form is highlighted. Identical residues are shown in asterisks. Conserved substitutions depending on functionality are indicated with a colon and the semi-conserved residues with a dot.

제주대학교 중앙도서관 JEJU NATIONAL UNIVERSITY LIBRARY

4. DISCUSSION

4.1. Glutathione transferase

GSTs are a family of enzymes responsible for the metabolism of a broad range of xenobiotics and carcinogens (Mannervik, 1985). These enzymes are also known as Glutathione S-alkyltransferases. glutathione S-aryltransferases, S-(hydroxyalkyl) glutathione lyases and glutathione S-aralkyltransferases. They catalyze the reaction

RX + glutathione <=> HX + R-S-glutathione

where R can be an aliphatic, aromatic or heterocyclic group and X can be a sulfate, nitrite or halide group. They also catalyze the addition of aliphatic epoxides and arene oxides to glutathione; the reduction of polyol nitrate by glutathione to polyol and nitrite; certain isomerization reactions and disulfide interchange.

Most of the GSTs exist as soluble enzymes but a small family of microsomal GSTs has been reported (Anderson et al., 1994; Jakobsson et al., 1996). Cytosolic and membrane-bound forms of GST are encoded by two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian GSTs have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. The abalone GST isolated during this study was in the soluble fraction of the cell lysate indicating it to be a soluble form. The soluble forms generally exist as dimeric proteins, with subunit molecular weights of approximately 25 kDa (Eato and Bammler, 1999). The abalone GST isolated coded for a 215 amino acid protein with the theoretically expected molecular weight of 24.6 kDA (Fig. 2-1) as revealed by SDS-PAGE and a theoretical isoelectric point of 8.39 with high enzymatic activity towards 1-chloro-2,4-dinitrobenzene, the universal substrate of all GSTs except theta class. Phylogenetic tree analysis group abalone GST with other mu class GSTs. Identity of subunits is based mainly on primary DNA sequence homology. In general, members of the same class share more than 40-50% sequence identity but less than about 25-30% sequence identity with GSTs in other classes except in theta class which share only 30% homology across species (Hayes and Pulford, 1995; Coggan et al., 1998). Abalone GST shares 54-59% identity with other known Mu class GST coding sequences and 48-50% with other Mu class proteins

at amino acid level (Table 2-4 and Table 2-5) and share less than 25% with other class coding sequences except Pi class. One feature that is readily apparent from the above tables is that the aforementioned theory is valid only for the extensively studied classes such as alpha, pi and mu. Lack of sequence information regarding other classes makes it difficult to find relationships.

Alignment of the putative amino acid sequence with known GST structures in pdb data bank via NCBI BLASTP server and Cn3D structure viewer (Marchler-Bauer et al., 2003) revealed it to contain the GST N, the glutathione binding domain or G-site and C terminal domain, the variable electrophilic substrate binding site or H-site as expected. The N terminal had the highest sequence similarity to chicken GST, cGSTM1-1, with a topology similar to thioredoxin fold (Fig. 2-2 and 2-3). This fold appears in several proteins of limited sequence identity from other enzyme families, which appear to have evolved to bind cysteine or GSH. This fold is characterized by an N terminal motif linked by an a-helix to a C terminal pa motif. Interestingly, the C domain had the highest similarity to the second domain of chain A, Saccharomyces cerevisiae Ure2p protein, a prion protein involved in nitrogen catabolism. Despite results indicating that Ure2p lacks GST activity, it is proposed that Ure2p is a member of the GST superfamily that may describe a novel GST class (Bousset *et al.*, 2001). The region in abalone GST corresponding to the short a6-helix is replaced by a long a-helix composed of 28 amino acids in Ure2p. The P개 60 found in the loop connecting a-2 to $\beta-3$ (cis-Pro loop) is thought to be in the less favoured *cis* conformation and is highly conserved in all GSTs. It is not directly involved in catalysis but has shown to be important in maintaining the protein in a catalytically competent structure (Allocati et al., 1999). Tyr 6 on the other-hand is thought to be directly involved in catalysis by stabilizing the thiolate group in glutathione (Atkins et al., 1993). A SNAIL/TRAIL motif observed in many GSTs (Sheehan et al., 2001) is seen in \mathbf{a} -3 helix of abalone. This is involved in the formation of GSH binding site. The C domain contains five helices as seen in Pi and Mu classes and as discussed earlier the primary DNA sequence homology assigns it to Mu class. This is further supported by the presence of a region corresponding to the Mu-loop between β -2 and a-2. Considering all these factors abalone GST could be assigned to class mu.

The Alpha, Mu, Pi and Theta class GST genes differ markedly from each other in size and in intron/exon structure, and there is a trend for human GST genes to be found in class specific clusters (Webb et al., 1996). It is also demonstrated that polyclonal antisera raised against a particular GST class will often cross react with same class GSTs but not with GSTs from different classes found even within the same species (Hayes and Mantle, 1986). GST subunits can dimerize only with subunits within the same class. Kinetic properties such as substrate and inhibitor sensitivities also could be used to find clues about the class of a given GST even though this is a poor criteria to extend the mammalian classes into non-mammalian sources. Therefore further characterization of abalone GST at immunological, biochemical and genomic level is required to verify its assignment to Mu class. The trans isomer of stilbene oxide (TSO) is uniquely conjugated by hGSTM1-1, and thus this epoxide substrate serves as a selective marker for this polymorphic mu class GST (Seidegard et al., 1989). Biochemical tests with this substrate would lead to the confirmation of the identity of the putative GST we isolated.

The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 in human and are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of certain drugs. Null mutations of this class mu gene have been linked with an increase in a number of cancers, likely due to an increased susceptibility to environmental toxins and carcinogens. Multiple protein isoforms are encoded by transcript variants of this gene in human (http://au.expasy.org/sprot/)

Differences in expression of specific isoforms of GST is thought to be an important determinant of target organ and species sensitivity. For example, mice are remarkably resistant to the hepatocarcinogenic effects of aflatoxin B1 (AFB) because they constitutively express mGSTA3-3, which has high activity toward the reactive AFB-*exo*-epoxide (Eaton and Gallagher, 1994).

In mammals, hepatic GSTs often accompany cytochrome P450 enzymes where they quench highly reactive electrophilic species formed during the oxidative metabolism of aromatics, drugs, and other xenobiotics. These phase I (oxidating) and phase II (conjugating) enzymes together appear to be necessary for the maintainance of normal metabolic and liver fuction. (Dhar *et al*, 2003). Digestive gland of abalone represents the liver in mammals and several ESTs in abalone digestive gland cDNA library had a significant similarity to cytochrome P450 enzymes. Therefore further studies on abalone GST is expected to be useful in elucidating its biological significance in cellular detoxification, which will lead to the improvement of fisheries by over expression of this gene resulting less accumulation of toxic wastes in the organisms.

4. 2. Arylsulfatase B

we amplified the full-length cDNA of a sulfatase with highest sequence similarity to *Helix pomatia* sulfatase 1 from the abalone EST library. Expression of this in *E. coli* BL21 (DE3) cells under pET16b vector resulted in an expression band corresponding to a 54 kDa protein on an SDS-PAGE (Fig. 2-4). The protein was mainly found in inclusion bodies and was purified under denaturing conditions using urea. As expected, the amount of protein expressed decreased with decreasing temperature from 37° C to 15° C. Sequence analysis revealed the presence of seven Cys residues in a coding sequence of 1446 bp coding for a peptide with 481 amino acids with a putative peptide cleavage site at 21-22 amino acids (Fig. 2-5). Surprisingly, the sequence obtained revealed a very short 3' untranslated region comprising only 41bp followed by the poly(A) tail.

Even though it was expressed at a very high level in *E. coli*, the purified protein didn't shaw any activity towards p-nitrocatechol sulfate, the chromogenic substrate which is used to characterize arylsulfatases. This loss of activity could be due to many factors including erroneous folding of the protein during purification under denaturing conditions

and lack of posttranslational modifications in the E. coli system. Most sulfatases are found in the lysosomes where they perform, in an acidic medium, the desulfation reactions required in the degradative pathways of glycosaminoglycans. Some newly identified members of this family are found in the endoplasmic reticulum and golgi apperatus. The physiological roles and the natural substrates of these recently discovered members have not been defined. It has been shown however that some of them are active on fluorogenic substrate 4-methylumbelliferryl. Therefore different substrate specificity also could be a reason for its inability to catalyse the above reaction. Conversion of a crucial cysteine residue to a serine semialdehide as a co- or post-translational modification is required for catalytic activity and lack of this results in multiple sulfatase deficiency (Parenti et al., 1997). Therefore expression of this ASB gene in an expression system where post-translational modifications could take place might result in the formation of active form. Sequence comparisons with other known arylsulfatases revealed it to lack a few amino acids from the N-terminal which includes a leucin conserved in several mammalian and Helix pomatia arylsulfatases and this also could have contributed to its inactivity (Fig. 2-6 and 2-7). From the multiple alignment of several aryulsulfatases and abalone ASB, it is apparent that there is a trend to have several deletions/ insertions at N and C termini while preserving the middle region of the sulfatases. Comparison of abalone putative ASB with known sulfatase structures in pdb database unveiled the presence of sulfatase conserved domain.

4. 3 L-fucosidase

We isolated the full length cDNA of a sequence with highest similarity to other a-L-fucosidases containing an open reading frame of 765 bp coding for a 255 amino acid protein with a putative signal cleavage site between 19–20 (CVA-TP) (Fig. 2–8). Eventhough we were able to clone it into pET16b expression vector in the correct orientation as unraveled by restriction enzyme digestion, we were unable to express it in *E. coli*. Sequence analysis revealed it to contain part of the \mathbf{a} -L-fucosidase conserved domain. Comparison of its coding region and full length sequence with other known fucosidases revealed it to contain several nonsense mutations thus prematurely ending the translation process which will result in the production of a truncated protein lacking ~200 amino acids from its C-terminus (Fig. 2-9) which is validated by the presence of a stop codon at the expected position when compared its full length sequence with coding regions of other known \mathbf{a} -L-fucosidases (Fig. 2-10). Phisico-chemical analysis via ProtParam program (http://au.expasy.org/tools/protparam.html) predicts it to code for a stable protein with a half life of > 10 hrs in *E. coli* and therefore its unlikely that any unstability caused by the lack of C terminus to be the reason for its undetection. As expected, the sequence identity it shares with other mammalian \mathbf{a} -L-fucosidase coding regions and protein sequences (~55%) is much less than the sequence identity found within mammalian \mathbf{a} -L-fucosidases (~85%).

SUMMARY

The expressed sequence tag approach, first demonstrated in the human genome project, is powerful in massive cloning of cDNAs as well as in large scale characterization of cDNA sequences for deciphering genome sequence. In the present study, a cDNA library from abalone digestive gland was constructed and a total of 841 expressed sequence tags were generated after sequencing 900 clones. Assembly of these into clusters resembling sequences derived from the same gene resulted in 122 clusters including 331 sequences and 510 singletons. This correspond to a redundancy of 39%, which was less than the redundancy we encountered in the whole abalone cDNA library (45%) we generated. Comparison of these 632 unique transcripts with known database sequences via BLAST-X and BLAST-N programs revealed 354 sequences to share significant similarity with known sequences. Thus, 278 transcripts are cloned and reported for the first time in this study. These may be useful as molecular markers as well as in the identification of novel genes.

As expected, most of the unique sequences in the digestive gland cDNA library coded for enzymes. Three putative enzymes implicated in disease conditions and cellular detoxification including a glutathione transferase (GST), arylsulfatase-B (ASB) and a fucosidase were further characterized by cloning full length sequences in an E. coli expression vector, pET16b. GST was expressed in substantial amounts in the soluble form with catalytic activity towards high 1-chloro-2,4-dinitrobenzene and sequence analysis revealed it to be a class Mu protein with the N and C GST conserved domains containing thioredoxin fold and five a-helices. Unlike GST, ASB expressed in insoluble form and purification under denaturing conditions resulted in inactive form with an apparent molecular weight of 54 kDa containing a region similar to sulfatase domain. Computational analysis of fucosidase sequence unraveled the presence of amino terminal of <u>a-L</u> focosidase conserved domain and several nonsense mutations which prematurely ends translation.

Further studies on these genes would facilitate the understanding of molecular nature of their activity and diseases involved. ASB and fucosidase will be useful as catalysts in industry and constitutive expression of GST in commercial fisheries would result in toxic resistant fish with less accumulation of xenobiotics.

REFERENCES

- Allocati, N., E. Casalone, M. Masulli, I. Ceccarelli, E. Carletti, M. W. Parker and C. Dillio. 1991. Functional analysis of the proline 53 evolutionarily conserved residue in Proteus mirabilis glutathione S-transferase B1-1. Febbs Lett. 445: 347-350.
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215 : 403-410.
- Anderson, C., E. Mosialou, R. Weinander and R. Morgenstern. 1994. Enzymology of microsomal glutathione S transferase. Adv. Pharmacol. 27: 19–35.
- Atkins, W. M., R. W. Wang, A. W. Bird, D. J. Newton and A. Y. H. Lu. 1993. The chatalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat a 1-1 GST. J. Biol. Chem. 268: 19188-19191.
- Berg, J. M., J. L. Tymoczko and L. Stryer. 2002. Biochemistry. W. H. Freeman and Co., New York.
- Bousset, L., H. Belrhali, R. Melki and S. Morera.2001. Crystal structures of the yeast prion Ure2p functional region in complex with glutathione and related compounds. Biochemistry 40: 13564–13573.
- Carefoot, T. H., B. E. Taylor and D. A. Donovan. 1998. Seasonality in digestive-gland size and metabolism in relation to reproduction in *Haliotis kamtschatkana*. J. Shellfish Res. 17: 713–716.
- Carnevali, O., R. Carletta, A. Cambi, A. Vita and N. Bromage. 1999. Yolk formation and degradation during oocyte maturation in seabream *Sparus aurata*: involvement of two lysosomal proteinases. Biol. Reproc. 60: 140–146.
- Casas, E., M. Betancourt, E. Bonilla, Y. Duculomb, H. Zayas and R. Trejo. 1999. Changes in cyclin B localisation during pig oocyte in vitro maturation. Zygote 7: 21–26.
- Cleveland, L. R. 1924. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to *Reticulitermes flavipes* Kollar. Biolog. Bull. Mar. Biol. Lab. 46: 117–227.

- Coggan, M., L. Whitbread, A. Whittington and P. Board. 1998. Structure and organization of the human theta class glutathione S transferase and D-dopachrome tautomerase gene complex. Biochem. J. Interact. 111: 377-388.
- Dhar, K., A. Dhar and J. P. N. Rosazza. 2003. Glutathione S-transferase isoenzymes from Streptomyces griseus. Appl. Environ. Microbiol. 69: 707–710.
- Eaton, D. L. and E. P. Gallagher. 1994. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 34: 135-172.
- Eaton, D. L. and T. K. Bammler. 1999. Concise review of the glutathione S transferases and their significance to toxicology. Toxicol. Sci. 49: 156–164.
- Evans, J. P. 2000. Getting Sperm and Egg Together: Things Conserved and Things Diverged. Biol. Reproc. 63: 3558–3560.
- Gomez-Roman, N., C. Grandori, R. N. Eisenman and R. J. White. 2003. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421: 290-294.
- Hayes, J. D. and T. J. Mantle. 1986. Use of immunoblot techniques to discriminate between the glutathione S-transferase Y_f , Y_k , Y_a , Y_n/Y_b and Y_c subunits and to study their distribution in extra-hepatic tissue. Evidence for three immunochemically distinct groups of transferases in the rat. Biochem. J. 233: 779–788.
- Hayes, J. D. and D. J. Pulford. 1995. The glutathione S transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30: 445–600.
- Jakobsson, P. J., J. A. Mancini and A. W. Ford-Hutchinson. 1996. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase. J. Biol. Chem. 271: 22203-22210.
- Leznicki, А. T. and Κ. Bailkowski. 1997. Improved high-performance liquid chromatographic method for N-acetylgalactoseamine-4-sulfate sulfatase (arylsulfatase B) activity determination using uridine diphospho-N-acetylgalactosamine-4-sulfate. J. Chromatogra. B 696:

193-202.

- Liang, L. F. and J. Dean. 1993. Conservation of mammalian secondary sperm receptor genes enables the promoter of the human gene to function in mouse oocytes. Dev. Biol. 156: 399–408.
- Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, and Bryant SH (2003), "CDD: a curated Entrez database of conserved domain alignments", Nucleic Acids Res. 31:383–387.
- Mannervik, B., Y. C. Awasthi, P. G. Board, J. D. Hayes, C. Di Ilio, B. Ketterer, I. Listowsky, R. Morgenstern, M. Maramatsu, W.R. Pearson. 1992. Nomenclature for human glutathione transferases [letter]. Biochem. J. 282: 305–306.
- Mannervik, B.: 1985. The isozymes of glutathione transferase. Adv. Enzym. Relat. Areas Molec. Biol. 57: 357–417,
- Martin, M. M. and J. S. Martin. 1978. Cellulose digestion in the midgut of the fungus-growing termite *Macrotermes natalensis*: The role of acquired digestive enzymes. Science 199: 1453–1455.
- Mohr, E., N. Prakash, K. Vieluf, C. Fuhrmann, F. Buck and D. Richter. 2001. Vasopressin mRNA localization in nerve cells: Characterization of cis-acting elements and trans-acting factors. Proc. Natl. Acad. Sci. USA. 98: 7072–9.
- Mollet, J., A. Rahaoui and Y. Lemoine. 1998. Yield, chemical composition and gel strength of agarocolloids of *Gracilaria gracilis longissima* and the newly reported *Gracilaria* cf. *vermiculophylla* from Roscoff (Brittany, France). J. Appl. Phycol. 10: 59–66.
- Monje, H. and M. T. Viana. 1998. The effect of cellulose on the growth and cellulolytic activity of abalone *Haliotis fulgens* when used as an ingredient in formulated artificial diets. J. shellfish Res. 17: 667–671.
- Morse, D. E., H. Duncan, N. Hooker and A. Morse. 1977. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase. Science 196: 298–300.
- NCBI staff. 2002. The NCBI handbook. National Library of Medicine, Bethesda

- O'Brien, G. W., P. C Veivers, S. E. McEwen, M. Slaytor and R. W. O'Brien. 1979. The origin and distribution of cellulase in the termites, *Nasutitermes exitiosus* and *Coptotermes lacteus*. Insect Biochem. 9: 619–625.
- Parenti, G. G. Meroni and A. Ballabio. 1997. The sulfatase gene family. Curr. Opin. Genet. Med. 7: 386–391.
- Powers, D. A., V. Kirby and M. Gomez-Ghiarri. 1996. Genetic engineering abalone: Gene transfer and ploidy manipulation. J. .Shellfish Res. 15: 477
- Schaeffer, D. J. and V. S. Krylov. 2000. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol. Environ. Saf. 45: 208–227.
- Seidegard, J., R. W. Pero and B. Stille. 1989. Identification of the trans-stilbene oxide-active glutathione transferase in human mononuclear leukocytes and in liver as GST1. Biochem. Genet. 27: 253–261.
- Sheehan, D., G. Meade, V. M. Foley and C. A. Dowd. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1–16.
- Siegel, G. J., B. W. Agranoff, R. W. Albers, S. K. Fisher, M. D. Uhler, editors. 1999. Basic neurochemistry, molecular, cellular and medical aspects. Lippincott, Williams and Wilkins, Philadelphia.
- Sikela, J. M. and C. Auffray. 1993. Finding new genes faster than ever. Nat. Genet. 3 : 189–191.
- Sutton, G. G., O. White, M. D. Adams and A.R. Kerlavage. 1995. TIGR Assembler: A new tool for assembling large shotgun sequencing projects. Genome Sci. Technol. 1: 9–19.
- Suzuki, K. I., T. Ojima and K. Nishita. 2003. Purification and cDNA cloning of a cellulase from abalone *Haliotis discus hannai*. Eur. J. Biochem. 270 : 771–778.
- Swanson, W. J., V. D. Vacquier. 1995. Liposome fusion induced by a M(r) 18,000 protein localized to the acrosomal region of acrosome-reacted abalone spermatozoa. Biochemistry. 34: 14202–14208.
- Swanson, W. J. and V. D. Vacquier. 1997. The abalone egg vitelline

envelope receptor for sperm lysin is a giant multivalent molecule. Proc. Natl. Acad. Sci. USA 94: 6724-6729.

- Tien, N. N. N. and B. Knoops. 2003. Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat. FEBS Lett. 544: 148–52.
- Uchida, S., Y. Tanaka, H. Ito, F. Saitoh-Ohara, J. Inazawa, K. K. Yokoyama, S. Sasaki and F. Marumo. 2000. Transcriptional Regulation of the CLC-K1 Promoter by myc-Associated Zinc Finger Protein and Kidney-Enriched Krüppel-Like Factor, a Novel Zinc Finger Repressor. Mol. Cell. Biol. 20: 7319–7331.
- Vacquier, V. D., W. J. Swanson, Y. H. Lee. 1997. Positive Darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J. Mol. Evol. 44 Suppl 1: S15–22.
- Villee, C. A., W. F. Walker and F. E. Smith. 1968. General Zoology. 3rd Edition, W.B. Saunders Company, London.
- Webb, G., V. Vaska, M. Coggan and P. Board. 1996. Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics. 33: 121–123.
- Wistow, G., S. L. Bernstein, M. K. Wyatt, A. Behal, J. W. Touchman, G. Bouffard, D. Smith, K. Peterson. 2002. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants. Mol. Vis. 8: 171-84.
- Wu, M. L., Y. C. Chuang, J. P. Chen, C. S. Chen and M. C. Chang. 2001. Identification and Characterization of the Three Chitin-Binding Domains within the Multidomain Chitinase Chi92 from *Aeromonas hydrophila* JP101. Appl. Environ. Microbiol. 67: 51005106.

ACKNOWLEDGEMENTS

I am grateful to my parents and Prof. Jehee Lee for their guidance and encouragement given throughout the project. I thank Prof. Choon Bok Song for helpful discussions. The support given by Prof. You-Jin Jeon, Prof. In-Kyu Yeo, Prof. Keun-Tae Park, Prof. Moon-Soo Heo and their laboratory staffs are also acknowledged. I particularly appreciate Miss. Young Mi Park for her help in writing the manuscript and Mr. Chang Nam Gin, Kyoung Im Kang, Ho Jin Park, Hyoung Gun Kim, Bong Ryong Cho, Sang Bong Kim, Jin Young Choi, Jung-A Kim, Yeun-young Ko, Ji-eun Kim, Soon Mi Ko, Young Ju Moon, Prashani, Nalin, Yasantha, Mahinda, Herath, Rohan for their helpful suggestions and encouragement. My special thanks goes to Mrs. Whang Ilson, Oh Cheal Hong and Kang Hyun Sil for the help given during difficulties. The financial assistance given by The Korea Science and Engineering Foundation and the support given by the staff of the Graduate School of Cheju National University is gratefully acknowledged. A debt of gratitude is also owed to my teachers, specially the academic staff of University of Colombo, Sri Lanka from whom I learnt the basics of life sciences.