A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Changes of Carotenoid Composition and Related gene Expression during Fruit Development in the Peel of 'Shiranuhi' Mandarin

Quanchun Hong (Supervised by Professor Key Zung Riu)

Department of Agricultural Chemistry

GRADUATE SCHOOL

CHEJU NATIONAL UNIVERSITY

December 2005

Changes of Carotenoid Composition and Related Gene Expression during Fruit Development in the Peel of 'Shiranuhi' Mandarin QUANCHUN HONG

(Supervised by Professor Key Zung Riu)

A thesis submitted in partial fulfillment of the requirement of the degree of Doctor of Philosophy

December 2005

This thesis has been examined and approved by

Chairperson of the supervising committee Professor Kwan Jeong Song, Ph.D., College of Applied Life Sciences, Cheju National University

Professor Key Zung Riu, Ph.D., College of Applied Life Sciences, Cheju National University

Professor Se Yong Lee, Ph.D., College of Life Sciences, Korea University

Professor So Mi Kim, Ph.D., College of Applied Life Sciences, Cheju National University

Professor Ho Bang Kim, Ph.D., College of Natural Sciences, Seoul National University

Department of Agricultural Chemistry GRADUATE SCHOOL CHEJU NATIONAL UNIVERSITY

ABSTRACT

Plant carotenoids are red, orange, and yellow lipid-soluble pigments found in all chloroplasts. Their color masked by chlorophyll in photosynthetic tissues, but in late stages of plant development this pigments contribute to the bright colors of many flowers and fruit. Because color is one of the most important criteria in citrus products, understanding color development of fruits is necessary not only in quality control of products but also in breeding for improvement of fruit quality.

In this study the relationship between changes of carotenoid composition and gene expression related to carotenoid biosynthesis during fruit development was investigated in 'Shiranuhi' mandarin [(*Citrus. unshiu* Marcov x *C. sinensis* Osbeck) x *C. reticulata* Blanco]. The carotenoids in fruit peel at five different developmental stage were analyzed using HPLC and LC/MS. The genes involved in carotenoids biosynthetic pathway were cloned from fruit peel, leaf, and flower by PCR. The gene expression in the peel at each stage of fruit development was analyzed by real time quantitative RT–PCR and Northern blot.

Sixteen species of carotenoids were tentatively identified by UV absorption spectrum analysis for the fractions of fruit peel extracts separated by HPLC. Of the 16 putative carotenoids, seven compounds were identified to be lutein, cryptoxanthin, -carotene, phytofluene, capsathin, zeaxanthin and -carotene, respectively, by LC-MS. The composition of carotenoids in the peel was changed significantly during fruit development, especially at the stage of maturation. The number of carotenoid species identified in HPLC chromatogram was 5 in August, 5 in September, 7 in October, 14 in November and 16 in December, respectively. The levels of β -crypoxanthin, zeaxanthin, phytofulene, capsanthin and ζ -carotene in the peel were low at early stage of fruit development and increased with maturation. In contrary the levels of lutein and -carotene were high at early developmental stage and decreased with maturation.

Total number of 26 genes were cloned. They were glyceraldehyde 3 phosphate dehydrogenase, ent-copaly diphosphate synthase, geranylgeranyl pyrophosphate reductase, HMG CoA reductase, HMG CoA synthase, 1-deoxy-D-xylulose-5phosphate synthase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase, isopentenyl diphosphate isomerase, FPP synthase, squalene synthase, Sesquiterpene synthase 2, (+)-limonene synthase 2, (E)-beta-ocimene synthase, terpene synthase, Geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, lycopen beat cyclase, lycopen epsilon cyclase, beta-carotene hydroxylase, epsiloncarotene hydroxylase, zeaxanthin epoxsidase, viiolaxanthin de-epoxidase, 9,10[9',10']carotenoid cleavage dioxygenase, capsanthin/capsorubin synthase, and tocopherol polyprenyltransferase genes

The expression levels of both β -*CarH* and *PSY* genes in the peel were low at early stage of fruit development and increased during maturation. The highest levels of

these genes were observed in November. In contrast, ε -*CarH* gene expression was high at early stage and decreased with fruit development. *DXPS* gene expression was higher at early stage, while *IPI* gene expression was higher at coloring stage. The simultaneous increases in the expression of β -*CarH* and *PSY* genes, which involved in β , β -xanthophyll synthesis seemed to result in the massive accumulations of β , β -xanthophylls, phytofluene and ζ -carotene in fruit peel during fruit ripening.

CONTENTS

ABSTRACT	i
CONTENTS	. iv
LIST OF FIGURES	. vi
LIST OF TABLES	. ix
ABBREVIATION	X
INTRODUCTION	1
MATERIALS AND METHODS	.11
Plant materials	11
HPLC analysis 제주대학교 중앙도서관	11
LC/MS analysis	14
Gene cloning	
Genes expression assay	16
RESULTS	.20
Analysis of carotenoid composition	20
Identification of carotenoids	23
Cloning of genes involved in carotenoid biosynthesis	29
Expression profiles of genes involved in carotenoid biosynthesis	44

DISCUSSION
Biosynthetic pathway of carotenoids in plants
Changes of carotenoid composition during fruit development56
Changes of carotenoid content during fruit development57
Changes of expression of related genes60
Carotenoid relative content and genes expression
APPENDIX
LITERATURE CITED76
ABSTRACT IN KOREAN88

LIST OF FIGURES

- Figure 1. Isopentenyl pyrophosphate (IPP) serves the central metabolite leading to an immense variety of different isoprenoid compounds in plants.
- Figure 2. Experimental procedures for extraction and analysis scheme of carotenoids from fruit peel of 'Shiranuhi' mandarin.
- Figure 3. Melting curve and standard curve for quantitative analysis by real time PCR.
- Figure 4. HPLC chromatogram of carotenoids extracted from fruit peel of 'Shiranuhi' mandarin at different development stages.
- Figure 5. LC/MS profiles of carotenoid compounds in fruit peel of 'Shiranuhi' mandarin.
- Figure 6. Change of carotenoids composition during maturation in fruit peel of 'Shiranuhi'mandarin.
- Figure 7. Alignment of deduced amino acid sequences of Ci-HMGR with other plant *HMGR* genes.

Figure 8. Alignment of the Ci-IPI amino acid sequences with other plant IPI.

- Figure 9. Neighbor-joining dendrogram based on the combined IPI sequences.
- Figure 10. Comparison of the deduced amino acid sequences of *Ci-HMGR* with other plant *HMGR* genes.

Figure 11. Phylogenetic analysis of *Ci-CCD* and *CCD* from various plant species.

- Figure 12. Phylogenetic tree of *DXPS* nucleotide sequences from plants and *Plasmodium chabaudi chabaudi*.
- Figure 13. Phylogenitic tree of *Ci-e-CarH* gene and related genes from plants.
- Figure 14. Comparison of the nucleotide sequences of *Ci-CarH* with *CHX1* and *CHX2*'Satsuma mandarin (*Citrus unshiu*).
- Figure 15. Phylogenitic tree of Ci-b-CarH gene and related genes from plant.
- Figure 16. Northern blot analysis of carotenoid biosynthetic genes.
- Figure 17. Real time RT-PCR analysis for β -carotene hydroxylase gene expression.
- Figure 18. Real time RT-PCR analysis for ε-carotene hydroxylase gene expression.
- Figure 19. Real time RT-PCR analysis for IPI gene expression.
- Figure 20. Real time RT-PCR analysis for *DXPS* gene expression.
- Figure 21. Real time RT-PCR analysis for phytoene synthase (*PSY*) gene expression.
- Figure 22. Real time RT-PCR analysis for violaxanthin diepoxidase (*VDE*) gene expression.
- Figure 23. Real time RT-PCR analysis for carotenoid cleavage dioxygenase gene expression.
- Figure 24. Carotenoid biosynthetic pathway in plants.
- Figure 25. Changes of carotenoid levels in the fruit peel during fruit development.
- Figure 26. Expression pattern of PSY, β -CarH and ϵ -CarH during development and maturation in citrus fruit peel.

Figure 27 Relationship between xanthophylls accumulation and *b-CarH* expression.

Figure 28. Relationship between β -carotene accumulation and *PSY* expression.

Figure 29. Relationship between utein accumulation and *\varepsilon CarH* expression.

LIST OF TABLES

- Table 1. Genes involved in carotenoid biosynthesis of plants
- Table 2. Operation condition of HPLC for carotenoids analysis
- Table 3. Primer sequences for real time RT-PCR
- Table 4. Spectroscopic characteristics of carotenoids in fruit peel of 'Shiranuhi' mandarin
- Table 5. Identification of carotenoids found in 'Shiranuhi' mandarin
- Table 6. Primer sequences for degenerate PCR
- Table 7. Primer sequences for carotenoid biosynthetic related genes
- Table 8. List of carotenoid biosynthetic genes in 'Shiranuhi' mandarin

ABBREVIATION

ABA	abscisic acid
ADA CarH-b	β-Carotene hydroxylase
CarH-b CarH-e	ε-Carotene hydroxylase
Carn-e CCS	capsanthin/capsorubin synthase
	carotene isomerase
CrtISO	
DDW	double distilled water
DEPC	diethylpyrocarbonate
DMAPP	Dimethylallyl diphosphate
DXP	1-deoxy-Dxylulose 5-phosphate
DXPS	1-Deoxy-D-Xylulose 5-Phosphate Synthase
DXR	1-Deoxy-D-Xylulose 5-Phosphate reductoisomerase
ESI	electrospray ionization
FPPS	farnesyl pyrophosphate synthase
G-3-P	glycerol-3-phosphate
GGPPS	geranylgeranyl pyrophosphate synthase
GPPS	geranyl pyrophosphate synthase
HMG-CoA	3-Hydroxy-3-methylgluatryl coenzyme A
HMGR	HMG-CoA reductase
HMGS	HMG-CoA synthase
HPLC	high-performance liquid chromatography
HPT	homogentisate phytyltransferase
IPI	Isopentenyl diphosphate isomerase
IPP	isopentenyl diphosphate
LC-MS	liquid chromatography-mass spectrometry
LCY-b	lycopene β-cyclase
LCY-e	lycopene ɛ-cyclase
MEP	C-methyl-D-erythritol 4-phosphate
MOPS	morpholinepropanesulfonic acid
MVA	acetate/mevalonate
MVK	MVA kinase
PCR	polymerase chain reaction
PDS	phytoene desaturase
PSY	phytoene synthase
RT-PCR	reverse-transcriptase-PCR
UV	ultraviolet
VDE	violaxanthin de-epoxidase
Vis	visible
ZDS	ζ-carotene desaturase
ZEP	zeaxanthin epoxidase

INTRODUCTION

In general, fruits have provided an important component of human and animal diets (Giovannoni, 2004), fruit development and ripening are unique to plants. Ripening of citrus fruit is accompanied by a series of biochemical changes including color, texture, and accumulation of sugars and reduction of acids. One of the particular features in coloration is accumulation of carotenoids and degradation of chlorophyll that leads to pigmentation of the orange color. Because color is one of the most important and complex attributes of citrus products and is largely due to the presence of diverse carotenoid pigments, considerable attention has been directed toward characterization of carotenoid pigments and their relationship with color development (Lee and Castle, 2001).

Plant carotenoids are red, orange, and yellow lipid-soluble pigments found embedded in chloroplasts and chromoplasts. Their color is masked by chlorophyll in photosynthetic tissues, but in late stages of fruit development the accumulation of these pigments contributes to the bright coloration of the tissues. Carotenoids protect photosynthetic organisms against potentially harmful photooxidative processes and are essential structural components of the photosynthetic antenna and reaction center complexes (Demmig-Adams *et al.*, 1996; Mayne, 1996; Sandmann, 2001). In plants, some of carotenoid compounds are precursors of abscisic acid (Heffron *et al.*, 2003), a phytohormone that modulates developmental and stress processes.

Carotenoids are derived from the isoprenoid pathway. All isoprenoids (terpenoids)

are synthesized through the condensation of isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl diphosphate (DMAPP). A modular assembly process that produces compounds of 5, 10, 15, 20, or more carbons (in multiples of 5) allows the biosynthesis of the basic skeletons for the many and various isoprenoids with a relatively small number of basic reaction steps (Figure 1). In plant, terpenoids are synthesized via two IPP generating pathways, i.e. acetate-mevalonate (Ac-MVA) and non-mevalonate (non-MVA) pathways (Lichtenthaler, 1999; Rohmer, 1999).

The biosynthesis of terpenoids can be conveniently divided into four major processes. The first of which involves the conversion of acetyl-coenzyme A (CoA) to the "active isoprene unit," isopentenyl pyrophosphate (IPP). Second, the action of various transferases are generated from their precursors to form the higher order terpenoid building blocks, geranyl pyrophosphate (GPP; C_{10}), farnesyl pyrophosphate (FPP; C_{15}), and geranylgeranyl pyrophosphate GGPP; (C_{20}). The third, these branch point intermediates may then self-condense (to the C_{30} and C_{40} precursors of sterols and carotenoids, respectively), be utilized in alkylation reactions to provide prenyl side chains of a range of nonterpenoids (including proteins), or undergo internal addition (that is cyclization) to create the basic parent skeletons of the various terpenoid families. Finally, oxidation, reduction, isomerization, conjugation, or other secondary transformations elaborate the unique and manifold character of the terpenoids.

Figure 1. Isopentenyl pyrophosphate (IPP) serves the central metabolite leading to an immense variety of different isoprenoid compounds in plants.

Isoprenoid biosynthetic genes and enzyme The classical Ac-MVA pathway involves condensation of three units of acetyl CoA to form 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), which after reduction yields MVA. MVA is subsequently transformed to IPP via three sequential steps involving phosphorylation and decarboxylation (Figure 1)(Cunningham and Gantt, 1998).

HMG CoA synthase catalyses the condensation of acetyl-CoA and acetoacetyl-CoA to from HMG-CoA. The reduction of HMG-CoA to MVA is catalyzed by HMG-CoA reductase (HMGR), a key regulatory enzyme of this pathway that has been extensively studied (Rodwell *et al.*, 2000).

Pentyltransferase genes There are many types of diphosphate synthaes which are classified based upon the length of the chain. The short chain prenyl diphosphate synthase consists of *GPP*-, *FPP*- and *GGPP*-synthase (Barkovich and Liao, 2001). GPP synthase gene has been cloned from pepper fruit (Kuntz *et al.*, 1992; Hugueney *et al.*, 1996a) and *Arabidopsis* (Bouvier *et al.*, 2000b). FPPS genes catalyzing next step were cloned from *Arabidopsis* (Delourme *et al.*, 1994), white lupine (Attucci *et al.*, 1995), pepper (Hugueney *et al.*, 1996b), guayule rubber (Pan *et al.*, 1996), and rubber tree (Adiwilaga and Kush, 1996). GGPP synthase gene was isolated from pepper (Kuntz *et al.*, 1992), *Arabidopsis* (Bartley *et al.*, 1994; Scolnik and Bartley, 1994), white lupine (Aitken *et al.*, 1995), and *Catharantus roseus* (Bonk *et al.*, 1997) and Brassica campestris (Lim *et al.*, 1996).

IPP biosynthesis In mevalonate pathway key enzymes were HMG-CoA synthase (Montamat *et al.*, 1995), HMG-CoA reductase (Caelles *et al.*, 1989; Enjuto *et al.*, 1994), mevalonate kinase (Riou *et al.*, 1994), and mevalonate diphosphate

decarboxylase (Cordier et al., 1999), which were cloned from Arabidopsis.

IPP pathway occurres in plastid which is mediated by two key step enzymes, 1deoxy-D-xylulose 5-phosphate synthase (*DXPS*) (Estevez *et al.*, 2001b) and 1deoxy-D-xylulose 5-phosphate reductoisomerase (Schwender *et al.*, 1999). DXPS gene was isolated from various plant species such as *M. piperita* (Lange *et al.*, 1998), *Capsicum annuum* (Bouvier *et al.*, 1998), and periwinkle (*Catharenthus roseus*) suspension cultures (Chahed K. *et al.*, 2000; Veau *et al.*, 2000).

Carotenoid and abscisic synthesis genes Phytoene synthase, which catalyzes the first committed step in carotenoid biosynthesis, was first cloned from tomato (Bartley et al., 1992). Subsequent desaturations to yield all-trans-lycopene are catalyzed by phytoene desaturase (Bartley et al., 1991), ζ-carotene desaturase (Albrecht et al., 1995), and carotenoid isomerase (Park et al., 2002). Lycopene is cyclized on both ends to generate either -carotene (Pecker et al., 1996) or carotene (Cunningham et al., 1996). Hydroxylation of -carotene by -carotene hydroxylase results in the formation of zeaxanthin (Sun et al., 1996). Hydroxylation -carotene, possibly by the action of the same -hydroxylase and an as yet of unidentified -hydroxylase, produces lutein, the most abundant xanthophyll in plant plastids. Zeaxanthin epoxidase, which was first cloned from tobacco (Marin et al., 1996) catalyzes the conversion of zeaxanthin to violaxanthin via antheraxanthin as an intermediate. Both violaxanthin and its derivative neoxanthin can be precursors for the carotenoid-derived plant hormone abscisic acid. In potato and tobacco, violaxanthin can be converted to neoxanthin by neoxanthin synthase, an enzyme with high homology to carotenoid cyclases and capsanthin/capsorubin synthase from pepper (Al-Babili *et al.*, 2000; Bouvier *et al.*, 2000a). However, in *A. thaliana*, no additional candidate gene, besides the already characterized carotenoid cyclases, is detectable with reasonable sequence homology, indicating either that a neoxanthin synthase activity may not exist in this organism or violaxanthin is the precursor for ABA biosynthesis. Thus far, two further enzymes involved in the breakdown of xanthophylls to ABA have been cloned: genes for epoxy-carotenoid (neoxanthin) cleavage enzyme (Schwartz *et al.*, 1997) occur as a family of seven members in the *A. thaliana* genome, whereas abscisic aldehyde oxidase (Seo *et al.*, 2000) is encoded by a single-copy gene (Table 1).

Table 1. Genes	involved in	n carotenoid	biosynthesis	of plants

Enzyme	Plant	Gene	DNA clone Type	Accession No.	References
	Arabidopsis	CLa1	cDNA	W43562	Mandel et al. 1996
1-deoxy-D-xylulose-		Tkt2	cDNA	Y15782	Bouvier et al. 1998
5-phosphate	peppermint	Tkt	cDNA	AF019383	Lange et al. 1998
synthases(DXPS)	Periwinkle	Dxs	cDNA	AJ011840	Chahed et al. 2000
	Tomato	Dxs	cDNA	AF143812	Lois et al. 2000
	4 1.1 .		DNA	1 51 400 50	Schwender et al. 1999
1-deoxy-D-xylulose-	Arabidopsis	Dxr(IspC)	cDNA	AF148852	Lange and Croteau 1999 ^a
5-phosphate reduct	peppermint	Dxr	cDNA	AF116825	Veau et al. 2000
isomerase(DXPR)	Periwinkle	Dxr	cDNA	AF250235	Rodriguez-Concepcion et
	Tomato	Dxr	cDNA	AF331705	al. 2001
4-Diphosphocytidyl- 2C-methyl-D- erythritol synthase	Arabidopsis	IspD	cDNA	AF230737	Rohdich et al.2000 ^a
4-Diphosphocytidyl-	Arabidopsis	<i>IspE</i> Pu	tative orthologue	AF288615	Lange and Croteau 1999 ^b
2C-methyl-D-	peppermint	Ipk	cDNA	AF179283	Rohdich et al. 2000 ^b
erythritol kinase	Tomato	IspE	cDNA	AF263101	Kondien et al. 2000
	Arabidopsis	IPI1	cDNA	U48961	Newman et al. 1994
	Arabidopsis	IPI2	cDNA	U43292	Galichet et al. 2005
Isopentenyl	tobacco	IPI1	cDNA	AF019383	Blanc et al. 1996
pyrophosphate	Clarkia	IPI2	cDNA	U48963	Blanc et al. 1995
isomerase	Clarkia	IPI1	cDNA 🥏	X82627	Blanc et al. 1996
	C. xantiana			U48962	Sasaki et al. 1994
	Rice	IPI1 C	GenomicDNA	D28222	Suburi et ul. 1991
Geranyl diphosphate	Arabidopsis	GPPS	cDNA	CAC16849	Schwender et al. 1999
synthase	V.vinifera	GPPS	cDNA	AAR08151	Oswald et al. 2003
synthuse	orange	GPPS	cDNA	CAC16851	Bouvier et al. 2000
Farnesyl	White lupine	Fps	cDNA	X75789	Delourme et al. 1994
pyrophosphate	Pepper	Fps 1	cDNA	U15777	Attucci et al. 1995
synthase	Rubber tree	Fps	cDNA	X84695	Hugueney et al 1996
5,	1110001 1100	Fps	cDNA	Z49786	Adiwilaga and Kush 1996
	Arabidopsis	GGPS1	cDNA	L25813	Scolnik and Bartley 1994 ^b
	Arabidopsis	GGPS1 GGPS2	cDNA cDNA	L25815 U44876	Scolnik and Bartley 1995 ^b
Geranylgeranyl pyrophosphate	Arabidopsis	GGPS3	cDNA	U44877	Scolnik and Bartley 1995 ^b
synthase	Arabidopsis		BenomicDNA		Bartley et al.1994
- ,	Pepper	GGPS GGPS	cDNA cDNA	X80267 X92893	Kunzs et al. 1992

Continued

Enzyme	Plant	Gene	DNA clone Type	Accession No.	References
	Peper	Psy	cDNA	X68017	Romer et al. 1993
	Tomato	Psy 1	cDNA	Y00521	Ray et al. 1987
	Tomato	Psy 1	cDNA	M84744	Bartley. et al. 1992
	Tomato	Psy 1	genomicDNA	X60441	Ray et al. 1992
	Tomato	Psy 2	cDNA	L23434	Bartley and Scolnik 1993
Phytoene synthase	Tomato	Psy 2	genomicDNA	X60440	Ray et al. 1992
5 5	Arabidopsis	Psy	cDNA	L25812	Bartley and Scolnik 1994 ^b
	daffodil	Psv	cDNA	X78814	Schledz et al. 1996
	Citrus sinensis	Psv	cDNA	AY669084	Tao et al. 2004
	Citrus clementina	Psv	cDNA	DQ109038	Distefano et al. 2005
	Citrus sinensis	Psy	cDNA	AY204550	Rodrigo et al. 2002c
	Peper	PDS	cDNA	X68058	Hugueney et al. 1992
	Tomato	PDS	cDNA	M88683	Oswald, M.F.et al. 1992
	Arabidopsis	PDS	cDNA	L16237	Scolnik and Bartley 1993
Phytoene	Maize	PDS	cDNA	L39266	Hable and Oishi 1995
desaturase	Soybeen	PDS	cDNA	M64704	Bartley 1991
	Citrus sinensis	PDS	cDNA	AY669082	Tao et al. 2004
	Citrus sinensis	PDS	cDNA	CAC85666	Marcos 2001
		105	UDINA	CAC65000	Warcos 2001
	Arabidopsis	Zds	cDNA	U38550	Scolnik and Bartley 1995 ^b
ζ- Carotene	Maize	Zds	cDNA	AF047490	Luo and wurtzel 1999 ^b
desaturase	Citrus sinensis	Zds	cDNA	AY675215	Hugueney, P., et al 1996
uesaturase	Citrus sinensis	Zds	cDNA	AY669083	Tao et al. 2004
	Citrus sinensis	Zds	cDNA	CSI319762	Marcos et al. 2001
	Dennen	제조미		¥9(221	U
	Pepper Arabidopsis	Lcy-b	cDNA cDNA	X86221 U50739	Hugueney et al. 1995 Cunningham et al. 1996
	Tomato	Lcy-b			Cunningham et al. 1996
		Lcy-b	cDNA -DNA	X86452	e
Lycopene- β -cyclase	Tomato	Cyc-b	cDNA cDNA	AF254793	Ronen et al. 2000 Cunningham et al. 1996 ^c
Lycopene-p-cyclase		Lcy-b		X81787	
	Daffodil	Lcy-b	cDNA	X98796	Al-Babili et al. 1996 ^b
	Citrus sinensis	Lcy-b	cDNA	AF240787	Xu and Zhang 2001
	Citrus limon	Lcy-b	cDNA	AB114652	Kato et al. 2004
	Citrus unshiu	Lcy-b	cDNA	AB114652	Kato et al. 2004
	Arabidopsis	Lcv-e	cDNA	U50738	Cunningham et al. 1996
	Tomato	Lcy-e	cDNA	Y14387	Ronen et al. 1998 ^b
	Potato	Lcy-e	cDNA	AF321537	Cunningham and Gantt 2001
Lcopene-E- cyclase	Citrus maxima	Lcy-e	cDNA	AY994158	Hashimand Mat Amin 2005°
	Citrus sinensis	Lcv-e	cDNA	AF450280	Xu et al. 2001

Continued

Enzyme	Plant	Gene	DNA clone Type	e Accession No.	References
-carotene hydroxylase	Pepper Pepper Arabidopsis Tomato Tomato Citrus maxima Citrus sinensis Citrus unshiu	Bch Bch 2 Chyb1 CrtR-b1 CrtR-b2 CHX 2	cDNA cDNA cDNA cDNA cDNA cDNA cDNA cDNA	Y09225 Y09722 U58919 Y14809 Y14810 DQ002893 AY623047 AF315289	Bouvier et al. 1998 Bouvier et al. 1998 Sun et al. 1996 Hirschberg 1998 Hirschberg 1998 Hashim et al. 2005° Tao et al. 2004° Kim et al. 2001°
ε-carotene hydroxylase	Pepper Arabidopsis Tobacco tomato Citrus sinensis Citrus unshiu	Zep Zep Zep Zep Zep Zep	cDNA cDNA cDNA cDNA cDNA cDNA	X91491 AF281655 X95732 Z83835 AF437874 AB114654	Bouvier et al. 1996 Audran et al. 2000° Marin et al 1996 Burbidge et al. 1997 Xu et al. 2001 Kato et al. 2004
Zeaxanthin epoxidase	Pepper Arabidopsis Tobacco tomato Citrus sinensis Citrus unshiu	Zep Zep Zep Zep Zep Zep	cDNA cDNA cDNA cDNA cDNA cDNA	X91491 AF281655 X95732 Z83835 AF437874 AB114654	Bouvier et al. 1996 Audran et al. 2000 ^e Marin et al 1996 Burbidge et al. 1997 Xu et al. 2001 Kato et al. 2004
Violaxanthin de- epoxidase	Tobacco Arabidopsis Lettuce Citrus sinensis	Vde1 Vde1 Vde1 Vde1	cDNA cDNA cDNA cDNA	U34817 U44133 U31462 AF444297	Bugos et al. 1998 Bugos et al. 1998 Bugos and Yamamoto 1996 ^c Xu et al. 2001
Capsanthin/capsorubin synthase	Pepper Orange	Ccs Ccs	cDNA cDNA	X76165 AF169241	Bouvier et al. 1994 Xu et al. 1999
neoxanthin cleavage enzyme	Arabidopsis Carrot Carrot Carrot grape	Nc CCD1 CCD2 CCD3 CCD1	genomicDNA cDNA cDNA	BT002102 DQ192203 DQ192204 DQ192205 AY856353	Nguyen et al. 2001 Just et al. 2005 ^c Just et al. 2005 ^c Just et al. 2005 ^c Mathieu et al. 2005

^aThe sequences of genes cited in this table could be accessed in the GenBank database. ^bThe genes were only published on gene register of Physiology. ^cThe sequences of genes were directly submitted in the GenBank database.

Scope of this thesis The characterization of mutants altered in the carotenoid biosynthetic pathway is a useful experimental system to identify molecular mechanisms regulating the process. This approach, however, is limited to a small number of plant species, mainly *Arabidopsis* and tomato (Hirschberg, 2001; Tian *et al.*, 2003).

In this study, composition of carotenoid compounds and the expression of carotenoid biosynthetic genes were investigated in the peel of 'Shiranuhi' mandarin during fruit development. The cDNA related to carotenoid biosynthetic pathways were cloned. Specific primers and degenerate primers were used in this study. Carotenoids were extracted from citrus peel and the compounds were analyzed by HPLC, molecular weight of these compounds was measured by LC/MS. Thus, identification of carotenoids was conducted in citrus peel of five developmental stages. Expression patterns of the carotenoid biosynthesis genes, such as *DXS*, IPP isomerase (*IPI*), phytoene synthase (*PSY*), -carotene hydroxylase, -carotene hydroxylase, neoxanthin cleavage dioxygenase (*CCD*) and violaxanthin deepoxidase (*VDE*) were investigated by real time RT-PCR. This study was conducted to investigate to understand how these changes are related to the evolution of carotenoids composition in the peel of citrus 'Shiranuhi' mandarin during fruit ripening.

MATERIALS AND METHODS

Plant materials

'Shiranuhi' mandarins [(*Citrus unshiu* Marcov x *C. sinensis* Osbeck) x *C. reticulata* Blanco] grown under protected system at the Jeju Agriculture Research & Extension Service were used as materials. The fruit had been harvested periodically from August 2004 to January 2005 at intervals of one month. The leaves and flower of citrus were collected from flowering time and immature fruits were sampled from 20 days after flowering for gene cloning materials. Fruit peel was striped off from sample fruits, immediately frozen in liquid nitrogen. All samples were kept at -80 until use.

HPLC analysis

Extraction of crude carotenoids from fruit peel of 'Shiranuhi' mandarin was conducted as follows (Figure 2). Approximately 2 g of peel was ground using mortar and pestle with liquid nitrogen. The peel powder was extracted with 50 ml extraction solvent (Methanol: Ethyl acetate=1:1 containing 0.1% BHT). The mixture was stirred for 3 hours and filtered through a fitted glass funnel. Extract was filtered under suction. The residue was extracted two times with same extraction solvent indicated above.

The liquid chromatograph apparatus is consisted of a Thermo Separation Products (Table 2).

Instrument:	P4000 gradient pump, UV6000LP detector, SCM1000 vacuum
	degasser, As1000 auto sampler with column oven
Column:	Waters PAH C ₁₈ 5µm 4.6x250mm Column
Mobile phase #A:	ACN:MeOH: Ethyl acetate(80:15:5, v/v)
Mobile phase #B :	ACN:MeOH: Ethyl acetate(60:25:15, v/v)
Gradient:	1% to 99% #A and 99% to 1% #B mobile phase with a linear for 0 to 60 min
Flow rate:	1mℓ/min
Wavelength:	450 nm
Other condition	- Sample inject : 20 μℓ
	- Equilibration time : 3.0 min
	- Run time : 60.0 min.
	- Column temperature: ambient

Table 2. Operation condition of HPLC for carotenoids analysis

Figure 2. Experimental procedures for extraction and analysis scheme of carotenoids from fruit peel of 'Shiranuhi' mandarin.

Solvent run at a flow rate of 3 m ℓ /min and fraction was collected at intervals of one minute. 2 m ℓ of concentrated carotenoids solvent sample was injected. PRO DIGY ODS3 (4) 250 x 10 mm column was used and another condition was same designated above (Table 2).

The diode array detector was programmed to collect absorbance spectra from 300 to 600 nm and to monitor at 450nm for plotting the chromatograms. The wavelength, 450 nm was chosen because it is near the wavelength of maximum absorption for several carotenoids and chlorophyll.

LC/MS analysis

The molecular mass was determined using electrospray ionization mass spectrometry on a Quattro microTM API mass spectrometer (Waters, America). The analytical column was a MSC₁₈ column (4.67 x 50 mm, 5 μ ℓ) (XTerra, Waters, Ireland). The optimized mobile phase was methanol–ethyl acetate (50/50;v/v), and the flow rate was kept at 0.25 ml/min. The fraction of carotenoids collected from microbore HPLC was analyzed by injection of 10 μ ℓ. The spectral analysis was done in a positive ion mode at a capillary voltage of +3.0 kV, a cone voltage of 30 V and at a source temperature of 120°C. The molecular weight of the carotenoid was determined using the maximum entropy deconsolution algorithm (MaxEnt) to transform the range of 500/700 m/z to give a true mass scale spectrum.

Gene cloning

First strand cDNA preparation Total RNA was extracted from the leaves and the green flavedos of fruits. Trizol, chloroform and isopropyl alcohol were used respectively to homogenize the sample, and separate the aqueous phase of RNA and sediment RNA. The RNA pellet was washed once with 75% ethanol and briefly vacuum-dried. In the end, the RNA pellet was dissolved in sterile H₂O treated with diethylpyrocarbonate (DEPC) and stored at -80° C. The concentration of total RNA was measured with UV/VIS spectrometer (PerkinElmer, USA) and the A260/A280 ratio of RNA was approximately 1.8 to 2.0.

The first strand cDNA was synthesized from 5µg of the total RNA with the 20µL of a mixture containing 4 µℓ of 5× reaction buffer, 1 µℓ of M-MuLV reverse transcriptase (MBI), 2 µℓ of dNTP, 1 µℓ of RNAsin (20 U/µℓ), 1 µℓ of Oligod(T)₁₈ (100 pico mol/µℓ), and DEPC-treated H₂O. The reaction step follows: heating at 70°C for 5 min, incubate at 37°C for 5 min, at 42 °C for 60 min, at 70 °C for 10 min. The first strand cDNA was stored at -20 °C until use.

On the basis of the conserved amino acid sequences among plant species in isoprenoid biosynthetic genes, five sets of degenerated primers were designed for each of *HMGS*, *HMGR*, *DXS*, *DXR*, *CCD* and *CPS* (Table 6) and primers were also used in this study (Table 7).

PCR were performed in 50 $\mu\ell$ of reaction mixture with 20 pmol of degenerate primers sets (Table 6) or specific primers sets (Table 7) and conditions were conducted to enhance the expected band. The amplified DNAs were cloned into a

pGEM[®]- T Easy Vector (Promega, USA). The entire nucleotide sequences of the cloned cDNA were determined by dideoxychain termination method (Sanger *et al.*, 1977) using BigDyeTM Terminator v3.0 Sequencing Kit (Amersham Pharmacia Biotech, USA). Nucleotide and amino acid sequences analyzed with NCBI (<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>), ExPASy (<u>http://us.expasy.org/tools</u>), and CAP3 Sequence Assembly Program (<u>http://pbil.univ-lyon1.fr/cap3.php</u>).

Basis on ESTs searching and gene cloning The BLAST (Madden *et al.*, 2003) and <u>HarvEST:Citrus version 0.51</u> were used to search for ESTs (Qian *et al.*, 2002) in the citrus library, and these ESTs were electrically elongated by using the CAP3 Sequence Assembly program (<u>http://pbil.univ-lyon1.fr/cap3.php</u>).

Sequence divergence values among species were calculated using the DNADIST program of PHYLIP 3.65 (<u>http://evolution.genetics.washington.edu/phylip.html</u>) and the numbers of nucleotide substitutions were estimated using Kimura's two-parameter method (Kimura, 1980).

Genes expression assay

In this study, gene expression analyses were performed by Northern blot and real time semi-quantitative RT-PCR.

Northern blot Fifteen microgram of total RNA were separated on 1.2% agarose gel containing 5 mM iodoacetamide in MOPS buffer (pH 7.0). The RNA transferred to a Nytran-Plus membrane (Schleicher & Schuell, USA) by using capillary transfer in 10× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) buffer. The RNA

was cross-linked to the membrane by using a Stratalinker UV cross-linker (Stratagene, USA). Hybridization was carried out with α ³²P labeled DNA probes that was made by PCR. Hybridization overnight at 65°C in hybridization buffer (BD Bioscience, USA). The membranes were exposed to X-ray film (Kodak, USA).

Real time semi-quantitative RT-PCR The frozen material was immediately processed for RNA extraction by Trizol reagent and DNase treatment and first-strand cDNA synthesis followed by M-Mulv reverse transcriptase. The cDNA material was stored at -20 .

Real- time quantitative PCR was performed with a MJ-PTC 200 apparatus. For each combination of primer pairs and cDNA sample the following master mix was prepared fresh on ice: 10 $\mu\ell$ of 2× master mix, 1 $\mu\ell$ of cDNA sample, 4 $\mu\ell$ of DDW and 1 $\mu\ell$ of primer pairs. A master mix for each primer set was prepared such that each well contained the following: 2× SYBR Green master mix (FINNZYMES Finland) that primer and sample combination were run in triplicate in each real time PCR test. The qPCR cycling regimen was 15 min at 95 , 45 cyhcles of a three step temperature series (30 second at 95, 30 second at the optimal annealing temperature for each pair of primer, 30 second at 72). Fluorescence measurements were done and recorded at each 30 second extension step. An optimal annealing temperature was determined for each pair of primer (Table 3). For each reaction tube, a PCR cycle threshold (Ct) was defined as the cycle value at which the second derivatives of the growth function of Sybr green fluorescence was maximal. For relative quantification of expression levels, the value of Ct for each of the target amplified products in each experimental condition were determined using 2^{- Ct}

method. The 2^{-Ct} method is a convenient way to analyze the relative changes in gene expression from real time quantitative RT-PCR

Primer	Forward/ reverse	Primer sequence	At()	Amplication length (bp)
Ci-IPP	F	GGGGGAGCATGAACTTGACTAC	60	183
CI-IFF	R	TGTCCACAACCAGTCTGAATCC	00	165
Ci-CCD	F	TACCACTGGTTTGATGGAGATG	58	158
CI-CCD	R	AATAGCCCCTTAAGGTCTCCAA	38	138
Ci-PSY	F	CATCTGTCCTCCTACACCACAC	58	186
CI-PS I	R	GTGATCTTGATGTGAACCCAGA	38	180
Ci-VDE	F	CAAAGACTTCAATGGGAAGTGG	58	176
CI-VDE	R	CAAATCTCTGCATAGCTGATCG	38	1/0
Ci-DXPS	F	ACACCATTGTTGGACACGATTA	55	155
CI-DAPS	R	AGCTCCACCACTCCTAAGTTTG	55	155
C. C. II	F	TCAATGCGTCTCTACCCACATCC	(0)	102
Ci-eCarH	R))	CATGGGGCCTTCCAAGTCAAAC	60	192
	F	CGATGTGTTTGCCATAATCAAC	E서괁	175
Ci-bCarH	R	AACCTTTTGTGAACGAGACCAT	LIBRARY	165
C: CADDU	F	CTGTCACTGTTTTCGGCGTTAG	50	150
Ci-GAPDH	R	TGGGGGCTGAGATGATAACTTT	58	156

 Table 3. Primer sequences for real time RT-PCR

Following amplification, samples were slowly heated in order to detect the loss in fluorescence that occurs at the melting temperature, which is characterized by a specific melting peak for each PCR product (Figure 3). The sharp and fully overlapping melting peak provides the specific sequence confirmation for the amplified PCR product with each dsDNA product.

Figure 3. Melting curve and standard curve for quantitative analysis by real time PCR. A. Fluorescence versus temperature for GAPDH. Following amplification, samples were slowly heated in order to detect the loss in fluorescence that occurs at the melting temperature (Trentmann and Kende) the melting profile showed a (Trentmann and Kende) 79 for GAPDH. B. The curve derives from plotting Ct against log fluorescence. B. Standard curve for the PCR efficiency to quantitation, linearity and reproducibility.

RESULTS

Analysis of carotenoid composition

Carotenoids analysis was performed by HPLC. Analysis condition showed in Table 2. Figure 4 shows chromatograms of 'Shiranuhi' mandarin peel samples using UV absorbance at 450 nm. A wavelength of 450 nm was chosen to maximize absorbance in the 300-600 nm region of the visible spectrum, which is an optimal area for studying carotenoids of 'Shiranuhi' mandarin peel.

HPLC spectral characteristics from the peaks labeled 1-16 in Figure 4 are shown in Table 6. Composition of carotenoid was increased during maturation and ripening (October, November and December). Carotenoid peaks from August to December were detected 5, 7, 11, 14 and 14 peaks, respectively. Carotenoid of relative quantity also changed during development and maturation of citrus fruit. For example, the relative amount of peaks 1 and 11 were higher in early stage than in later stage. By contrast, peaks 3 and 5 were higher in later stage than in early stage.

-21-

Figure 4. HPLC chromatogram of carotenoids extracted from fruit peel of 'Shiranuhi' mandarin at different development stages. A, August; B, September; C, October; D, November; E, December. Numbers above the arrows indicate carotenoids peak number.

Peak No.	Tentative identification	Retention time	Observed Max ABS wavelength	Peak ratio
1	Lutein	4.808	417.440.471	73
2	Unknown	5.673	420.444.470	37
3	z-carotene	12.923	428.457.484	
4	Unknown	14.15	420.443.471	62
5	β -cryptoxanthin	16.698	413.439.467	72
6	phytofluene	19.43	403.424.450	86
7	capsanthin	20.042	414.439.467	75
8	zeaxanthin	23.092	413.437.446	61
9	Unknown	24	413.437.468	72
10	Unknown	24.878	425.449.455	52
11	β-carotene	26.118	428.454.480	5
12	Unknown	35	410.439.468	65
13	Unknown	40.353	421.447.471	88
14	Unknown	44.23 = 0	413.438.466	81
15	Unknown	46.787	418.454.469	21
16	Unknown	56.958	417.433.468	79

 Table 4. Spectroscopic characteristics of carotenoids in fruit peel of 'Shiranuhi'

 mandarin

Identification of carotenoids

Spectral characteristics are compared with those reported in the literature showing that the chosen peaks matched reported (Table 5) and confirmed the peaks with molecular mass species of carotenoid. The fraction was examined with LC/MS. The peak 1 elutes and the mass spectrum of the elution showed the molecular ion at mass-to-charge ratio (m/z) $569([M+H^+])$. The absorption maximum (422,448 and 476nm) were close to those of lutein reported previously (Tai and Chen, 2000). The

Peak 3 elutes and the mass spectrum of the elute showed the molecular ion at massto-charge ratio (m/z) 541([M+H+]) (Figure 5). It was close to those of ζ -carotene reported previously (Tai and Chen, 2000). Composition of carotenoid was increased during ripening of citrus such as capsanthin, β -cryptoxanthin and zeaxanthin.

 Table 5. Identification of carotenoids found in 'Shiranuhi' mandarin

Peak	Carotenoid compound	Max ABS wavelength	/ v100%	M.W.	Max ABS wavelength /	x100%	Max ABS wavelength	/ x100%
	compound	wavelength	A10070		Rodrigo,20	003	Britton,	1995
1	Lutein	422.448.476	54	568.88	418.444.472	65	421.445.474	60
2	- Cryptoxanthir	428.457.484	30	552.85			435.459.485	27
3		428.454.480	5	540			378.400.425	
4	Phytofluene	399.420.444	67	542	329.346.364	거관	331.348.367	90
5	Capsanthin	420.442.471	64	584.85	L UNIVERSITY	LIBRARY	450.475.505	
6	Zeaxanthin	400.420.446	72	568.88	430.450.478	35	428.450.478	26
7	-carotene	424.456.480		536.88	426.451.473	31	425.450.477	25

Peak ratio is % / for carotenoids (Britton, 1995)

Figure 5. LC/MS profiles of carotenoid compounds in fruit peel of 'Shiranuhi' mandarin. Positive ion electrospray mass spectra of the biosynthetic product (A) capsanthin, (B) β -cryptoxanthin, (C) ζ -carotene (D) β -carotene (E) phytofluene recoded during the LC/MS analysis shown in the chromatogram.

Figure 6. Change of carotenoids composition during maturation in fruit peel of 'Shiranuhi'mandarin.

Lutein, β -carotene, β -crypoxanthin, zeaxanthin, phytofulene, capsanthin, and ζ carotene were identified by LC/MS analysis and spectrum characterization. During ripening, content of lutein and β -carotene decreased and content of β -crypoxanthin, zeaxanthin, phytofulene, capsanthin and ζ -carotene increased (Figure 5).

Cloning of genes involved in carotenoid biosynthesis

On the basis of the conserved amino acid sequences among plant species in carotenoids biosynthetic genes, degenerate primers were designed for each of *HMGS, HMG-R, CPS, GGPP, CCD* and *GAPDH* (Table 6). Reverse transcription PCR was performed using total RNA from leaves, flowers and fruit peel of citrus 'Shiranuhi' mandarin. Also IPP isomerase gene was cloned on the basis of EST database of NCBI.

Primer	Primer sequence (5'-3')	At()
GAPDHDE-UP(SP26)	GAGCTGGTGGCCGTGAAYGAYCCNTT	
-DN(EP265)	CGGACTCCTCCTTGATGGCNGCYTTDAT	
-DN(SP42)	CACCGACTACATGACCTACATGTTYAARTA	62
-DN(EP265)	GGGCGATGCCGGCYTTNGCRTC	
HMGS DE-UP(SP8)	TCCTGGCCATGGACRINIAYTTYCC	
UP(SP122)	GCCGCCCTGTTCAACTGYGINAAYTGGG	
DN(EP260)	CGAAGGACTTCTGCACCARYTTRTTRTA	52
DN(EP445)	CATCAGCTTCATGGTCTCCACRAANTYYTC	
HMGR-DEUP(SP100)	CTTCATCTACCTGCTGGGCTTYTTYGGNATHG	
-DEUP(SP246)	CGAGATGCCCATCGGCTAYGTNCARNT	
-DEDN(EP380)	GACACCATGTTCATGCCCATNGCRTC	52
-DEDN(EP507)	GCCGTCGTTCACGGCYTCNADCAT	
CPSDE-UP	CCCGTGGACCTGTTCGARCAYATNTGG	
-DN	AGGGTCTTGCCGATCCANACRTC	
GGDR DE-UP1	GCGGCGGCCCNGCNGGNGG	58
DE-UP2	TGAAGCCACACGAGTACATHGGNATGGT	
DE-DN1	TGCCGGTGCCCACNGCNACRTG	
DE-DN2	TCGTCGGCGCACATYTCNACRAA	52
Ci-CCD-DEUP(SP70)	GCCIGAGIGCCIGAAIGGNGARITYGT	
-DEUP(SP170)	CACTGCTAATACTGCTATGGTTTACCAYCAYSRNAA	
-DEDN(EP490)	GAACAAAGAAAATCAGGTAGCCATCRTCYTCYTC	

 Table 6. Primer sequences for degenerate PCR

P	rimer	Primer sequence (5'-3')	At()
Ci-PDS	F	ATTGCTTTCAAACGCGAAAT	52
CFPDS	R	ATAAACCCTGCCTCCAGCTT	
Ci-VDE	F	TGCGGTCTCAAGAAGAAGTG	49
C-VDE	R	ATTGCTGCCCCGATAGTACA	
Ci-ZEP	F	ATCGTTTCATCTATGTTCTACAATTCA	50
C-ZEP	R	TTACACTGCCTGAAGAATTTCAC	
Ci-FPS	F	ATGAGTGATCTGAAGTCAAGATTCA	51
CFFP5	R	TCACTICIGICICITIGIAIAICITIG	
Ci-LYC-e	F	AAAAACACTGGCAAATGCTC	51
C-LICE	R	TCACGTATGGCAATCCAAAA	31
Ci-LYC-b	F	GCCATGGATACTGTACTCAAAACTC	
CFLIC-0	R	GGICACCITAATCIGIATCITGIACC	51
Ci-GPPS	F	ATGGTTATTGCTGAGGTTCCTA	
CFUFFS	R	TTAAACAAAAACTCTGGCACAATG	51
Ci-SQUAN	F	ATGGCTCTTAATCTGCTATCTTCA	51
CFSQUAN	R	GGACAAAACACGAGCTTTAGTAAT	50
Ci-PSY	F	TTTCTTTACCAACATCAAACCC	52
CFPS1	R	GAGCTCATCTGTCCTCCTACAC	
Ci-CarH-b	F	ATGGCGGTCGGACTATTGGC	55
C-Caln-0	R	TATTTTTTCATTAATAACACTATTG	
Ci-carH-e	F	AAAAACACTGGCAAATGCTC	51
Charme	R	TCACGTATCGCAATCCAAAA	31
C DI	F	GCCTCTGTCCTTGAGAGGTG	
Ci-IPI	R	CAGCAAATGAGGCTTCACAA	51

Table 7. Primer sequences for carotenoid biosynthetic related genes

Ci-HMGR (3-hydroxy-3-methylglutaryl-Coenzyme A reductase) was 524 bp of length. This partial gene showed that sequence identity was 82% with HMGR1 from *Hevea brasiliensis*. The deduced amino acid sequences of clone *Ci-HMGR* was compared with other plant *HMGR* and showed high sequence similarly those of *Cucumis melo* (86%, BAA36291), *Arabidopsis thaliana* (82%, NP_177775), *Raphanus sativus* (83%, CAA48611), *Hevea brasiliensis* (86%, CAA38469), *Gossypium hirsutum* (83%, O64967), and *Camptotheca acuminata* (83%, AAB69726) (Table 6).

Figure 7. Alignment of deduced amino acid sequences of Ci-HMGR with other plant *HMGR* genes. The amino acid sequences of HMGR from *Cucumis melo* (BAA36291), *Arabidopsis thaliana* (NP_177775), *Raphanus sativus* (CAA48611), *Hevea brasiliensis* (CAA38469), *Gossypium hirsutum* (O64967), *Camptotheca acuminata* (AAB69726) and *Gossypium hirsutum* (AAF69804 and AAG32923) are shown. The alignment was created with GeneDoc program. Gaps in the sequences are indicated by dashes. Numbers of nucleotides are indicated on the right margin.

The full length cDNA was cloned from 'Shiranuhi' mandarin flower. It was identical to the full-length cDNA based on assembling ESTs. The 705 bp of PCR product was sequenced and the result was identical to this gene. The deduced amino acid sequences were alignment with IPI genes from *Camptothecine*, tobacco and tea tree (Figure 8 and Figure 9).

Figure 8. Alignment of the Ci-IPI amino acid sequences with other plant IPI.

The alignment was made using GeneDoc program. The nucleotides sequences of *IPI* from accession no. AAB94132 (*Camptotheca acuminata*), BAB40974 (*Nicotiana tabacum*), AAL91979 (*Melaleuca alternifolia*) are shown. Gaps in the sequences are indicated by dashes. Numbers of nucleotides are indicated on the right margin.

A phylogenetic tree of the *IPI* isomerase genes was generated on the basis of nucleotides sequence. Pylogenetic analysis indicates that the *Ci-IPI* in citrus and the IPI of *Arachis stenosperma* and *Pueraria nontana* share a common origin (Figure 9).

Figure 9. Neighbor-joining dendrogram based on the combined IPI sequences.

Bacillus cereus was used as an outgroup. The tree was calculated on the basis of a

CLUSTALW 1.8 alignment by the program PHYLIP.

We isolated 1181 bp length of *HMGS* (3-hydroxy-3-methylglutaryl-Coenzyme A synthase) gene, it showed 85% identity on nucleotides sequence level with HMG-CoA synthase 2 gene from *Hevea brasiliensis*. The deduced amino acid sequence of the *Ci-HMGS* has high similarity to those of *H. brasiliensis* (89%, accession No. AAS46245), *Brassica juncea* (85%, accession No. AAF69804, 83%, accession No. AAG32923), *Arabidopsis thaliana* (82%, accession No. CAA58763), and *Oryza sativa* (81%, accession no. BAD466961) (Figure 10).

Figure 10. Comparison of the deduced amino acid sequences of *Ci-HMGR* with other plant *HMGR* genes. The amino acid sequences of HMGS from *Hevea* brasiliensis (AAS46245 and AF429389), Brassica juncea (AAF69804and AAG32923), Arabidopsis thaliana (CAA58763), and Oryza sativa (BAD46696) were alignmented. The alignment was made using GeneDoc program. Gaps in the sequences are indicated by dashes. Numbers of nucleotides are indicated on the right margin.

Figure 11. Phylogenetic analysis of *Ci-CCD* and *CCD* from various plant species.

A phylogenetic tree of the *CCD* genes was generated on the basis of nucleotide sequences alignment.

A citrus cDNA clone *Ci-CCD* showing 81% nucleotide identity to *Vitis vinifera* 9,10 [9',10'] carotenoid cleavage dioxygenase (*CCD1*) (Accession No. AY856353) was found to contain an 1197 bp of insert and the deduced amino acid sequences showed 91% with that of *Vitis vinifera*. The phylogenetic dendrogram indicated that *Ci-CCD* isolated from citrus could be clustered with a group including *Vitis vinifera*, *Pisum sativum* and *Phaseous vulgaris* (Accession No. AB080191, AY856353, and AY029525) (Figure 11).

Analysis of the cDNA of *Ci-DXPS* revealed that it has similarity with 1-deoxy-Dxylulose 5-phosphate synthase gene of *Medicago truncatula* (*dxs*2 gene, Accession No. AJ430048; 80% identity to *M. truncatula dxs*2 gene). The phylogenetic dendrogram showed that *Ci-DXPS* groups with those from *Medicago truncatula* (AJ011840) and *Catharanthus roseus* (AJ430048) (Figure 12).

A cDNA clone *Ci-b-CarH* showed 99% nucleotide identity with citrus *CHX1* and *CHX2*, 98% nucleotide identity with citrus beta-carotene hydoxylase gene of *Citrus maxima*. Phylogeneic analysis of *Ci-b-CarH* gene indicated that it belongs to β -carotene of citrus hydroxylase gene group.

Figure 12. Phylogenetic tree of *DXPS* nucleotide sequences from plants and *Plasmodium chabaudi chabaudi*. The dendrogram was created using the PHYLIP program.

- Arabidopsis thaliana (BX822288)

It was found that nucleotide sequences of the *Ci-e-CarH* gene grouped with epsilon ring hydroxylase genes from carrot and tomato (Figure 13).

Phylogenetic analysis of *Ci-b-CarH* gene and two CHX genes (*CHX1* (AF296158), *CHX2* (AF315289)) of *Citrus. unshiu* indicated that *Ci-b-CarH* is all most similar to the *CHX1* and *CHX2* (Figure 15).

Other isolated genes listed in Table 8 and the nucleotide sequences in Appendix.

Figure 14. Comparison of the nucleotide sequences of *Ci-CarH* with *CHX1* and *CHX2*'Satsuma mandarin (*Citrus unshiu*). *CHX1* (AF296158) and *CHX2* (AF315289) is carotene hydroxylase gene from *Citrus unshuu*.

Figure 15. Phylogenitic tree of Ci-b-CarH gene and related genes from plant.

Pantoea ananatis was used as outgroup.

Abbreviation	Gene name	Length (bp)	Position of Start and End	Gene source	Expected Full length (bp)
GAPDH	Glyceraldehyde 3 phosphate dehydrogenase	684	170-853	Leaf cDNA	1-1339
CPS	ent-copaly diphosphate synthase	554	1005-1566	Leaf cDNA	1-2478
GGDR	geranylgeranyl pyrophosphate reductase	640	645-1284	Leaf cDNA	41-1441
HMGR	HMG CoA reductase	524	582-1105	Flower cDNA	42-1769
HMGS	HMG CoA synthase	1181	334-1524	Flower cDNA	317-1711
DXPS	1-deoxy-D-xylulose-5-phosphate synthase	1899	37-1926	GeneBankCNU	37-2187
DXPR	1-deoxy-D-xylulose-5-phosphate reductoisomerase	1054	420-867,1089-1473	GeneBankCNU	162-1622
IPI	isopentenyl diphosphate isomerase	699	1-669	Flower cDNA	1-669
FPS	FPP synthase	1126	103-1228	Flower cDNA	103-1228
Squa	squalene synthase	420	9-428	Flower cDNA	partial
SEQS	Sesquiterpene synthase 2	1005	669-1671	GeneBankCNU	1-1674
LIMS	(+)-limonene synthase 2	1827	1-424,1418-1827	GeneBankCNU	1-1827
β-OCIS	(E)-beta-ocimene synthase	334	1517-1850	GeneBankCNU	1-1854
TPS	terpene synthase	1846	22-704,1127-1867	GeneBankCNU	64-1701
GGPPS	Geranylgeranyl pyrophosphate synthase	181	1-181	GeneBankCNU	1-1113
PSY	phytoene synthase	452	220-671	Leaf cDNA	112-1422
PDS	phytoene desaturase	1761	47-747,1109 -1808	Flower cDNA	151-1821
LYC-β	lycopen beat cyclase	1525	403-1088,1284-1928	Flower cDNA	406-1920
LYC-£	lycopen epsilon cyclase	1273	13-655,718-1285	Leaf cDNA	1-1314
β-CarH	beta-carotene hydroxylase	1115	1-354,374-1134	Leaf cDNA	131-1066
e-CarH	epsilon-carotene hydroxylase	512	1007-1620	Leaf cDNA	1-1620
ZEP	zeaxanthin epoxsidase	1988	6-708,1290-1993	Flower cDNA	1-1995
VDE	viiolaxanthin de-epoxidase	409	1-409	Flower cDNA	1-409
CCD	9,10[9',10']carotenoid cleavage dioxygenase (CCD1)	1244	392-1638	Leaf cDNA	1-1963
CCS	Capsanthin/capsorubin synthase	1655	1702-2407,2689-3356	GeneBankCNU	1722-3233
HPT	tocopherol polyprenyltransferase	447	495-777,824-997	GeneBankCNU	1-1221

Table 8. List of carotenoid biosynthetic genes in 'Shiranuhi' mandarin

-43-

Expression profiles of genes involved in carotenoid biosynthesis

Northern blot Analysis Expression pattern of genes involved in carotenoid biosynthesis was investigated by Northern blot. During ripening of citrus (Novermber), expression of β -carotene hydroxylase was increased (Figure 16 A). The transcripts level of ε -carotene hydroxylase and isopentenyl diphosphate isomerase showed not change in all investigated stages (Figure 16 B, C).

Figure 16. Northern blot analysis of carotenoid biosynthetic genes.

Real time RT-PCR For each reaction tube a PCR cycle threshold (Ct) was defined as the cycle value at which the second derivatives of the growth function of Sybr green fluorescence was maximal. For relative quantitative of expression levels, the value of Ct for each of the target-amplified products in each experimental condition was determined. The 2^{- Ct}—method is a convenient way to analyze the relative changes in gene expression from real time quantities PCR experiments. The method for copy number determination by real time PCR is the comparative Ct (2^{- $\Delta\Delta$ Ct}) method. While requiring an endogenous control and a calibrator, it differs from the relative standard method by relying on equal PCR efficiencies with the sample gene and the endogenous control (reference) genes (Livak and Schmittgen, 2001). If all amplicons amplify with the same efficiency, the difference Δ Ct between the Ct for the sample (Ct_s) and the Ct for the reference control (Ct_r) is constant, independent of the amount of initial cDNA: Δ Ct = Ct_s - Ct_r

As for quantification with relative standards is homozygous a stage sample in this experiment. Then, all samples with same Δ Ct as the calibrator (one sample) calculate Δ Ct = Ct_s – Ct_c. We carried out real time RT-PCR for seven genes, β -carotene hydroxylase, -carotene hydroxylase, isopentenyl pyrophosphate isomerase, DXS, phytoene synthase, violaxanthin diepoxidase and neoxanthin dioxygenase. Relative transcription level of these genes was compared with Ct (2^{- $\Delta\Delta$ Ct}) method.

 β -carotene hydroxylase gene expression The gene expression was increased during fruit ripening as shown in Figure 17. This result is closely similar to Northern blot analysis.

expression.

(A) Standard curve for β -carotene hydroxylase gene expression. The curve derives from plotting Ct against log quantity of fluorescence. The result shows R² >0.99 with 97% efficiency of the PCR, with a slope of -0.2725 (B) Real time RT-PCR of the β - carotene hydroxylase gene expression for in citrus peel. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units (n=3 per time point).

-carotene hydroxylase gene expression by real time RT-PCR Real time PCR analysis revealed that expression of -carotene hydroxylase gene was decreased during development and ripening of citrus fruit (Figure 18).

(A) Standard curve for -carotene hydroxylase gene expression. The curve derives from plotting Ct against log quantity of fluorescence. The result shows R2 >0.99 with 97% efficiency of the PCR, with a slope of -0.3239 (B) Real time RT-PCR of the -carotene hydroxylase gene expression for in citrus peel. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units (n=3).

Isopentenyl pyrophosphate isomerase (IPP) gene expression by real time RT-

PCR Gene expression of Isopentenyl pyrophosphate isomerase (*IPP*) was increased in coloration stage of citrus fruit.

Figure 19. Real time RT-PCR analysis for IPI gene expression.

(A) Standard curve for IPP gene expression. The curve derives from plotting Ct against log quantity of fluorescence. The result shows R2 >0.99 with 97% efficiency of the PCR, with a slope of -0.2725 (B) Real time RT-PCR of the IPP gene expression for in citrus peel fruit during development and maturation. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units (n=3).

DXP synthase gene expression by real time RT-PCR Expression of DXP synthase gene showed no difference in peel of citrus during development and maturation.

C(T) Graph y = -0.3239x + 1.67; R2= 0.998

Figure 20. Real time RT-PCR analysis for DXPS gene expression.

(A) Standard curve for DXPS gene expression. The curve derives from plotting Ct against log quantity of fluorescence. The result shows R2 >0.99 with 97% efficiency of the PCR, with a slope of -0.3239. (B) Real time RT-PCR of the DXPS gene expression for in citrus peel fruit during development and maturation. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units (n=3).

Phytoene synthase gene expression by real time RT- PCR Phytoene synthase

gene expression was increased in coloration stage (November).

C(T) Graph y= -0.2583x + 1.47; R2= 0.982

Figure 21. Real time RT-PCR analysis for phytoene synthase (PSY) gene expression.

(A) Standard curve for PSY gene expression. The curve derives from plotting Ct against log quantity of fluorescence. The result shows with a slope of -0.2583 (B) Real time RT-PCR of the PSY gene expression for in citrus peel fruit during development and maturation. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units (n=3).

Violaxanthin diepoxidase gene expression by real time RT-PCR Expression of VDE gene showed differences in citrus peel during development. Expression of this gene was higher at early fruit stage compared to mature green (October) and ripening (November and December) stages in fruit peel.

expression.

(A) Standard curve for DXPS gene. The curve derives from plotting Ct against log quantity of fluorescence. The result shows $R^2 = 0.982$ with a slope of -0.2583 (B) Real time RT-PCR of the VDE gene expression for in citrus peel fruit during development and maturation. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units (n=3).

Carotenoid cleavage dioxygenase gene expression by real time RT-PCR Expression of carotenoid cleavage dioxygenase gene showed no difference in fruit development stages.

C(T) Graph y = -0.2583x + 1.47; R2= 0.982

Figure 23. Real time RT-PCR analysis for carotenoid cleavage dioxygenase gene

expression.

(A) Standard curve for DXPS gene. The curve derives from plotting Ct against log quantity of fluorescence. The result shows $R^2 = 0.982$ with a slope of -0.2583 (B) Real time RT-PCR of the CCD gene expression for in citrus peel fruit during development and maturation. The level of the gene expression was calculated after normalizing against GAPDH in each sample and is presented as relative mRNA expression units nt (n=3).

DISCUSSION

Biosynthetic pathway of carotenoids in plants

The initial steps of the pathway involve condensation of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which after reduction yields MVA. In the next two steps, mevalonate kinase and mevalonate 5-diphosphate kinase catalyze MVA to form mevalonate 5-diphosphate, which is subsequently decarboxylated to yield IPP. The mevalonate pathway provides IPP for the synthesis of some sesquiterpenes, sterols, and triterpenes and is localized in the cytosol (Figure 24).

Higher plants contain plastidic DXP/MEP pathway for isoprenoid biosynthesis. In this pathway, the initial step is condensation of pyruvate and glyceral- dehyde-3-phosphate which yields DXP; the latter product can be converted to IPP. Subsequent reactions of this pathway involve transformation of DXP to MEP, which after condensation with CTP forms CDP-ME. Thereafter, CDP-ME is phosphorylated to CDP-ME2P and to ME-2, 4CPP. hydroxymethylbutenyl 4-diphosphate synthase catalyzes the formation of HMBPP from ME-2,4cPP, which is subsequently converted to IPP and DMAPP in a certain ratio (Cunningham *et al.*, 2000; Rohdich *et al.*, 2002).

Figure 24. Carotenoid biosynthetic pathway in plants.

IPP is the basic C5 building block that is added to prenyl pyophosphate cosubstrates to form longer chains. Condensation of dimethylallyl diphosphate with one IPP in a head-to tail fashion generates GPP; addition of a second IPP unit generates FPP; a third IPP generates GGPP.

Isoprene, the simplest of the terpenoids, is synthesized directly from DMAPP by diphosphate elimination. The reaction is catalyzed by the enzyme isoprene synthase (Silver and Fall, 1991; Kuzma and Fall, 1993) Higher terpenoids are generated via the action of prenyl transferases, which perform multistep reactions beginning with DMAPP (or a longer allylic pyrophosphate) and IPP to form higher isoprenologs, generally with all *frans* geometry. GPP synthase forms the C₁₀ intermediate (GPP) from DMAPP and IPP. This synthase has been characterized in a number of plant species and is clearly separable from FPP synthase (Endo and Suga, 1992). FPP synthase forms the C15 intermediate (FPP) in two discrete steps: first DMAPP and IPP form GPP, which remains bound to the enzyme; then another IPP is added to yield FPP. GGPP synthase operates in a similar manner, via three condensation steps, to form the C20 intermediate. Rubber (cis-l, 4-polyisoprene) is a linear polyprenoid consisting of 400 to more than 100,000 isoprene units. Rubber biosynthesis is primed by a trans-allylic diphosphate initiator that is then extended by a cisprenyltransferase, the rubber transferase (Cornish, 1993). In contrast to the linear polymer rubber, most terpenoids are cyclic and the various classes are formed from the branch point C₁₀, C₁₅, C₂₀, and C₃₀ intermediates by enzymes called cyclases or

synthases. The reactions of the monoterpene cyclases GPP is first ionized and isomerized to enzyme-bound linally pyrophosphate (LPP), the tertiary allylic isomer. This preliminary isomerization step is necessary because the trans-2, 3-double bond of the geranyl precursor prevents direct cyclization. Ionization of LPP promotes cyclization to the terminal double bond to yield the enzyme-bound α -terpinyl cation, a universal intermediate of these cyclization reactions.

Changes of carotenoid composition during fruit development

The composition of carotenoids was analyzed in the peel of 'Shiranuhi' mandarin at five developmental stages: August September, October, November and December fruit. With an HPLC analysis using a C₁₈ column and by comparison of spectra with those spectroscopic characteristics of peak identify 16 individual carotenoids. Also, -Cryptoxanthin, ζ -Carotene, Phytofluene, Capsanthin, β -carotene were confirmed by LC/MS. The chromatographic and spectroscopic features of more relevant carotenoids found in the peel of citrus 'Shiranuhi' mandarin are summarized (Table 4).

The characters of carotenoid composition in peel during development and ripening of the 'Shiranuhi' mandarin were variety of carotenoids (Figure 4). The main carotenoids identified in the peel of early stage (August) were lutein and β -carotene.

Satsuma mandarin (*Citrus unshiu*) accumulates a large amount of carotenoids that lead to an orange pigmentation (Ikoma *et al.*, 2001). The main carotenoid was lutein and violaxanthin in flavedo from immature green citrus fruits (*C. sinensis*) (Rodrigo *et al.*, 2004) and the fruit assumed yellow color, but the ripe tomato fruit accumulated large amounts of lycopene (Bramley, 2002) and the fruit color was red.

Changes of carotenoid content during fruit development

HPLC profiles of the carotenoids from citrus peel were analyzed at five developmental stages. Six carotenoid pigments were identified. In green stages fruit (August, September and October), main carotenoids were β -carotene and lutein. However, in ripening stages (November and December), several types of carotenoid were detected. The number of carotenoid forms was increased during coloration and ripening stages of 'Shiranuhi' mandarin. The β -crypoxanthin, zeaxanthin, phytofulene, capsanthin and ζ -carotene were newly detected and relative contents of lutein and β -carotene were decreased during this stage (Figure 25 A, B). It was reported that lutein and α -and β -carotene were main carotenoids while β -cryptoxanthin and zeaxanthin were not detectable in peel of immature green fruits. In peel of mature fruit, α -and β -carotene were hardly detectable, but lutein, zeaxanthin and especially β -cryptoxanthin were the major carotenoids (Ikoma *et al.*, 2001).

From peak area percentages indicated that lutein was a predominant carotenoid form at early stage (August), approximately 50%. In contrast, There was no predominant carotenoids in coloration stages (November and December), but could detect several kinds of carotenoid form. The results agree with the previous report in orange (*C.sinensis*) (Rodrigo *et al.*, 2003; Kato *et al.*, 2004; Rodrigo *et al.*, 2004) and in Satsuma mandarin (*C.unshiu*) (Kato *et al.*, 2004).

Figure 25. Changes of carotenoid levels in the fruit peel during fruit development.

Changes of expression of related genes

Expression of both β -*CarH* and *PSY* gene increased during maturation, the highest transcript level was showed in November. After that time decreased expression level of these genes. On the other hand, ε -*CarH* gene expression was showed a tendency to reduce along with the fruit development and maturation (Figure 26). During the orange stage, β -*CarH* and *PSY* gene controlling β , β xanthophylls synthesis were increased simultaneously in the expression of genes to participate, led to the massive accumulation of β , β -xanthophylls in the flavedo of satsuma mandarin and Valencia orange (Kato *et al.*, 2004). This result agrees with our experiments but according to another report the gene expression of *PSY* increased in the peel with the onset of coloration, whereas the genes expression of β -*CarH* was constant in all stages during fruit development (Kim *et al.*, 2001).

Figure 26. Expression pattern of PSY, β-CarH and ε-CarH during development and maturation in citrus fruit peel.

In plants, the five-carbon compound isopentenyl diphosphate (IPP) and its allylic isomer and dimethylallyl pyrophosphate (DMAPP) are served as substrates for the synthesis of carotenoids and other isoprenoids. DXP catalyzed by DXPS is utilized in plastidic IPP biosynthesis (Estevez *et al.*, 2001a).

DXPS gene expression was the highest in August than other fruit developmental stages, while *IPI* gene expression was the highest in November (Figure 26). This result suggests that expression of *DXPS* gene was not changed in coloration stage but *IPI* gene was highly expressed. This expression pattern was similar to that of *CarH* gene. In case of *Arabidopsis*, DXPS has been known as key enzyme at an

early stage of leaf development (Araki N. *et al.*, 2000). It also has been suggested that DXPS catalyses the first potentially regulatory step in carotenoid biosynthesis during early fruit ripening in tomato(Lois *et al.*, 2000). These showed same tendency as our results.

Expression level of *VDE* was lower during ripening stage (Figure 22). We couldn't also detect the violaxanthin by HPLC. In the future, the correlation between violaxanthin synthesis and *VDE* gene expression will be proved 'Shiranuhi' mandarin. At the stage corresponds to the onset of ripening to mature, significant induction of the gene expression approaching was observed in grapes.

A significant induction of carotenoid Cleavage Dioxygenase (*VvCCD1*) expression in the grape berries (*Vitis vinifera*) during the week preceding the onset of ripening was observed, after this stage, the expression of the gene remained almost stable throughout the ripening stages (Mathieu *et al.*, 2005). Expression of *CCD* gene was not significantly changed during citrus fruit developmental stages in this study.

Carotenoid relative content and genes expression

The β -carotene hydroxylase catalyzes the hydroxylation reaction from β carotene to zeaxanthin via β -cryptoxanthin. Transcript level of β -carotene hydroxylase was increased during maturation and at the same time downstream products such as ß–cryptoxanthin and capsanthin were increased. However, ßcarotene content, the substrate of ß-carotene hydroxylase, was decreased during this stage (Figure 27A, B).

Figure 27 Relationship between xanthophylls accumulation and *b-CarH* expression.

Gene expression assayed by real time RT-PCR and carotenoid content derived HPLC chromatogram profile.

Figure 29. Relationship between utein accumulation and ε -CarH expression.

Gene expression assayed by real time RT-PCR and carotenoid content derived HPLC chromatogram profile.

Phytoene synthase converts GGPP to phytoene, the carotenoid precursor. Expression of *PSY* was increased during maturation in fruit peel and ζ - carotene was simultaneously accumulated. However, β -carotene content was decreased in this period (Figure 28 A, B). Earlier reported the phytoene synthase (*CitPSY1*) transcript in the peel was a low level in the young fruit, and it increased toward maturation in satsuma mandarin (*Citrus unshiu*) (Kita *et al.*, 2001). As fruit maturation progressed in satsuma mandarin (*C. unshiu*) and Valencia orange (*C. sinensis*), a increase in the expression of *CitPSY* led to massive , - accumulation in the flavedo (Kato *et al.*, 2004). In sweet orange (*C. sinensis* L. Osbeck, cv. Navelate) fruit during development and maturation accumulation of carotenoids during fruit ripening is coincident with up-regulation of the *PSY* gene (Rodrigo *et al.*, 2004). Other fruit such as tomato(Giuliano *et al.*, 1993) and pepper (Romer *et al.*, 1993) accumulation of carotenoids correlated with PSY of increase expression during fruit ripening.

ε-carotene hydroxylase catalyzes the conversion of α-carotene to lutein. Expression of ε-carotene hydroxylase was higher at early stage (August) than later stages. Relative content of lutein was decreased during fruit development and maturation in fruit peel (Figure 29). ε-CarH was cloned in Arabidopsis (Tian et al., 2004). This is the first report on the relationship between ε-CarH expression and carotenoid biosynthesis.

APPENDIX

The nucleotide and deduced amino acid sequences of carotenoid biosynthetic

genes cloned in this experiment.

Ci-DXPS

CCACCAACACCATTGTTGGACACGATTAATTACCCAATTCATATGAAGAATCTCTCTAAAGAGGATCTTG AACAACTGGCAGCAGAGCTTAGAGCAGATATTGTTAACAGTGTATCGAAGACAGGTGGGCATCTTAGTGC AAACTTAGGAGTGGTGGAGCTAACACTTGCTTTGCATCGTGTTTTCAACACACCTGACGATAAAATTATA TGGGATGTTGGCCATCAGGCTTATGTACACAAAATTCTGACTGGAAGAAGATCCAGAATGAACACCATGA GGAAGACTTCGGGGCTTGCAGGATTCCCCAAAAGAGAGGAAAGCGTTCATGATGCATTTGGTGCAqGACA TAGTTCCACAAGCATCTCTGCTGGTCTTGGTATGGCTGTCGCAAGGGATATTCTGGGGAAGAACAATAAT GTCATTTCCGTGATTGGAGATGGGGGCCATGACTGCAGGACAAGCATATGAAGCAATGAATAATGCAGGAT TTCTTGATTCTAACCTGATTGTTGTGCTGAATGACAATAAACAAGTATCTCTACCCACAGCTACCCTGGA AAACTTCGTGAAGCCGCAAAAAGCATCACTAAGCAAATTGGTGGGCAAACACATGAAGTTGCTGCAAAGG GCGCCAGGGCCAGTTCTGATCCATGTTGTAACAGAGAAGGGAAAGGGCTATCCCCCAGCGGAGGCAGCAG ATCCACGCTGCAATGGGTGGTGGTGGTACTGGCCTCAATTATTTCCAGAAAAGGTTTCCAGATCGCTGCTTCG ATGTGGGGATTGCTGAGCAACATGCTGTTACTTTTGCAGCTGGTTTAGCCTCAGAGGGAGTCAAGCCATT TTGTGCCATCTACTCATCATTTCTGCAAAGAGGATATGATCAGGTTGTGCATGATGTAGACCTTCAAAAA TTGACATCACATTCATGTCTTGCTTGCCCAACATGGTGGTCATGGCTCCATCTGATGAAGCTGAGCTAAT GCACATGGTCGCTACAGCAGCAGTTATAGATGACAGGCCCAGCTGTTTCAGATTTCCAAGGGGCAACGGA ATTGGAGCAGTTCTCCCACCTAATAACAAAGGAACTCCACTTGAGATTGG

Ci-GGDR

CCGACGA

Ci-e-CarH

Ci-ZEP-T7

Ci-ZEP-SP6

Ci-VDE

TGCGGTCTCAAGAAAGAAGTGTGTACCACAGAAATCTGATTTAGGGGAATTTCCTGTCCCTGATCCTGCC ATTCTAGTTAAAAGTTTTAACATCAAAGACTTCAATGGGAAGTGGTACATTTCTAGTGGTTTAAATCCTT CCTTCGATACTTTTGATTGCCAATTGCATGAATTCCATACAGAATCCAGCAAACTCATGGGAAATTTATC GTGGAGAATAAGAACTCCAGATGGTGGCTTTTTCACCCGATCAGCTATGCAGAGATTTGTTCAAGATCCA ATTCATCCTGGGATACTCTATAATCACGACAATGAATACCTTCACTATAAAGATGACTGGTATATATTGT CATCCAAGATACAGAATGAACCAGATGACTATGTCTTTGTGTACTATCGGGGCAGCAAT

Ci-lyc-b-T7

GCCAAGGATACTGTACTCAAAACTCATAACAAGCTTGAATTCTTGCCCCAAGTTCACGGGGCTTTGGAAA AATCCAGTAGTTTAAGCTCATTGAAGATTCAGAACCAGGAGCTTAGGTTTGGTCTCAAGAAGTCTCGTCA AAAGAGGAATATGAGTTGTTTCATTAAGGCTAGTAGTAGTGCTCTTTTGGAGCTAGTTCCTGAAACCAAG AAGGAAAATCTTGAATTTGAGCTTCCCATGTATGACCCATCAAAGGGCCTTGTTGTAGACCTAGCAGTTG TCGGTGGCCCAGCTGGGCTTGCTGTTGCTCAGCAAGTTTCAGAGGCGGGGCTTTCGGTTTGCTCGAT TGATCCATCTCCCAAATTGATTTGGCCAAATAATTATGGTGTTTGGGTGGATGAATTTGAGGCCATGGAT TTGCTTGATTGCCTTGATACTACTTGGTCTGGTGCTGTTGTGCACATTGATGATAATACAAAGAAGGATC TTGATAGACCTTATGGCAGAGTTAATAGGAAGTTGCTGAAGTCGAAAATGCTGCAAAAATGCATAACCAA TGGTGTTAAGTTCCACCAAGCTAAAGTTATTAAGGTTATTCATGAAGAGGTCCAAATCTTTGTTGATTTGC AATGATGGTGTGACAATTCAGGCTGCCGTGGTTCTTGATGCTACGGGATTCTCTAG

Ci-lyc-b-SP6

TGGTCACCTTAATCTGTATCTTGTACCAAGTTGTTGATCATGTTAACCAAAGGAAGAGTGCCCTTTGCCA TGATCTCTAGCCTAGAAGTATTAGAGGCATGTGAGAAATAGAGAAAGCCCAAAAACTAAAAGCTCGGGGAG AAACAATCTCGATGATAAGAAACCATGCCAATAACGGGGCTCCAGATCAAAAAAAGCATCGGAAAAACCTT CTAGTGGCAGGTAAGTCAAGTTTGAGCAGGATATCCATACCAAAACAGAAGAACTCCCTTTGCCTTCTCC TTTCTATGGGCCACAAATCTTTCCAAACTTCAGCAGACAATTTGTGTCCTGAAATGCTTCTGTCAGAACT GAGGCTTCGAACGATTGCATTTGCAACAATAGGAGCCGCAGCTAAAGTCCTTGCCACCATATAGCCAGTT GAAGGGTGCACCATCCCAGCGGTACCACCTATTCCAACAACTCTTTGAGGAAGCACTGGAAGGGGCCCAC CCATCGGAATGACCAATGCTCATCCTTCAATGCTTCTAACTTTTATGCCTAAGTGCTTTAATCTAAC CACTATTCTTTCCTGGATATCTTTCATTGGCACCTCCAGGCCGCGCCACTAGCGAAGTCCTTTCAAGAAAT ATCCTGTTTGACGAA

Ci-lyc-e

TTTATACTACCGCCAATATCAATTGGTAATGGTATTTTGGATTTGGTGGTGATTGGTTGTGGCCCAGCTG GTCTTGCTTTGGCTGCAAAATCAGCGAAGTTGGGATTAAATGTTGGACTTATTGGCCCGGATCTCCCTTT CACAAACAATTATGGTGTGTGGGAAGATGAATTTAGAGATCTTGGACTTGAAGGGTGTATCGAACATGTC TGGAGAGACACAGTTGTATATATTGATGAAGATGAACCCATCTTGATTGGTCGTGCTTATGGACGAGTTA GTCGACATTTGCTTCATGAAGAATTATTAAGAAGGTGTGTCGAGTCAGGTGTTTCATATCTTAGCTCAAA AGTGGAAAGCATTACGGAATCTACCAGTGGTCATCGTCTTGTAGCTTGTGAACATGATATGATTGTCCCC TGCAGGCTTGCTACTGTTGCTTCTGGAGCAGCATCAGGGAAGCTATTGGAATATGAGGTGGGGGGGTCCCA AAGTTTCTGTCCAAACAGCTTATGGTGTGGAGGTTGAGGTGGAAAATAATCCATATGATCCAAGCCTTAT GGTTTTCATGGACTACAGAGACTGTACTAAGCAAGAAGTTCCATCTTTTGAATCTGACAATCCAACATTT CTTTATGTCATGCCCATGTCTTCAACAAGAGTTTTCTTTGAGGAAACTTGTTTGGCATCGAAAGATGGTT TACCTTTTGACATATTGAAGAAAAAGCTCATGGCAAGGTTAGAGAGATTGGGAATCCAGGTTTTGAAAAC TTATGAAGAGGAATGGTCATATATTCCAGTTGGTGGTTCCTTACCGAATACAGAACAAAGAAACCTCGCA TTTGGTGCTGCTGCTAGCATGGTGCATCCAGCCACTGGCTACTCAGTAGTCAGATCACTGTCAGAGGCTC CAAACTATGCTTCTGCAATTGCATATATATTGAAACACGATCATTCCAGAGGTAGACTTACACATGAACA AAGTAATGAGAATATCTCAATGCAAGCTTGGAATACTCTCTGGCCACAGGAAAGGAAGCGCCCAAAGAGCT TTTTTCCTCTTTGGACTAGCACTCATTTTGCAACTGGATATTGAGGGCATCAGGACATTCTTTCGCACTT TCTTCCGATTACCCAAGTGGATGTGGCACGGTTTCCTTGGTTCTAGTCTCATCAGCCGATCTCATTCT ATTTGCCTTCTATATGTTTATTATAGCACCAAATGATCTGAGAAAGTGCCTTATCAGACATCTAGTTTCA GATCCAACTGGAGC

Ci-PDS-T7

Ci-PDS-SP6

Ci-FDS

ATGAGTGATCTGAAGTCAAGATTCATTGAGGTGTATGGCGTTTTGAAACAAGAGCTGCTGAATGATCCTG CATTTGAGTTCGATCACGATTCTCGCCAATGGGTTGATCGTATGCTGGATTACAATGTACCTGGAGGAAA GCTGAACCGAGGGCTATCTGTTGTTGACAGCTACAGGTTACTGAAAGAAGGAAAAGAACTAACAGATGAT GAATTCTTTCTCTCATCTGCACTAGGCTGGTGCATCGAATGGCTTCAAGCATATTTTCTTGTTCTTGATG ATATCATGGATGGCTCTCATACACGCCGTGGTCAACCTTGCTGGTTCAAGAGTCCCCAAGGTTGGTATGAT TGCTGCAAATGATGGTGTATTACTACGCAACCATATCTCCAGAATTCTCAAGAATCATTTTAGAGACAAG CCTTATTACGTGGACCTGTTGGATTTATTTAATGAGGTGGAAGTTCCAAACAGCTTCAAGGACAAATGATAG ACTTAATTACCACAATCGAAGGAGAGAAAGATCTATCGAAGTACCATTGCCACTTCATCGTCGCATTGT TCAGTACAAAACTGCTTACTATCATTTTACTTCCAGTTGCTTGTGCATTACTTATGGCAGGATGAAT CTTGACAAAACTGCTTACTATTCATTTTACTTCCAGTTGCTTGTGCATTACTTATGGCAGGATGAAT CTTGGACAAACTGCTTACTATTCATTTTACTTCCAGTTGCTTGTGCATTACTTATGGCAGGATGAAT CTTGGACAAACATGTTGAGGTCAAGGACAATCTTAGTTCAAATAGGTATCTATTTTCAAGTACAGGATGATT TTCTGGATTGTTTTGGTTCTCCTGAAGTTATTGGCAAGGTTGGAACTGATATTGAAGATTACAAGGATGATT TTGGTTGGTTGTAAAAGCTCTGGAACTTTGGCAAAGGAACTGATATTGAAGAATTACAAGGAACTATGGA AAGGTAGATCCAGCCTGCGTTGCAAAAGTGAAAGGCGACAAAACAAAACATCTTTGATCTTGAGGGCGCATTTG TGGAGAATCCAGCCTGCGTTGCAAAAGTGAAAGGCGACAAAACCATTGAAGCTCATCCTACTAAGGAACTATGGA AAGGTAGATCCAGCCTGCGTTAGAAAAGCTGACAAAATCCATTGAAGCTCATCCTACTAAGGAAGTTCA AGCCGTGCTAAAATCATTCTTGGCAAAGATATACAAGAGACAGAAGTGA

Ci-HMGR

AAGCTCGGTGATTGCAGACGAGCGGCTGCCATTCGCCGCGAGGCATTGCAGAAAATGACCGGGAGGTCGC TGCAGGGACTGCCGTTGGATGGATTCGATTACGACTCGATTTTAGGACAGTGTTGTGAAATGCCGGTCGG TTACGTGCAGATTCCGGTGGGAATTGCCGGGCCGTTGTTGCTTGATGGGTTTGAATACTCGGTTCCCATG GCGACCACCGAAGGGTGTTTGGTGGCGAGCACAAATAGAGGGTGTAAAGCAATCTACGCCTCCGGTGGAG CCGCCAGTATGTTGTCGAGAGATGGGATGACCAGGGCCCCTATTGTTAGATTCGCTTCTGCGATGAGAGC TTCTGAATTGAAGTTCTTCTTGGAGGATCCCAACAATTTCGAAACTTTGGCCGTCGTTTTTAACAGGTCG AGTAGATTTGCGAGGCTGCAACATATTCAGTGCTCTATTGCAGGAACCTTTACATCAGATTTTGCT GTACCACTGGTGATGCGATGGGCATGAACATGGT

Ci-HMGS

 TGTTACAAATGTTTATGCAGCAAGTACGAGAAACTGGAGGGAAAACAATTTTCTCTTTCTAATGCTGATT ATTTCGTGTTCCATTTCCCATATAACAAGCTTGTACAGAAAAGCTTTGCTCGTTGTTATTCAATGACGAT TATGAGGAATGCCAGTTCTGTCGACGAGGCTGCCAAAGAAAAGCTGGGACCATTTTCAACCTTGTCTGGT GATGAAAGCTACCAAAGCCGGGATCTTGAGAAGGTTTCCCAACAACTTGCAAAGCCCCTTTATGACACAA AGGTCCAACCATCCACTTTAATACCGAAGCAAGTTGGTAACATGTACACAGCATCTCTGTATGCAGCATT GGCTTCCCTTATTCACAACAAACACAGTGAATTGGATGGCAAGCGAGTGGTTTTGTTCTCGTATGGAAGT GGTTTGACTGCAACGATGTTCCCATTGAAACTCAGTGAAGGTCATCATCCCTTCAGCTTGTCAAACATCC TATCTGTTATGAATGTTGCAGGGAAGTTGAAATCAAGGCATGAGTTTCCCCAGAGAAGTT

Ci-CCD

CCGACGTCGCATGCTCCCGGCCGCCATGGCGGCCGCGGGAATTCGATTGCCTGAGTGCCTGAATGGGGGAA TTCGTCAGGGTTGGTCCTAATCCCAAGTTTGCCCCTGTGGCCGGATACCACTGGTTTGATGGAGATGGCA TGATTCATGGTCTGCGCATCAAAGACGGAAAGGCTACATATGTCTCCCGTTTTGTGAGGACTTCACGTCT TAAACAGGAAGAATTTTTCGGAGGTGCTAAATTTATGAAGATTGGAGACCTTAAGGGGCCTATTTGGATTA CTCATGGTTAACATGCAAATGCTTAGAGCAAAGTTGAAAGTACTGGATGTTTCATATGGAAATGGGACAG CTAATACAGCTCTTGTATATCACCATGGGAAACTTCTATCACTCTCAGAGGCGGACAAACCGTATGCCGT CAAAGTTCTGGAAGATGGAGATCTGCAAACACTTGGTATGCTTGACTATGACAAGAGATTACAACATTCC CCCCATCATGATGCACGACTTTGCTATTACTGAGAATTATGCTATTTTCATGGATCTTCCGCTGTATTTC TATACTTCCCCGATATGCAAAGAATGAGGCTCAAATGAAATGGTTTGAGCTTCCTAATTGCTTTATCTTC CATAATGCCAATGCTTGGGAGGAGGATGAAGTGGTTCTGATCACTTGCCGCCTAGACAAGCCGGATCTAG ACATGGTCAATGGGGCTGTCAAAGAAAAGCTAGAAAATTTCTCAAATGAACTGTATGAGATGAGATTCAA CTTGAAAACTGGCCTAGCTTCACAAAAGAGATTATCGGCATCCGCTGTTGATTTTCCTAGGGTGAATGAG TGCTACACTGGCAGGAAGCAAAGATATGTGTATGGAACAATACTAGATAGCATTGCAAAAGTCACAGGGA TCATCAAATTTGATCTGCATGCTGAACCAGACGAAGAGAAAACAAAGCTTGAAGTTGGAGGAAATGTGAG AGGCATCTTTGATCTGGGCCCTGGAAGATTTGGTTCAGAGGCTGTTTTTGTTCCTAGAGAGCCTGGAACC TCTTCTGAGGAGGACGATGGCTACCTGATTTTCTTTGTTCAATCACTAGTGAATTCGCGGCCGCCTGCAG GTCGACCATATGGGAGAGCTCCCAACGCGT

Ci-IPI

1 ATGGGTGACGCTACTACTGATGCCGGGATGGACGCTGTCCAGCGCCGCCTCATGTTTGAA M G D A T T D A G M D A V Q R R L M F E 61 GACGAATGCATTTTGGTGGATGAGAATGATCGCGTTGTTGGTCATGAAAACAAATACAAC D E C I L V D E N D R V V G H E N K Y N 121 TGTCACTTGATGGAAAAGATTGAGTCTTTGAATTTGCTACACAGAGCCTTCAGCGTATTT 181 TTGTTTAACTCAAAATATGAGCTACTCCTTCAGCAACGCTCTGGAACCAAAGTTACCTTC L F N S K Y E L L L Q Q R S G T K V T F 241 CCTCTTGTGTGGACTAACACCTGCTGCAGCCATCCTCTGTACCGTGAATCTGAGCTTATT P L V W T N T C C S H P L Y R E S E L I E E N A L G V R N A A Q R K L L D E L G 361 ATTTGTGCTGAAGATGTGCCAGTTGATGAGTTCACTCCACTGGGTCGCATTCTGTACAAG I C A E D V P V D E F T P L G R I L Y K 421 GCCCCTTCTGATGGCAAGTGGGGGGGGGGGGGAGCATGAACTTGACTACTTTCATTGTCCGA A P S D G K W G E H E L D Y L L F I V R 481 GATGTTAGTGTTAACCCAAATCCTGATGAAGTAGCCGAGTATAAATATGTCAACCGGGAA

ATACGACTCACTATAGGGCGAGCTCGGTACCCGGGCGAATTCCAAGCTT

D V S V N P N P D E V A E Y K Y V N R E 541 CAGTTAAAAGAGCTTTTGAGGAAAGCAGATGCTGGAGAAGAATGTTTGAAGCTGTCTCCT Q L K E L L R K A D A G E E C L K L S P 601 TGGATTCAGACTGGTTGTGGACAATTTCTTGTTCAAGTGGTGGGATCACCTCGAAAAAGG W I Q T G C G Q F L V Q V V G S P R K R 661 TACCCTTAAAGATCTGGATCCCCTCTAGAGTCGACCTGCAGGCATGCAAGCT

Ci-GGPS T7

- Y P *

- GCTGCAAGAATTGTCAGAGCTATTGCGGAATTGGCTAAATATATCGGAGCTGATGGACTTGTCGCCGGCC AAGTTATTGATATCAATTCTGAAGGCCAAAAAGATTTGGGAATTGAGCATCTTGAATTTATACATGAACA
- GTCGAGAAACTGAGAACTTTTGCTCGCTGTATTGGGCTTTTGTTTCAAGTAGTTGATGATATCCTCGATC TGACCAAGTCTTCAAAAGAATTGGGGAAGACTGCTGGCAAAGATTTGGTGGCCGATAAGTTAACTTATCC CAAGTTGCTGGGGATCGAAGAATCGAAGAAGTTAGCTGATAAGTTGAATAAAGATGCTCAACAGCAATTG TCGGAATTTGATCAGGAAAAGGCCGTGCCTTTGATTGCTTTGGCTAACTATATTGCTTATAGGCAGAAT

Ci-GGPS T3

ATGAGTTGCGTCAATCTTGCGGCATGGACTCAAACATGCTCAATCTTTAACCAAGCTAGCAGTCGCAGAT CTAACAAAACTCAGCCGTTCCGTACGCTTACAACACTGCCCGTTTCCTTGGCTTCACAGAGACCAAGGCG CCCCGTTTCGATCTCCGCAGTTCAAACTCTTGAGGAAAACCCCGCCCCAAGCCCCACTTTCGATTTCAAG TCCTACATGATCCAAAAAGCAAGTACCGTCAACCAAGCCTTAGACGCCGCCGTTTCGCTCAAGGACCCCG CGCCGCTTGTGACCTTGTTGGTGGCCACGAGTCCATGGCCATGCCAGCTGCATGCTCTATCGAGATGATC CACACCATGTCCTTAATTCACGACGATTTGCCTTGCATGGATAACGACCCTCTTCGTCGAGGGAAGCCCA 41 30. CGAACCACGATCTACGGCGAA

CAAAACTGCAGCTTTATTGGAGGCTGCTGTTGTTCTTGGAGCCATATTGGGCGGCGGAACTGACAACGAA

Ci-GAPDH

CACCGACTACATGACCTACATGTTTAAATACGACAGCGTTCACGGTCAATGGAAGCACCATGAATTGAAG GTTAAGGACGATAAGACCCTTCTCTTTGGTGAGAAGCCTGTCACTGTTTTCGGCGTTAGGAACCCAGAGG AGATCCCATGGGCTGAGACTGGAGCCGAGTATGTTGTGGAGTCGACTGGAGTCTTTACTGACAAGGATAA GGCTGCTGCCCATTTGAAGGGTGGTGGTGCTAAGAAAGTTATCATCTCAGCCCCCAGCAAGGATGCTCCTATG TTTGTTGTGGGTGTCAGTGAAAACGAGTACAAACCAGAGCTCAACATTGTGTCCAATGCTAGCTGCACCA CCAACTGCCTTGCTCCCCTAGCTAAGGTCATTCATGACAAGTTTGGCATTGTTGAGGGTTTGATGACCAC TGTTCACTCTATCACTGCGACCCAAAAAACTGTGGATGGGCCATCATCAAAGGATTGGAGAGGTGGCAGG GCTGCTTCATTTAACATCATTCCTAGCAGTACTGGAGCCGCTAAGGCTGTTGGAAAGGTCTTGCCTGCTT TGAATGGAAAACTGACTGGTATGGCTTTCCGTGTACCCACTGTTGATGTCTCAGTGGTCGACCTCACAGT GAGGCTGGAGAAGGATGCTTCTTATGATGAAATTAAAGCAGCCATCAAGGAGGA

Ci-b-CarH

- 1 ATGGCGGTCGGACTATTGGCCGCCATAGTCCCGAAGCCCTTCTGTCTCCTCACAACAAAA
- M A V G L L A A I V P K P F C E E E E E 61 CTTCAACCCTCTTCGCTCCTCACAACAAAACCCGCTCCCCTTTTTGCCCCCTCTCGGTACC
- L Q P S S L L T T K P A P L F A P L G T 121 CGCCACGGCTTCTTTAATGGCAAAAACCGAAGAAAAATCAACTCTTTCACCGTATGTTTT
- R H G F F N G K N R R K I N S F T V C F
- 181 GTTTTAGAGGAGAAAAAAAAAAAGCACCCAGATCGAGACTTTCACGGAGGAGGAGGAGGAGGAG V L E E K K Q S T Q I E T F T E E E E E
- 241 GAGTCGGGTACCCAGATCTCGACTGCTGCCCGCGTGGCCGAGAAATTGGCGAGAAAGAGA
 - E S G T Q I S T A A R V A E K L A R K R

301 TCCGAGAGGTTCACTTATCTCGTTGCTGCCGTCATGTCTAGTTTTGGTATCACTTCCATG S E R F T Y L V A A V M S S F G I T S M 361 GCTGTCATGGCTGTTTATTACAGGTTCTGGTGGCAAATGGAGGGTGGAGAGGTGCCTTTA A V M A V Y Y R F W W Q M E G G E V P L 421 GCTGAAATGTTTGGCACATTTGCTCTCTCTGTTGGTGCTGCTGGGGCATGGAGTTTTGG A E M F G T F A L S V G A A V G M E F W 481 GCACGATGGGCTCATAAAGCTCTGTGGCATGCTTCTTTATGGCATATGCACGAGTCTCAC A R W A H K A L W H A S L W H M H E S H 541 CATCGACCAAGAGAGGGTCCTTTTGAGCTAAACGATGTGTTTGCCATAATCAACGCAGTT H R P R E G P F E L N D V F A I I N A V 601 CCAGCCATAGCCCTTCTCTCTTTTGGCTTCTTCCACAAAGGCCTTGTACCTGGTCTCTGT P A I A L L S F G F F H K G L V P G L C 661 TTTGGTGCTGGACTTGCCATTACGGTGTTTGGGATGGCCTACATGTTCGTCCACGATGGT FGAGLAITVFGMAYMFVHDG 721 CTCGTTCACAAAAGGTTCCCTGTGGGTCCCATTGCCGACGTGCCTTATTTCCGGAGAGTC L V H K R F P V G P I A D V P Y F R R V 781 GCTGCGGCTCACCAGCTTCACCACTCGGATAAATTCCACGGTGTTCCATATGGGCTCTTT A A A H Q L H H S D K F H G V P Y G L F 841 CTCGGACCTAAGGAGCTTGAAGAAGTGGGGGGGACTAGAAGAATTGGAGAAGGAGATCAGT LGPKELEEVGGLEELEKEIS 901 AAGAGAATCAAATCATACAACAGGGTTCCAAAATAA

KRIKSYNRVPK*

Ci-ZDS

CATGTGATGTCCCTGGAATTAAAAGATTGCTTCCATCATCGTGGAGGGAAATGAAATTTTTCAACAATAT TTATGAGCTAGTTGGAGTTCCTGTTGTCACAGTGCAGCTTAGATACAATGGTTGGGTTACTGAGTTGCAA GACCTAGAACGGTCAAGACAATTGAGGCAAGCTGTGGGGTTAGATAACCTTTAATATACTCCAGATGCAG ATTTATCTTGCTTTGCAGATCTAGCACTCACTTCACCAGAAGACTACTACAGAGAAAGGGCAAGGTTCATT GCTCCAATTCGTTTTGACGCCTGGAGATCCTTATATGCCCTTACCAAATGATGAAATCATAAGGAGAGTG GCAAAGCAGGTTTTAGCTCTATTTCCATCATCCCAAGGTTTAGAAGTTATTTGGTCATCTTTCGTCAAAA TCGGGCAATCTTTGTGCGGCGAGGGACCTGGTAAAGACCCCTTCAGACGCGATCAAAAGACACCGGTGAA GAACTTCTTCCTCGCCGGCGAGGGACCTGGTAAAGACCCCTTCAGACGCGATCAAAAGACACCGGTGAA GCTCAGGCTACATATGCACTGCTAATACAAAACAGATAGTATGGAAGGAGCAACTTTGTCTGGTAGACAAG CCTCAGGCTACATATGCAATGCCGGGGAAGAATTAGTAGCACTGAGGAAGCAGCTTGCTGCCTTTAAATC TCTAGAACAAATGGAAGCTCCAACTACTACTACTGATGAAGACACAAGTCTTGTCTGGATCACAATCGTTTGA

Ci-PSY

AGCTCATCTGTCCTCCTACACCACACATATATAGCCCATATAGCCCTTCGCCTTTCAGGGGTCATCAGCA AAGTTCCCAAGTAAAATGTCTTAGCATACTCGGCGCAAACTTCTCCACAACGATCATAAGCTTCACTGAG CAGACTTAAAGTTCCGGGTAAAGCAATATCTGGGTTCACATCAAGATCACGAGTAACCCCACTTGGCTGC TTATTAACCAAGGCTGCCTGCTTGAGCACAACATTGTAAACCATTTCTTCTGAAGACATGGCCACTTCTC CAGCAGTGCTAGCAACCATACATGATATTTCAGGCAAGTCGATTCCAGATGAGCAAGGATGCCTCAAATC TGTATCTAAAGGATAAGAATTCCGTTTCTGCTTTTTACTATTAAACTGCTTAGGTCTAGAATTAAAC ACAGCAGTCCGGGTTTGATGTTGGTAAAGAAA

Ci-capsanthin/capsorubin synthase (CCS) gene-T3

 CAAAGTCTCCATACCAAATGAATAAAACTCCCTATTGCATCTTCTGTCAATTGGCCACAACCCATTCCAC ACTTTCTGATGAAGTGGCCTGCCTCTGATCATCCTGGTTGAGCCAAGGCACTCAGCTATTGCATCAGCCA ACGCAGGGGCCAGAGCCATGGTCCGAGCCACCATATACCCAGTTGAAGGATGGACTAAACCAGACGTGCT GCCAATAGCCATCACACTTTGCGGGATCACAGGCAGAGGAGCACCTCCCATTGGAATCAAACATTTTTCATCT TCAATCACTCTTTTAACTCTAATTCCCATATGCCTTA

Ci-capsanthin/capsorubin synthase (CCS) gene-T7

Ci-Squan

ATTCATTTGCAAAGAGGTAGAATCGATCGATCGATGACTATGATGAATATTGTTACTATGTAGCAGGACTTGTT GGATTAGGTCTGTCCAAGCTTTTCTATGCCTCTGGGACAGAAGATCTGGCTCCAGATAGTCTTTCCAACT CGATGGGTTTATTTCTTCAGAAAACAAATATCATTCGAGGATTATCTGGGAAGATATTAATGAGGATACCGAA GTGTCGCATGTTTTGGCCTCGTGAGATCTGGGAGTAAATATGTTAATAAACTTGAGGGACTTAAAAATATGAG GAAAACTCTGACAAAGCAGTACAGTGCTTGAATGATATGGTCACCAATGCTCTGATGCATGTGGAAGATT GTTTGAAGTACATGTCTGCTTTAAGGGATCATGCTATATTCCGATTCTGTGCTATCCCTCAGGATCATGGC AAT

Ci-bOCIS T3

Ci-bOCIS T7

Ci-HPT T3

AAATACAAGTCCAGAACACCCGCTTTTGACCCAAACGTACAGTAAAAGTTCGGATCCCAAATGTTTTGTC

TCCTTCAAGATCAGGTACATCCTTAAATAATGCTATAACTACTGAAAAGAAGCTCATGAATGCTGTCGCA AAGATTAGAGGCTTTGAAAATACTGCTGGTCTTCTGTACACATGAGTCTGGAAATTGCCACTACA

Ci-HPT T7

AAATACAAGTCCAGAACACCCGCTTTTGACCCAAACGTACAGTAAAAGTTCGGATCCCAAATGTTTGTC TCCTTCAAGATCAGGTACATCCTTAAATAATGCTATAACTACTGAAAAGAAGCTCATGAATGCTGTCGCA AAGATTAGAGGCTTTGAAAATACTG

LITERATURE CITED

- Adiwilaga, K. and A. Kush (1996). Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (*Hevea brasiliensis*). *Plant Mol. Biol.* **30**: 935-946.
- Aitken, S. M., S. Attucci, R. K. Ibrahim, and P. J. Gulick (1995). A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupin. *Plant Physiol.* 108: 837-838.
- Al-Babili, S., P. Hugueney, M. Schledz, R. Welsch, H. Frohnmeyer, O. Laule, and P. Beyer (2000). Identification of a novel gene coding for neoxanthin synthase from *Solanum tuberosum*. *FEBS Lett.* 485: 168-172.
- Albrecht, M., A. Klein, P. Hugueney, G. Sandmann, and M. Kuntz (1995). Molecular cloning and functional expression in *E. coli* of a novel plant enzyme mediating zeta-carotene desaturation. *FEBS Lett.* **372**: 199-202.
- Araki N., Kusumia K., Kazumori Masamotob, Yasuo Niwac, and J. M. Koh IbaEstevez (2000). Temperature-sensitive *Arabidopsis* mutant defective in 1deoxy-d-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. *Physiol. Plant.* **108**: 19-24.
- Attucci, S., S. M. Aitken, P. J. Gulick, and R. K. Ibrahim (1995). Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and

purification of the expressed protein. Arch Biochem Biophys. 321: 493-500.

- Barkovich, R. and J. C. Liao (2001). Metabolic engineering of isoprenoids. *Metab Eng.* **3**: 27-39.
- Bartley, G. E., P. V. Viitanen, K. O. Bacot, and P. A. Scolnik (1992). A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. *J Biol Chem* 267: 5036-5039.
- Bartley, G. E., P. V. Viitanen, I. Pecker, D. Chamovitz, J. Hirschberg, and P. A. Scolnik (1991). Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. *Proc Natl Acad Sci USA*. 88: 6532-6536.
- Bartley, G.E., P.A. Scolnik, and G Giuliano (1994). Molecular biology of carotenoid biosynthesis in plants. *Annu Rev Plant Physiol Plant Mol Biol.* **45**: 287-301.
- Bonk, M., B. Hoffmann, J. Von Lintig, M. Schledz, S. Al-Babili, E. Hobeika, H. Kleinig, and P. Beyer (1997). Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. *Eur J Biochem.* 247: 942-950.
- Bouvier, F., A. D'Harlingue, R. A. Backhaus, M. H. Kumagai, and B. Camara (2000a). Identification of neoxanthin synthase as a carotenoid cyclase paralog. *Eur J Biochem.* 267: 6346-6352.
- Bouvier, F., A. d'Harlingue, C. Suire, R. A. Backhaus, and B. Camara (1998). Dedicated roles of plastid transketolases during the early onset of isoprenoid

biogenesis in pepper fruits1. Plant Physiol. 117: 1423-1431.

- Bouvier, F., C. Suire, A. d'Harlingue, R. A. Backhaus, and B. Camara (2000b).
 Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. *Plant J.* 24: 241-252.
- Bramley, P. M. (2002). Regulation of carotenoid formation during tomato fruit ripening and development. *J Exp Bot.* **53**: 2107-2113.
- Caelles, C., A. Ferrer, L. Balcells, F. G. Hegardt, and A. Boronat (1989). Isolation and structural characterization of a cDNA encoding *Arabidopsis thaliana* 3hydroxy-3-methylglutaryl coenzyme A reductase. *Plant Mol Biol.* 13: 627-638.
- Chahed K., A. Oudin, Guivarc'h N., Hamdi S, Jean-Claude Chénieux, Marc Rideau*, and Marc Clastre (2000). 1-Deoxy-D-xylulose-5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid producing cells. *Plant Physiol. Biochem.* 38: 559–566.
- Cordier, H., F. Karst, and T. Berges (1999). Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase. Plant Mol Biol. 39: 953-967.
- Cornish, K. (1993). The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis. *Eur J Biochem.* **218**: 267-271.
- Cunningham, F. X. and E. Gantt (1998). Genes And Enzymes Of Carotenoid Biosynthesis In Plants. *Annu Rev Plant Physiol Plant Mol Biol.* **49**: 557-583.

- Cunningham, F. X., Jr., T. P. Lafond, and E. Gantt (2000). Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. *J Bacteriol*.
 182: 5841-5848.
- Cunningham, F. X., Jr., B. Pogson, Z. Sun, K. A. McDonald, D. DellaPenna, and E. Gantt (1996). Functional analysis of the beta and epsilon lycopene cyclase enzymes of *Arabidopsis* reveals a mechanism for control of cyclic carotenoid formation. *Plant Cell* 8: 1613-1626.
- Delourme, D., F. Lacroute, and F. Karst (1994). Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. *Plant Mol Biol.* 26: 1867-1873.
- Demmig-Adams, B., A. M. Gilmore, and W. W. Adams, 3rd (1996). Carotenoids 3: in vivo function of carotenoids in higher plants. *Faseb J.* **10**: 403-412.
- Endo, T. and T. Suga (1992). Demonstration of geranyl diphosphate synthase in several higher plants. *Phytochemistry* **31**: 2273-2275.
- Enjuto, M., L. Balcells, N. Campos, C. Caelles, M. Arro, and A. Boronat (1994). Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. *Proc Natl Acad Sci USA*. **91**: 927-931.
- Estevez, J. M., A. Cantero, A. Reindl, S. Reichler, and P. Leon (2001a). 1-Deoxy-Dxylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. *J Biol Chem* **276**: 22901-22909.

- Estevez, J. M., A. Cantero, A. Reindl, S. Reichler, and P. Leon (2001b). 1-Deoxy-Dxylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. *J Biol Chem.* **276**: 22901-22909.
- Giovannoni, J. J. (2004). Genetic regulation of fruit development and ripening. *Plant Cell* **16**: S170-180.
- Giuliano, G., G. E. Bartley, and P. A. Scolnik (1993). Regulation of carotenoid biosynthesis during tomato development. *Plant Cell* 5: 379-387.
- Heffron, S., S. Watkins, R. Moeller, A. H. Taban, R. Butowt, D. DellaPenna, and F. Jurnak (2003). Resolving the space-group ambiguity of crystals of tomato fruit polygalacturonase. *Acta Crystallogr D Biol Crystallogr.* 59: 2088-2093.
- Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. *Curr Opin Plant Biol.* **4**: 210-218.
- Hugueney, P., F. Bouvier, A. Badillo, J. Quennemet, A. d'Harlingue, and B. Camara (1996a). Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. *Plant Physiol* 111: 619-626.
- Hugueney, P., F. Bouvier, A. Badillo, J. Quennemet, A. d'Harlingue, and B. Camara (1996b). Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. *Plant Physiol.* **111**: 619-626.
- Ikoma, Y., A. Komatsu, M. Kita, K. Ogawa, M. Omura, M.i Yano, and T. Moriguchi (2001). Expression of a phytoene synthase gene and characteristic

carotenoid accumulation during citrus fruit development. Physiol. Plant.

111: 232-238.

- Kato, M., Y. Ikoma, H. Matsumoto, M. Sugiura, H. Hyodo, and M. Yano (2004). Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. *Plant Physiol.* **134**: 824-837.
- Kim, I. J., Ko K. C., Kim C. S., and W. I. Chung (2001). Isolation and characterization of cDNAs encoding beta-carotene hydroxylase in *Citrus*. *Plant Science* 161: 1005-1010.
- Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J Mol Evol.* 16: 111-120. 제주대학교 중앙도서관
- Kita, M., A. Komatsu, M. Omura, M. Yano, Y. Ikoma, and T. Moriguchi (2001). Cloning and expression of CitPDS1, a gene encoding phytoene desaturase in citrus. *Biosci Biotechnol Biochem.* 65: 1424-1428.
- Kuntz, M., S. Romer, C. Suire, P. Hugueney, J. H. Weil, R. Schantz, and B. Camara (1992). Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from *Capsicum annuum*: correlative increase in enzyme activity and transcript level during fruit ripening. *Plant J.* 2: 25-34.
- Kuzma, J. and R. Fall (1993). Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. *Plant Physiol.* **101**: 435-440.

Lange, B. M., M. R. Wildung, D. McCaskill, and R. Croteau (1998). A family of

transketolases that directs isoprenoid biosynthesis via a mevalonateindependent pathway. *Proc Natl Acad Sci USA*. **95**: 2100-2104.

- Lee, H. S. and W. S. Castle (2001). Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and budd blood orange juices. *J Agric Food Chem.*49: 877-882.
- Lichtenthaler, H. K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathwayof
 Isoprenoid biosynthesis In plants. *Annu Rev Plant Physiol Plant Mol Biol.* 50: 47-65.
- Lim, C. O., H. Y. Kim, M. G. Kim, S. I. Lee, W. S. Chung, S. H. Park, I. Hwang, and M. J. Cho (1996). Expressed sequence tags of Chinese cabbage flower bud cDNA. *Plant Physiol.* 111: 577-588. 2895.
- Livak, K. J. and T. D. Schmittgen (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. *Methods* **25**: 402-408.
- Lois, L. M., M. Rodriguez-Concepcion, F. Gallego, N. Campos, and A. Boronat (2000). Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. *Plant J.* 22: 503-513.
- Madden, S. F., B. O'Donovan, S. J. Furney, H. R. Brady, G. Silvestre, and P. P. Doran (2003). Digital extractor: analysis of digital differential display output. *Bioinformatics* 19: 1594-1595.
- Marin, E., L. Nussaume, A. Quesada, M. Gonneau, B. Sotta, P. Hugueney, A. Frey,

and A. Marion-Poll (1996). Molecular identification of zeaxanthin epoxidase of *Nicotiana plumbaginifolia*, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of *Arabidopsis thaliana*. *Embo J.* **15**: 2331-2342.

- Mathieu, S., N. Terrier, J. Procureur, F. Bigey, and Z. Gunata (2005). A carotenoid cleavage dioxygenase from *Vitis vinifera* L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. *J Exp Bot.* 56: 2721-2731.
- Mayne, S. T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. *Faseb J.* **10**: 690-701.
- Montamat, F., M. Guilloton, F. Karst, and S. Delrot (1995). Isolation and characterization of a cDNA encoding *Arabidopsis thaliana* 3-hydroxy-3-methylglutaryl-coenzyme A synthase. *Gene* **167**: 197-201.
- Pan, Z., L. Herickhoff, and R. A. Backhaus (1996). Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles. *Arch Biochem Biophys.* 332: 196-204.
- Park, H., S. S. Kreunen, A. J. Cuttriss, D. DellaPenna, and B. J. Pogson (2002).
 Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. *Plant Cell* 14: 321-332.

- Pecker, I., R. Gabbay, F. X. Cunningham, Jr., and J. Hirschberg (1996). Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. *Plant Mol Biol.* **30**: 807-819.
- Qian, J., X. M. Zhang, X. L. Li, J. R. Wang, W. F. Li, R. Wang, and G. Y. Li (2002).
 Identification of digital differential expression patterns of a novel human gene (*UBAP1*) by an expressed sequence tag strategy. *Ai Zheng* 21: 225-228.
- Riou, C., Y. Tourte, F. Lacroute, and F. Karst (1994). Isolation and characterization of a cDNA encoding *Arabidopsis thaliana* mevalonate kinase by genetic complementation in yeast. *Gene* 148: 293-297.
- Rodrigo, M. J., J. F. Marcos, F. Alferez, M. D. Mallent, and L. Zacarias (2003). Characterization of Pinalate, a novel *Citrus sinensis* mutant with a fruitspecific alteration that results in yellow pigmentation and decreased ABA content. *J Exp Bot.* 54: 727-738.
- Rodrigo, M. J., J. F. Marcos, and L. Zacarias (2004). Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (*Citrus sinensis* L.) during fruit development and maturation. *J Agric Food Chem.* 52: 6724-6731.
- Rodwell, V. W., M. J. Beach, K. M. Bischoff, D. A. Bochar, B. G. Darnay, J. A. Friesen, J. F. Gill, M. Hedl, T. Jordan-Starck, P. J. Kennelly, D. Y. Kim, and Y. Wang (2000). 3-Hydroxy-3-methylglutaryl-CoA reductase. *Methods Enzymol.* 324: 259-280.
- Rohdich, F., S. Hecht, K. Gartner, P. Adam, C. Krieger, S. Amslinger, D. Arigoni, A.

Bacher, and W. Eisenreich (2002). Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. *Proc Natl Acad Sci USA*. **99**: 1158-1163.

- Rohmer, M. (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. *Nat Prod Rep.* 16: 565-574.
- Romer, S., P. Hugueney, F. Bouvier, B. Camara, and M. Kuntz (1993). Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. *Biochem Biophys Res Commun* 196: 1414-1421.
- Sandmann, G. (2001). Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys. 385: 4-12. 2 3855242
- Sanger, F., S. Nicklen, and A. R. Coulson (1977). DNA sequencing with chainterminating inhibitors. *Proc Natl Acad Sci USA*. **74**: 5463-5467.
- Schwartz, S. H., B. C. Tan, D. A. Gage, J. A. Zeevaart, and D. R. McCarty (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. *Science* 276: 1872-1874.
- Schwender, J., C. Muller, J. Zeidler, and H. K. Lichtenthaler (1999). Cloning and heterologous expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. *FEBS Lett* **455**: 140-144.
- Scolnik, P. A. and G. E. Bartley (1994). Nucleotide sequence of an *Arabidopsis* cDNA for geranylgeranyl pyrophosphate synthase. *Plant Physiol.* **104**: 1469-

1470.

- Seo, M., A. J. Peeters, H. Koiwai, T. Oritani, A. Marion-Poll, J. A. Zeevaart, M. Koornneef, Y. Kamiya, and T. Koshiba (2000). The *Arabidopsis* aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. *Proc Natl Acad Sci USA*. **97**: 12908-12913.
- Silver, G.M. and R. Fall (1991). Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. *Plant Physiol.* **97**: 1588-1591.
- Sun, Z., E. Gantt, and F. X. Cunningham, Jr. (1996). Cloning and functional analysis of the beta-carotene hydroxylase of *Arabidopsis thaliana*. J Biol Chem. 271: 24349-24352.
- Tai, C. Y. and B. H. Chen (2000). Analysis and stability of carotenoids in the flowers of daylily (*Hemerocallis disticha*) as affected by various treatments. J Agric Food Chem. 48: 5962-5968.
- Tian, L., M. Magallanes-Lundback, V. Musetti, and D. DellaPenna (2003). Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in *Arabidopsis. Plant Cell* 15: 1320-1332.
- Tian, L., V. Musetti, J. Kim, M. Magallanes-Lundback, and D. DellaPenna (2004). The *Arabidopsis* LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. *Proc Natl Acad Sci USA*. **101**: 402-407.

Trentmann, S. M. and H. Kende (1995). Analysis of Arabidopsis cDNA that

shows homology to the tomato E8 cDNA. Plant Mol Biol. 29: 161-166.

Veau, B., M. Courtois, A. Oudin, J. C. Chenieux, M. Rideau, and M. Clastre (2000). Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in *Catharanthus roseus*. *Biochim Biophys Acta*. **1517**: 159-163.

ABSTRACT IN KOREAN

x C. reticulata Blanco]

LC/MS

,

HPLC

,

,

real time

quantitative RT-PCR Northern blot

-88-

(lutein),

 $(\beta$ -cryptoxanthin), - $(\zeta$ -carotene), phytofluene, (capsathin), (zeaxanthin), - $(\beta$ -carotene) . , 7[†] . -, phytofluene,

가

glyceraldehydes-3-phosphate

dehydrogenase, *ent*-copaly diphosphate synthase, geranylgeranyl pyrophosphate reductase, HMG CoA reductase, HMG CoA synthase, 1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase, isopentenyl diphosphate isomerase, *FPP* synthase, squalene synthase, Sesquiterpene synthase 2, (+)-limonene synthase 2, (E)-beta-ocimene synthase, terpene synthase, geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, lycopen beat cyclase, lycopen epsilon cyclase, beta-carotene hydroxylase, epsilon-carotene hydroxylase, zeaxanthin epoxsidase, violaxanthin de-epoxidase, 9,10[9',10']carotenoid cleavage dioxygenase, capsanthin/capsorubin synthase, tocopherol polyprenyltransferase

β-carotene hydroxylase phytoene synthase

가, (11) 가

, ε-carotene hydroxylase

. DXPS

(8)

.

,,IPIβ-carotene hydroxylasephytoene synthase 7^{1} β, β-xanthophyllβ-carotene hydroxylasephytoene synthase 7^{1} 7^{1} β, β-xanthophyll, phytofluene, z-carotene

