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요약 
 

 

이상(two-phase) 유동의 시각화는 유동 파라미터의 특징에 관한 이해를 

제공해 주므로, 유동 과정(flow process)을 모니터링 하는데 도움이 된다. 고 

시간(high temporal) 특성을 갖는 전기 임피던스 단층촬영법은 빠른 천이 

과정을 모니터링 할 수 있다. 전기 임피던스 단층촬영법에서는, 프로세스 

대상체의 경계면에 부착된 전극을 통해 전류 소스를 주입하고, 전극에 

유기되는 전압을 측정한다. 이 전류-전압 관계를 기반으로 내부의 도전율 

분포(conductivity distribution)가 복원된다. 이상 유동에서 도전율 분포는 

미리 알 수가 있으므로, 이 사전 정보를 이용하여 이상 사이의 경계를 추정할 

수가 있다. 상 경계(phase boundary)는 경계의 토폴로지에 따라 

개경계(open boundary)와 폐경계(closed boundary) 형태로 분류될 수 있다. 

폐경계 문제는 유동 과정에서 공동(void)들의 추정 문제를 수반한다. 

전형적인 개경계 문제는 서로 혼합되지 않는 두 유체 사이의 표면 경계를 

추정하는 것이다. 유동 과정에서 형성된 공동(void)들은 불안정하고 대상체 

내부를 무작위로 움직이므로, 영역의 경계면을 추정하는데 있어서 동적 추정 

알고리즘이 필요하다. 폐경계는 푸리에 급수를 이용하여 표현되는 반면에, 

개경계는 이산 프런트 포인트(discrete front points)의 보간법으로 표현된다. 

이상 사이의 경계는 시변(time variant)이고 유동 과정은 꽤 복잡하다. 빠른 

경계 변화를 추적하기 위해서는 동적 추정 알고리즘이 필요하다. 

      동적 추정 문제에서, 역문제(inverse problem)는 상태 추정 문제로 

취급되고 시변하는 경계 계수들은 추정할 상태 변수들이 된다. 확장 칼만 

필터(EKF), unscented 칼만 필터(UKF) 등과 같은 칼만-형태의 추정기들을 

적용함에 있어서, 전개(evolution)의 정확한 동역학과 초기 상태들과 

프로세스의 잡음 공분산과 측정 모델 등이 미리 정의되어야만 한다. 실제로, 

대상체의 전개에 관한 사전 정보가 알려져 있지 않다면 random-walk 

모델이 종종 사용된다. 어떤 경우에 있어서는, 등속도와 등가속도와 같은 
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Kinematic 모델이 사용된다. 잡음 공분산의 값들은 경험상 설정되거나, 

수동으로 조절되는데, 이는 파라미터 추정에 있어서 확장 칼만 필터(EKF)의 

주요 단점이다. 실제 상황에서 전개의 동역학은 복잡하고 미리 경계의 

전개를 모델링 하는 것은 어렵다. 또한, 프로세스 잡음은 표적의 동역학과 

주변 환경에 좌우된다. 모델 파라미터들을 결정함에 있어서 불확실성이 

존재하는 상황에서 칼만-형태의 필터들의 추정 성능은 영향을 받는다. 

따라서 본 연구에서는, 폐경계와 개경계를 추정함에 있어서 모델의 

불확실성을 줄이기 위해 역문제 알고리즘으로서 기대치-최대화(EM) 

알고리즘을 적용한다. EM 은 경계 추정을 위해 칼만 스무더(smoother)를 

사용한다. 모델 파라미터들(상태 전개 행렬, 잡음 공분산 행렬, 초기 상태)은 

기대치 단계와 최대화 단계를 통해 추정된다. EM 을 사용하는 장점으로는, 

우도함수(log-likelihood function)를 항상 증가시키려 하고 그렇게 

함으로써 수렴을 보장해 준다. 본 연구에서는, 경계 추정에 대해 다음의 두 

가지 응용분야에 EM 을 적용하였다. 하나(폐경계)는 유동 과정에서 

공동(void)들의 추정 문제를 수반하는 반면에, 다른 하나(개경계)는 서로 

혼합되지 않는 두 유체 사이의 움직이는 표면 경계를 추정하는 것이다. 위 두 

응용에 대해 수치적 연구와 실험적 연구가 수행되었고, 추정 성능은 EKF 와 

비교하였다. 전형적인 EKF 와 비교해서, EM 이 경계(위치, 모양, 

크기)에서의 동적 변화에 대해 더 나은 추정성능을 보여 주고 있다. 

 

동적  변화에  대해  더  나은  추정성능을  보여  주고  있다 . 
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1.  Introduction 

        

1.1 Electrical impedance tomography 

 
Tomography is defined as the technology to view the cross sectional image of the 

domain. Through the tomogram the inner details of the domain can be investigated. 

There are several tomography techniques developed based on application of different 

energy source and applied in different applications. Electrical impedance 

tomography (EIT) is one such imaging technology which involves use of electrical 

quantities as energy source. In EIT, electrical current or voltage is passed across the 

electrodes placed around the object to be imaged and the resulting excitations caused 

due to the presence of the medium inside the domain are measured on the surface of 

the electrode. Based on the current-voltage relationship, internal distribution inside 

the object is reconstructed. Schematic diagram which explains the principle of EIT is 

shown in figure 1.1. EIT comes under soft field imaging techniques as the electrical 

quantities are dispersed inside the object and are effected by the inside objects. Thus 

EIT has lower spatial resolution. The main advantage with EIT technology is that it 

is very cheap, portable and safe. Apart from that, EIT has high-speed data acquisition 

system thus has high temporal characteristics.  

EIT has been applied to numerous fields in medicine, industry and geophysical 

applications. Medical applications using EIT include detection and classification of 

tumors from breast tissue (Muller et al. 1999, Osterman et al. 2000), studying gastric 

function (Smallwood et al. 1994, Dijkstra et al. 1993, Brown et al. 1985, Smallwood 

et al. 1992), pulmonary ventilation, perfusion, and hyperthermia (Cheney et al. 1999, 

Leathard et al. 1994, Newell et al. 1996). EIT has been applied to clinical 

applications such as lung imaging (Brown 2001, Mueller et al. 2001), head imaging 

(Holder 1992) and breast imaging (Cherepenin et al. 2001, Cherepenin et al. 2002, 

Kerner  et al. 2002(a), Kerner  et al. 2002(b), Osterman et al. 2000). In industry, EIT 

has been used to monitor flow processes, mixing in pipes, multiphase flows and non 

destructive testing (Dickin and Wang 1996, Pinheiro et al. 1997, Mann et al. 1997, 
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Jones et al. 1993, Friedman and Vogelius 1989). In regard of the application of EIT 

to geophysics, resistivity imaging is widely used in exploring mineral resources, 

ground water, detection of faults, fractures, contaminant plumes, waste dumps, 

geological mapping, geotechnical and environmental applications (Maillol et al. 

1999; Barker et al. 1998; Daily et al. 1992; Spies et al. 1995; Hou et al. 2008; Daily 

et al. 1998; Reynolds et al. 1996; Casas et al. 2008; Meads et al. 2003). 

The physical relationship between the injected currents and the measured 

boundary voltages is governed by a partial differential equations derived from 

Maxwell equations. There are many physical models that can be considered. 

Continum, average-gap, shunt and complete electrode model (CEM) are the most 

popular. CEM takes care of the discreteness, shunting, contact impedance between 

the electrode and the outer boundary of the object. The performance of CEM is better 

as compared to others as it is close to the real situation. Image reconstruction with 

EIT is computed using forward and inverse problem. In forward problem, given the 

conductivity distribution inside the domain and the injected currents we calculate the 

boundary voltages on the electrode surface. In inverse problem, with the measured 

voltage and current data, the internal conductivity distribution is estimated. 

Analytical solution of Laplace equation is only possible for simple regular 

geometries. Analytical solution for a homogeneous cube based on the average-gap 

electrode model was derived in (Choi et al. 2004). In Kim et al. (2007a), analytical 

model with complete electrode model was presented. For complex geometry, it is 

difficult to obtain analytical solution therefore numerical methods are used instead. 

Numerical method which has been widely studied for the EIT problem is the finite-

element method (FEM) (Jain et al. 1997, Polydorides and Lionheart 2002). Another 

numerical method which has been used for solving Laplace equation in the interior of 

the volume with appropriate boundary conditions is the boundary element method 

(BEM) (also known as the boundary integral method) (Cartwright et al. 2001). 

Inverse problem in EIT is to estimate the internal conductivity distribution based on 

measured voltages on the surface of the object. Inverse problem in EIT is highly 

nonlinear and ill-posed. Ill-posedness is because voltage has a weak relation with 

respect to conductivity distribution i.e. small change in voltage measurements result 

in large change in conductivity distribution. Regularization methods which consider 
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the prior information of initial conductivity distribution inside and the knowledge of 

the measurement noise covariance are helpful in mitigating the effect of ill-posedness. 

Spatial resolution in EIT is not good due to ill-posedness. However, EIT has high 

temporal resolution so it has better performance for fast transient processes.  

 

PC A/DPipe

Electrodes

Measured 
data

Reconstructed 
image

Unknown distribution of 
a physical parameter

 
 

Figure 1.1. Schematic diagram which explains the principle of EIT. 
 

 
Image reconstruction in EIT is classified as static and dynamic imaging. In 

static imaging, the properties inside the object or domain remain constant within the 

time to obtain the complete set of independent measurements. In dynamic imaging, 

the properties of the medium inside the domain changes before acquiring complete 

set of measurements. If the properties of the medium are changing rapidly then the 

conventional methods of static imaging do not give desirable results. In these 

dynamic approaches, the temporal resolution can be improved by a factor of p (p is 

the number of current patterns in a conventional frame). Analysis of current patterns 

to find the optimal current patterns is necessary in case of dynamic scenarios. 

Optimal current patterns can be determined by evaluating the norm and power 

distinguishabilities (Isaacson 1986, Gisser et al. 1988, Newell et al. 1988). State-

space model is used to represent the dynamic problems and the problem is treated as 

state estimation problem and the time varying state is estimated using a suitable 

reconstruction method. Kalman type filters are the most popular algorithms used in 

tracking the dynamic changes. 
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1.2 Phase boundary estimation 

 
In industrial applications we often come across flows in pipelines involving mixture 

of fluids. In mechanical systems such as condensers, evaporators and combustion 

systems we come across liquid-gas or liquid-vapor mixtures (Holand and Bragg 1995, 

Perry et al. 1997). Few applications involve transportation of slurry composed of 

solid particles in a liquid from one place to other. Liquid-liquid mixtures are seen in 

emulsions as well as a combination of two immiscible liquids. It is of interest to 

determine the phase boundaries in the flow process. Phase distribution of the flow 

field helps us to know about the hydrodynamics and heat transfer between the fluids. 

Void fraction which is one of the key flow parameters can be determined by 

estimating the phase boundaries. Visualization of these flow processes and phase 

boundaries without disturbing the flow field is necessary to determine flow 

parameters which can be used in monitoring and designing the mechanical systems.  

 

us

ls

 
 

Figure 1.2.  Estimation of unknown boundary surface in flow field using EIT. 
 

 

There are several tomography techniques applied to visualize two-phase flows 

with noninvasive and nonintrusive characteristics. For example, gamma densitometry 

(Shollenberger et al. 1997), ultrasonic imaging (Xu et al. 1997) and nuclear magnetic 

resonance imaging (Gladden and Alexander, 1996) are used to visualize the flow 

processes. The techniques such as gamma densitometry are hazardous to health and 

also expensive. Ultrasound imaging involves usage of transducers as energy source 
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which are expensive and the data acquisition rate is not so fast. Changes in flow field 

are relatively fast and therefore we need a technique which is relatively cheap, 

portable and has a high data acquisition rate. Electrical impedance tomography can 

be a promising method to measure the phase boundary due to its non-intrusive 

characteristics and high temporal resolution. The data acquisition is very fast in 

electrical impedance tomography therefore it can be used for fast transient processes 

like two-phase flows. Electrodes are attached around the pipe in the region of interest 

and electrical currents are applied across the electrodes and the voltages are 

measured. With the voltage data the inner phase distribution can be reconstructed 

using inverse algorithm.  In flow process such as two-phase flow, the knowledge of 

conductivities of the fluids can be known a priori. The prior information can be used 

in the inverse algorithm to estimate the boundary size, shape and location. The 

process of estimating the boundary rather than conductivities from the measured 

voltages is known as phase boundary estimation problem.  

Phase boundary estimation can be classified into two types based on the 

topology of the boundary to be estimated. First is the closed boundary problem 

where the flow region is composed discrete region boundaries of different 

conductivities to that of background (figure 1.1). These problems are observed in 

two-phase flows in the condensers or heat exchangers when the pressure of the liquid 

becomes less than the vapor pressure resulting in voids or bubbles. The other is the 

open boundary problem where the flow region is separated into two regions 

separated by interfacial boundary (figure 1.2). Open boundary problems can be 

observed in case of flow of two immiscible liquids for example liquid hydrocarbons 

transported in pipelines over a long distance in petroleum industry. Crude oil 

transported in pipelines often contains free water and the interfacial boundary is 

useful to analyze the amount of the water present in the mixture (Fairuzov 2000). 

 

1.3 Related work for boundary estimation in EIT 

 
Various researchers have developed different methods to estimate the phase 

boundary using EIT. In context of closed boundary problem, Han et al. (1999) 

considered shape decomposition based on boundary element method where the 
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boundary of each target was represented in terms of Fourier series. Using the 

boundary data, Kolehmainen et al. (1999) recovered the region boundaries of piece- 

wise constants of an elliptic partial differential equation (PDE) for an application to 

optical tomography (OT) which is similar to EIT. Efficient method to estimate the 

Fourier coefficients was the main focus therefore there were many methods 

introduced in that perspective. Multi-layered neural network (MNN) was used to 

estimate the Fourier coefficients in Jeon et al.(2005) as it is conceptually simple, 

easier in implementation and the principal advantage is that it does not require 

computation of Jacobian matrix. Kim et al. (2007b) proposed the use of front points 

in polar coordinates to represent closed boundary because the higher modes of 

Fourier series are necessary to represent a complex shape and these higher modes are 

more sensitive to noise. Boundary detection could also be considered using the well-

known level set methods. The level set method was first proposed by Osher et al. 

(1988) for tracing interfaces between different phases of fluid flows. Rondi et al. 

(2001) applied and analyzed phase-filled methods to the reconstruction of piecewise 

constant conductivities in EIT. Although, level set method was initially introduced 

for tracking propagating boundaries, they are generally used for tracking static 

interfaces for the reason that they are slow. Therefore, it is desirable to have a cost-

effective inverse algorithm which not only tracks dynamic interfaces, but can also 

handle higher level of noise in the measurement and requires less measurement data. 

Therefore, the Kalman-type reconstruction algorithms serve this purpose as they are 

modeled on a Markov chain and traditionally built on linear operators perturbed by 

Gaussian noise. Since, image reconstruction in EIT is a nonlinear problem, therefore, 

the nonlinear version of Kalman-type filters should be considered. In that perspective, 

Kim et al. (2004) used interactive multiple model  (IMM) to estimate the Fourier 

coefficients by considering multiple extended Kalman filter (EKF) each working on 

different measurement noise model. The problem with EKF is that it can only be 

used with Gaussian assumption. It is only accurate up to second order for Gaussian 

distribution. Also, the linearization in EKF is possible only if the Jacobian matrix 

exists. To overcome the difficulties with EKF, the unscented transform (UT) which 

was developed by Julier and Uhlmann (1997) and subsequently in Julier and 

Uhlmann (2004) as a method to propagate mean and covariance information through 
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a nonlinear transformation is used to estimate Fourier coefficients. It is more accurate, 

easier to implement, and uses the same order of calculations as EKF. Unscented 

Kalman filter (UKF) is applied in Ijaz et al. (2008) to estimate the Fourier series and 

it is shown that UKF has better performance than EKF. 

In context of open boundary problems, Butler and Bonnecaze (2000), an open 

channel filled with conducting liquid was considered and electrodes are placed at the 

bottom of the channel and the EIT data is obtained through a array of the electrodes. 

The boundary was parameterized with Chebyshev polynomials, whose coefficients 

are the unknown to be estimated.  In Tossavainen et al. (2004), pipe which is 

partially filled with water and has a void region of zero conductivity is considered 

and the boundary is parameterized using Bezier curve. The endpoints of the 

boundary are fixed in this case which is undesirable. An improved method for the 

free surface and admitttivity distribution was given in Tossavainen et al. (2006) 

where the boundary is restricted within the domain.  Kim et al.(2007b) represented 

the interfacial boundary between immiscible liquids using front points and EKF is 

used to track the time varying interfacial boundary. EKF is suboptimal nonlinear 

filter and has linearization error also it needs the computation of Jacobian therefore 

UKF is introduced in Ijaz et al. 2008 to track front points and the performance is 

compared with EKF. 

 

1.4 Expectation maximization algorithm 

 
Dynamic phase boundary estimation is achieved by representing the problem as state 

estimation problem. The state space model consists of linear state equation which 

describes the evolution of state parameters with time. Measurement equation with 

EIT is represented as nonlinear. To solve the non-linear set of equations Kalman type 

filters such as EKF and UKF are generally applied (Bar-Shalom and Li 1993, 

Khambampati et al. 2009, Julier and Uhlmann 2004). In the implementation of 

Kalman type filters it is assumed that the knowledge of state transition matrix, initial 

states, process and measurement noise covariance matrices are predefined. In many 

situations, there can be uncertainty in the model parameters or difficult to obtain. In 

EIT we do not have any information regarding the evolution of the boundary 
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therefore random-walk model is adopted. Kinematic models (Bar-Shalom and Li 

1993, Li 1997) can be used if we assume the boundary is moving with constant 

velocity or acceleration. In a real time situation this is not the case, as the motion of 

boundary is complicated and it is difficult to model as a prior form. Also the values 

for noise matrices, process noise depends on the motion of boundary and the 

environment surrounding. The performance of EKF largely depends on the values of 

the model parameters. These model parameters can be estimated using three methods. 

One method is using classical method where we treat the model parameters also as 

state parameters and are augmented with the state vector and estimated. The other 

method involves using multiple models like IMM (Mazor et al. 1996, Li and Zhang 

1996). The third method is to use join estimation method. Expected Maximization 

algorithm belongs to third category. EM algorithm is a kind of maximum likelihood 

estimator which estimates the state variables and model parameters by minimizing 

the likelihood function. It is formulated such that it always increases the log-

likelihood therefore the convergence is guaranteed (Wu et al. 1981). EM contains 

two steps, E and M step. Using the two steps iteratively the model parameters are 

estimated. EM algorithm is applied in many applications areas ranging from 

medicine (Jiang 1994), signal processing (Shepp and Yardi 1982), statistics (Little 

and Rubin 1983), pattern recognition (Byrne 1992), time-delay estimation 

(Antoniadis and Hero 1994 ) to name a few. 

 

1.5 Aims and contents of the thesis 

 
The purpose of this thesis is to develop novel dynamic reconstruction technique for 

estimating phase boundary using EIT. The boundary estimation is done for two cases, 

closed boundary and open boundary. Closed boundary involves estimation of voids 

in the flow process. Open boundary is to estimate the interfacial boundary between 

the two immiscible fluids. The Expectation maximization algorithm is used as an 

inverse algorithm to reduce model uncertainties in estimating the closed and open 

boundaries. All the examples considered in this thesis are using two-dimensional 

(2D) and the three-dimension (3D) extension of these problems is pretty straight 

forward.  
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EM algorithm is formulated for boundary estimation using EIT. The model 

parameters are estimated using E and M steps. The advantage of the EM algorithm is 

that it always tries to increase the likelihood function thereby guaranteeing the 

convergence. The two steps are iterated until the convergence of the model 

parameters is attained. The proposed algorithm is tested with numerical and 

experiment data.  

This thesis contains five chapters. Chapter 1 gives a brief introduction about 

EIT, its applications and methodology. It also presents the idea of boundary 

estimation using the prior information of phase distribution and its classification and 

applications where it can be used. The related work done with regard to closed and 

open boundary is presented and an overview of the thesis is given. 

Chapter 2 deals with the mathematical models used in solving EIT problem. 

Complete electrode model which is used as the physical model in the thesis is 

explained. Finite element formulation based on CEM is explained briefly. Various 

data collection methods used in EIT is discussed and Jacobian is formulated for 

change in conductivity with voltage. The forward solution and Jacobian are 

necessary in the implementation of inverse algorithm.  

In chapter 3, the dynamic image reconstruction methods are studied. State 

estimation formulation is presented. Methods to solve the state estimation problem 

using Kalman-type filters are discussed. Linearized Kalman filter (LKF) and 

Extended Kalman filter (EKF) are derived in the view of solving the inverse problem 

using EIT. Smoothening of the estimates considering the future measurements gives 

a better estimation performance. In Kalman smoothers, fixed interval Kalman filter 

(RTS smoother) is derived which is used in the EM algorithm for calculating the 

expectation of hidden variables. Maximum likelihood estimation (ML) which 

involves the estimation of model parameters is explained. The EM algorithm, which 

is the main focus of this thesis, is derived based on Kalman smoother.  

Chapter 4 and 5 present the core part of the thesis. Two applications are 

described, one for closed boundary and the other for open boundary. Chapter 4 deals 

with the estimation of voids in flow process which is an application to closed 

boundary problem. Representation of smooth closed boundary using Fourier series is 

presented. State-estimation model and Jacobian are devised to solve the inverse 
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problem. EM is formulated for closed boundary estimation using EIT. The 

performance of the EM is tested using numerical and experimental studies and the 

performance is compared against the EKF. The results are then analyzed and 

discussed.  

Chapter 5 is about estimation of interfacial boundary between two immiscible 

liquids. Boundary representation of open boundary using front points is described. 

The Jacobian has been formulated for the front point implementation. EM algorithm 

for front point estimation is discussed and it is tested with numerical and 

experimental data. Finally, reconstructed results with EM are compared against EKF. 

 Finally, in chapter 6 the conclusions of the thesis is given and future work is 

envisaged.   
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2.  Forward problem 

 
EIT reconstruction problem can be summarized into two steps, forward problem and 

inverse problem. In forward problem, the voltages are computed inside the domain 

W  and on the electrode surface ¶W  with the given current injection and known 

conductivity distribution. In inverse problem, using a set of voltage measurements 

and the currents the internal properties are reconstructed. To derive the forward 

problem in EIT we should first construct a physical model (mathematical model) to 

describe the problem. The equations which relate the currents, voltage measurements 

and conductivity distribution have to be modeled. The physical model for EIT can be 

derived through Maxwell equations of electromagnetism (Nunez 1981, Isaacson and 

Cheney 1990, Malmivuo and Plonsey 1995, Doerstling 1995). The governing 

equation which describes the potential distribution of the domain and the boundary 

conditions necessary to solve the governing equation are discussed. Among all the 

physical models, CEM is considered to be efficient and accurate compared to other 

models (Cheng et al. 1989, Sommersalo et al. 1992).  In this study in solving the 

boundary estimation problem we use the CEM as a physical model. In this chapter 

various physical models used in the EIT are described. The forward problem for 

CEM is formulated using finite element method (FEM). Various data collection 

methods are discussed and Jacobian is derived. 

 

2.1 Background 

 

The electromagnetic field in the domain 2W Î Â
 can be described using the 

Maxwell’s equation (Somersalo et al. 1992, Ola et al. 1993) 
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such that E is the electric field, H magnetic field, D electric displacement, B 

magnetic induction, and J current density. 

Assuming that the domain Ω consists of linear and isotropic medium, following 

holds true 

 

D = εE         (2.3) 
B = µH     (2.4) 
J = σE ,     (2.5) 

 

where ε is permittivity, µ permeability, and σ conductivity of the medium. Assuming 

that the injected currents are time harmonic with frequencyw , we get 

 

   i tE Ee w= %      (2.6) 

  .i tB Be w= %      (2.7) 
 

Solving equations (2.1) and (2.2) using equations (2.3) to (2.7), we get  
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The current density J can be separated into two components ohmic current 

( 0J Es= ) and current source ( sJ ). Putting the value of J and canceling out the 

oscillatory exponential terms, we get the following simplified Maxwell equations 

(Somersalo et al. 1992, Ola et al. 1993, Doerstling 1995) 

 

E i HwmÑ´ = -      (2.8) 

( ) .sH i E Js weÑ ´ = + +                                          (2.9) 

 

Now the electric field, E, can be derived as 
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,
A

E u
t

¶
= -Ñ -

¶
                                                    (2.10) 

 

where u is electric potential and A magnetic vector potential. 

In EIT, we assume static conditions, which mean that the effect of magnetic 

induction which produces an induced electric field is neglected. The second 

assumption we make is that the capacitive effects i Ewe  in (2.9) can be neglected 

(Barber and Brown 1984, Baker 1989). Using these assumptions, the above 

equations can be simplified as 

 

E u= -Ñ                                               (2.11) 

.sH E JsÑ´ = +                                         (2.12) 
 

Taking the divergence on both sides of (2.12), putting the value of (2.11) into (2.12), 

and also because 0sJ =  in the given frequency range in EIT, we get 

 

( ) 0,usÑ × Ñ =                                                  (2.13) 

 

where u = u(x,y), for x,y Î Ω. The equation (2.13) serves as the governing equation 

for EIT. Now we need to have a set of boundary conditions to solve this equation. A 

number of different boundary conditions, usually referred to as physical models in 

EIT, are presented the next subsection.  

 

2.2 Physical models in EIT 

2.2.1 Continuum model 

 
This is the most basic physical model. It assumes the entire surface is a conductor 

with no specific electrodes attached to the surface, with j as a continuous source 

current 

 
),cos()( xx kCj =                      (2.14) 
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where C  is a constant. There is, however, up to a 25% (resistivity) estimation error 

using this model due to the fact that the effect of electrodes is not considered here 

(Cheng et al. 1989, Sommersalo et al. 1992). 

 

2.2.2 Gap model 

 
In this model, it is assumed that the current density is constant over electrodes while 

it is assumed to be zero between the electrodes  
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where le  is the area of the lth electrode, lI  is the current applied to the lth electrode 

le , and L  is the number of electrodes. 

 

2.2.3 Average-gap model 

 
The average-gap model is based upon the same boundary conditions as the gap 

model. The main difference between the two models is that the gap model considers 

the voltage values measured at the centre of each electrode whereas the average-gap 

model considers the average value of potential at each electrode. Since both the gap 

and average-gap models ignore the shunting effect as well as the contact impedance 

of the electrodes, they still overestimate the resistivity distribution inside the body 

(Somersalo et al. 1992). 

 

2.2.4 Shunt model 

 
As the name implies, this model takes into account the shunting effect of the 

electrode. This means that the potential on the electrode is assumed to be constant. 

The boundary condition, in this case, will be as follows 
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where the shunting effect is compensated by introducing the following condition 

 

lu U= , ( ), lx y eÎ , 1, 2, , ,l L= L    (2.17) 

 

where lU  is the measured voltage on the lth electrode. Also, u  in (2.16) is the 

outward normal unit vector on the surface W¶ . Since the contact impedances are still 

ignored in this model, it underestimates the resistivity distribution. 

 

2.2.5 Complete electrode model (CEM) 

 
The complete electrode model (CEM) considers both the shunting effect as well as 

the contact impedance between the electrodes and the surface of the body. This 

model consists of the following boundary conditions 
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The total current applied through electrodes attached on the boundary of the object is 

given by (2.18) and (2.19) is the insulated condition where there is no current applied 

other than at the electrode surface.  

Apart from (2.18) and (2.19) we have additional condition which considers the 

contact impedance between the electrode and electrolyte inside the domain  

 

l l
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u z Us
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¶
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where lz  is the effective contact impedance. The CEM (2.18-2.20) has better 

approximation of the boundary voltages when compared to average-gap model or 
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shunt model. Also, to ensure the existence and uniqueness of the solution, we impose 

the following conditions (Somersalo et al. 1992) 
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2.3 Finite element method formulation of EIT 

 
In the FEM implementation of above problem, the object Ω is discretized into small 

triangular elements. We assume that the resistivity is uniform within each element. If 

N  is the number of nodes in the finite element mesh, the potential distribution u  

within the object is approximated as 
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and the potential on the electrodes is represented as 
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where 

  if  = two-dimensional first-order basis function,  

( )
T

1 1, 1, 0, , 0= -n L and  

( )T2 1,0, 1,0, , 0 L= - ÎÂn L   

 
are the bases for the measurements. ia  and ib  are the coefficients to be determined. 

The finite element formulation gives the following system of linear equations 
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and the stiffness matrix A  is of the form 

 

( )
1

1
,

l

L

i j i je
i j d dS

z
s j j j j

W
=

= Ñ ×Ñ W +åò òB
l l

,   Nji ,,2,1, L=  (2.26) 

( )
1 11 1

1 1
,

j
i ie e

j

i j dS dS
z z

j j
++

= - +ò òC ,  1, 2, ,i N= L , 1,,2,1 -= Lj L   (2.27) 

( )

1

1

11

1 1

,
j

j

e
i j

z
i j

ee
i j

z z

+

+

ì
¹ï

ï
= í
ï

+ =ï
î

D   ,  , 1, 2, , 1,i j L= -L      (2.28) 

 

where je  is the area of the electrode j . 

In some cases, the voltages are measured only at some selected electrodes, not 

every electrode. Also, the selected electrodes may be different at each current pattern. 

The measured voltages at the measurement electrodes Û  can be obtained as 

 

T Tˆ ,h E P´= = ÎÂU M U M Nβ                                      (2.29) 

 

where, E  is the number of the measurement electrodes, P is the number of current 

patterns and L E´ÎÂM is the measurement matrix. Furthermore, hU  can be extracted 

directly from b  by introducing the extended mapping matrix N%  

 

( 1)( , ) L N L´ + -= ÎÂN 0 N%  and ,h =U Nb%                  (2.30) 

 

where L N´ÎÂ0 . Therefore, we have 
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T Tˆ ,h= = =U M U M Nb Mb% %                      (2.31) 

 

where the extended measurement matrix is defined as 

 

T ( 1)E N L´ + -= ÎÂM M N% % .                                               (2.32)  

 

2.4 Current injection methods 

 
To estimate the conductivity distribution inside the domain, the currents are applied 

through the electrodes and the voltages are measured. Current injection mechanism 

can affect the performance as the sensitivity is different for each case. Various 

methods have been proposed for the current injection (Webster et al. 1990, Isaacson 

1986, Cheney and Isaacson 1992, Cheng et al. 1988) and also the methods to obtain 

the optimal current patterns (Paulson et al. 1992). The most common current 

injection protocols used in EIT are the adjacent method, the opposite method, the 

cross method and the trigonometric method.  

In static EIT, all the independent current patterns are injected to reconstruct a 

single frame of image and the number of independent current patterns is determined 

by the current pattern and the number of electrodes. However, when the conductivity 

distribution inside the body changes rapidly we use the so-called dynamic imaging 

techniques. Recalling that in the dynamic EIT only one current injection is allowed 

for each image reconstruction, each current pattern comprising a current injection 

protocol can be an independent current pattern. For example, in the trigonometric 

pattern, each mode of cosine and sine pattern can be an independent pattern. Hence, 

variety of current patterns is possible in the dynamic EIT. The minimum number of 

current patterns required to get an optimal solution in a dynamic scenario can be 

achieved by the analysis of different current patterns. Isaacson (1986) investigated 

the optimal current pattern in a two-dimensional cylindrical object with concentric 

inhomogeneity and showed that the trigonometric pattern is optimal to distinguish a 

central concentric inhomogeneity inside an otherwise homogeneous circular 

conductor when the L2 norm of the current is kept constant.  However, if the total 
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injected current is kept constant, Köksal and Eyüboğlu (1995) found that the opposite 

method gives the best distinguishability. Kim et al. (2005) reported a qualitative 

comparison of the reconstructed dynamic images obtained with various current 

patterns. The comparison shows that the trigonometric and the opposite methods 

generate the best reconstructed images. 

Gisser et al. (1988) compared the distinguishabilities by using adjacent, 

opposite and performed a distinguishability analysis by injecting trigonometric 

(cosine), opposite and adjacent current patterns into a circular phantom with no 

circular inhomogeneity inside, and demonstrated that cosine pattern with the 

maximum magnitude which is equal to the magnitude of either adjacent or the 

opposite current pattern is the optimal current pattern. Similarly, Newell et al. (1988) 

showed that cosine current patterns perform better than the opposite and adjacent 

current patterns to distinguish the smaller inhomogeneities. In general, if the sum of 

the amplitude of the injected currents is constant, opposite current pattern is optimal 

current patterns Vauhkonen (1997, 1998) developed many dynamic estimation 

techniques by considering the inverse problem to be a nonlinear state estimation 

problem and estimating the time-varying state using the linearized Kalman filter 

(LKF). 

As for the trigonometric pattern, only the first modes are considered because the 

higher modes tend to deteriorate the reconstruction performance (Kim et al. 2005). 

To explain the current pattern used in this work it would be helpful to illustrate the 

configuration of the electrodes attached on a circular object (see figure 2.1). With a 

16-electrode system, the injected current of the lth electrode, lI , for the cosine and 

the sine patterns are defined as 

  

0

0

cos(2 / 16)
1, 2, ,16.

sin(2 / 16)
l

I l
I l

I l

p

p

ì
= =í
î

L                               (2.33) 

 
While injecting the designed currents, the induced voltages at the electrodes, lV  , are 

measured.  
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Figure 2.1. Electrode configurations and mesh structure. 
 

 

In the opposite pattern, a pair of electrodes is selected to inject the 

predetermined current and to discharge the same amount of current while other 

electrodes are remained insulated. The basic mode chooses an electrode pair (e1, e9) 

and the current pattern will be ( 01 II = , 09 II -= ). It should be noted that the 

boundary voltages are measured only at the insulated electrodes. 

 

2.5 Jacobian  

 
The rate of change of potential with respect to the conductivity is popularly known as 

Jacobian and the resulting matrix is defined as the Jacobian matrix. Jacobian 

determines how sensitive the measurements are with respect to change of the 

resistivity inside the domain (Yorkey and Webster 1987).  

If the measurement matrix EL´ÂÎM  is used the voltages on the electrodes 

can be given by (2.32). The Jacobian can be written as  

 

                                           
1ˆ ( )

I,
n n n

d d dA
J

d d dr r r

-

= = =
U Mb

M
%

%%                                  (2.34) 

 

where n is the column of Jacobian matrix.  

If the pseudo-resistance matrix is defined as 
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1 T ( 1)N L E- + - ´= ÎÂR A M% %   or T .=AR M% %                        (2.35) 

 

The pseudo-resistance matrix can be easily obtained by the solution of the system 

equation as given below 

 

( ) ( )T .=A R b M I% % %                            (2.36) 

 

Using (2.32) and (2.25) the above equation can be written as 

 

1

T T
2

,
ˆ

æ öæ ö
= ç ÷ç ÷ ç ÷

è ø è ø

0 0R α
A

R β N M N I

%

%
                    (2.37) 

 

where 

 

1 (1: ,:) N EN ´= ÎÂR R% %  and ( 1)
2 ( 1: 1,:) .L EN N L - ´= + + - ÎÂR R% %     (2.38) 

 

The Jacobian ˆ / nr¶ ¶U   will be 

 

1 1 T
ˆ

,
n n nr r r

- -¶ ¶ ¶
= =

¶ ¶ ¶

U A A
MA A I R b% % %                                (2.39) 

 

1 T 1( )A A- -= , this is due to the symmetry of the stiffness matrix A . In A , the matrix B  

is the only term dependent on nr  and the Jacobian will be 

 

( )
T

T T T1
1 2 1

2

ˆ
,n n

n n

r r
r r

¶ ¶æ ö æ ö
æ ö æ ö¶ ¶ç ÷ ç ÷¶ ¶= - = - = -ç ÷ ç ÷ç ÷ ç ÷¶ ¶è øè ø ç ÷ ç ÷

è ø è ø

B B
0 ααRU B

R R R α
βR

0 0 0

%
% % %

%
        (2.40)  

 

in which the term 
nr

¶

¶

B
 can be calculated as  
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2

( . ) 1
.

n
i j

n n

i j
j j

r r

¶
= - Ñ ×Ñ

¶ ò
B

�
   , 1, 2, , .i j N= L                                 (2.41) 

 

Here, ij , jj  are basis functions and n� is the element with which the derivative is 

computed. 
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3.  Dynamic state estimation 

 

In the inverse problem, the conductivity distribution is estimated based on the 

injected currents and the measured voltages. Reconstruction algorithms for EIT are 

generally classified into static and dynamic algorithms. The static algorithms are 

usually employed for visualization of time-invariant internal conductivity 

distribution. Those cases which involve fast changes, dynamic algorithms are used 

(Kim et al. 2001, Kim et al. 2007a). In the dynamic estimation, the underlying 

inverse problem is treated as a state estimation problem (Kim et al. 2001) which 

consists of a state equation that models the temporal evolution of the state, and an 

observation equation that gives the relationship between the state and the boundary 

voltages. In this chapter, the nonlinear system of equations is solved using the state-

space model. For solving the nonlinear system of equations, LKF and EKF are 

derived to estimate the state variable. These Kalman filters assume predefined model 

parameters which are difficult to predict in most of the cases. Expectation 

maximization algorithm (EM) is introduced which reduces the uncertainty in the 

system by estimating the model parameters. EM algorithm is formulated using the 

extended Kalman smoother (EKS) approach (Dempster et al. 1977, Shaumway and 

Stoffer 1982, Gaharamani and Beal 1999, Sam and Ghahramani 2001). E step is 

obtained using EKS (RTS) approach and M step is done by differentiating the log-

likelihood function.  

 

3.1 Linearized Kalman filter 

 

We consider the estimation of the state nxÎÂ  of a discrete-time controlled process 

that is governed by the linear stochastic difference equation 

 

1 1 1k k k kx F x w- - -= +                                                      (3.1) 

 

with a measurement mzÎÂ  that is 
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,k k k kz H x v= +                                                         (3.2) 

where n n
kF ´ÎÂ  is the state transition model and m n

kH ´ÎÂ  is the observation model. 

The random variables n
kw ÎÂ  and m

kv ÎÂ  denote the process and the measurement 

noise, respectively. They are assumed to be white noises and independent of each 

other with normal probability distributions 

 

( ) ~ (0, )k kp w N Q                                                        (3.3) 

( ) ~ (0, ),k kp v N R                                                       (3.4) 

 

where n n
kQ ´ÎÂ  and m m

kR ´ÎÂ  are the process and the measurement noise covariance, 

respectively. 

Our goal is to set a recursive procedure to estimate kx  with the previous states 

1 , , kx x× × ×  and the measurements 1 , , kz z× × × . Let us define | 1
n

k kx - ÎÂ  to be a priori state 

estimate at step k  given knowledge of the process up to step 1k - , and |
n

k kx ÎÂ  to 

be a posteriori  state estimate at step k  given measurement kz . Then, a priori and    

a posteriori estimate errors can be defined as 

 

| 1 | 1k k k k ke x x- -= -                                                      (3.5) 

| | ,k k k k ke x x= -                                                       (3.6) 

 

respectively.   

The a priori state estimate will be 

 

| 1 1 1 1 1 1 1| 1[ | ] [ | ] ,k k k k k k k k k k kx E x Z E F x w Z F x- - - - - - - -= = + =                   (3.7) 

 
where 

 

( )T

1 , ,k kZ z z= L                                                        (3.8) 
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because of (3.3) and the definition of the a posteriori state estimate. The a posteriori 

state estimate is set to be a linear combination of the a priori state estimate | 1k kx -  and 

a weighted difference between an actual measurement kz  and a measurement 

prediction | 1k k kH x -  

 

| | 1 | 1( ),k k k k k k k k kx x K z H x- -= + -                                           (3.9) 

 

where n m
kK ´ÎÂ  is the gain or blending factor. The Kalman filter can be determined 

by minimizing the a posteriori error covariance |k kP  

 

( ) ( )
TT T

| | | | 1[ | ]k k k k k k k k k k k k k k k kP E e e Z I K H P I K H K R K-= = - - +                  (3.10) 

 

and 

 

( )
1

T T
| 1 | 1 ,

k kk k k k k k kK P H H P H R
-

- -= +                                    (3.11) 

 

where the a priori error covariance | 1k kP - is defined as 

 

T
| 1 | 1 | 1 1[ | ].k k k k k k kP E e e Z- - - -=                                            (3.12) 

 

In this, 

 

( )

| | | 1 | 1

| 1 | 1

| 1

( )

( )

k k k k k k k k k k k k k

k k k k k k k k k

k k k k k k

e x x x x K z H x

e K H x v H x

I K H e K v

- -

- -

-

= - = - - -

= - + -

= - -

 

( )| T T
| | | 1[ | ] 2 2 0k k

k k k k k k k k k k k k

k k

P
E e e Z I K H P H K R

K K
-

¶ ¶
= = - - + =

¶ ¶
, 

T T
| 1 | 1( )k k k k k k k k k kK H P H R P He- -+ = . 
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If the observation model becomes more credible 0kR ® , the gain weights the 

residual more heavily 

 

1

0
lim .

k
k k

R
K H -

®
=                                                     (3.13) 

 

On the other hand, as the a priori state estimate becomes more credible | 1 0k kP - ®  , 

the gain weights the residual less heavily 

 

| 1 0
lim 0.

k k
k

C
K

- ®
=                                                        (3.14) 

 

The a priori error covariance | 1k kP - and the a posteriori error covariance |k kP  can be 

obtained as  

 

T

| 1 1 1| 1 1 1,k k k k k k kP F P F Q- - - - - -= +                                          (3.15) 

( )| | 1.k k k k k kP I K H P -= -                                               (3.16) 

 

In this 

 

( )( )

T
| 1 | 1 | 1 1

T

1 1| 1 1 1 1| 1 1 1

T
1 1| 1 1 1

[ | ]

|

,

k k k k k k k

k k k k k k k k k

k k k k k

P E e e Z

E F e w F e w Z

F P F Q

- - - -

- - - - - - - - -

- - - - -

=

é ù= + +ê úë û

= +

 

( ) ( )

( ) ( )

( )

( ) ( )
( )

TT T
| | | | 1

T T T
| 1 | 1

T T T
| 1 | 1 | 1

T T T
| 1 | 1 | 1

| 1

|

.

k k

k k

k k

k k k k k k k k k k k k k k k k

k k k k k k k k k k k

k k k k k k k k k k k k k

k k k k k k k k k k k k

k k k k

P E e e Z I K H P I K H K R K

I K H P I K H P H K K R K

I K H P P H K H P H K R K

I K H P P H K H P H R K

I K H P

-

- -

- - -

- - -

-

é ù= = - - +ë û

= - - - +

é ù= - - - -ë û

é ù= - - - +
ë û

= -

 

 

Finally, we have a full set of recursive equations to estimate the state variable as 

following 
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Time Update Equations 

 

| 1 1 1| 1k k k k kx F x- - - -=                                                    (3.17) 

T
| 1 1 1| 1 1 1.k k k k k k kP F P F Q- - - - - -= +                                            (3.18) 

 

Measurement Update Equations 

 

( )
1

T T
| 1 | 1k kk k k k k k kK P H H P H R

-

- -= +                                    (3.19) 

| | 1 | 1( )k k k k k k k k kx x K z H x- -= + -                                         (3.20) 

( )| | 1.k k k k k kP I K H P -= -                                              (3.21) 

 

3.2 Extended Kalman filter 

 

Let us consider a case where the process model and the observation model are 

nonlinear. 

 

( )1 1,k k kx f x w- -=                                                  (3.22) 

( ), .k k kz h x v=                                                      (3.23) 

 

The a priori state estimate at step k  given knowledge of the process up to step 1k - , 

| 1
n

k kx - ÎÂ , and the measurement estimate at step k , | 1
m

k kz - ÎÂ , will be 

 

( )| 1 1| 1 , 0k k k kx f x- - -=                                                (3.24) 

( )| 1 | 1 , 0 .k k k kz h x- -=                                                  (3.25) 

 

Now, we linearize the process model about a posteriori state estimate at step 1k - , 

| 1
n

k kx - ÎÂ , and the observation model about a priori state estimate at step k , | 1k kx - . 
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( ) ( ) ( ) ( )

( ) ( )

1| 1 1| 1 1 1| 1 1| 1 1

1| 1 1 1 1| 1 1 1

, 0 ,0 ,0

   , 0 ,

k k k k k k k k k k k

k k k k k k k k

f f
x f x x x x x w

x w

f x F x x W w

- - - - - - - - - -

- - - - - - - -

¶ ¶
» + - +

¶ ¶

= + - +

          (3.26) 

( ) ( ) ( ) ( )

( ) ( )

| 1 | 1 1| 1 | 1

| 1 | 1

, 0 , 0 ,0

   , 0 .

k k k k k k k k k k k

k k k k k k k k

h h
z h x x x x x v

x v

h x H x x V v

- - - - -

- -

¶ ¶
» + - +

¶ ¶

= + - +

                  (3.27) 

 

A pseudo measurement is introduced 

 

| 1 | 1( , 0) .k k k k k k k k k k ky z h x H x H x V v- -º - + = +                                  (3.28) 

 

The Jacobians will be defined as 

 

( ) ( )| |, 0 ,                , 0 ,k k k k k k

f f
F x W x

x w

¶ ¶
= =
¶ ¶

                                  (3.29) 

( ) ( )| 1 | 1, 0 ,                , 0 .k k k k k k

h h
H x V x

x v
- -

¶ ¶
= =
¶ ¶

                                (3.30) 

 

Our system to be estimated become 

 

( )| 1 1 1 1| 1 1 1 ,k k k k k k k k kx x F x x W w- - - - - - -= + - +  

.k k k k ky H x V v= +  

 

The a priori state estimate and measurement estimate become 

 

( )| 1 1| 1 , 0 ,k k k kx f x- - -=        

| 1 | 1.k k k k ky H x- -=                                                  (3.31) 

 

The predicted error is obtained as 

 

( )| 1 | 1 1 | 1 1 1

1 1| 1 1 1 ,

k k k k k k k k k k k

k k k k k

e x x F x x W w

F e W w

- - - - - -

- - - - -

= - = - +

= +
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and the predicted error covariance will be 

 

1

T T
| 1 | 1 1 1| 1 1 1 1cov( ) .

kk k k k k k k k k kP e F P F W Q W
-- - - - - - - -= = +                           (3.32) 

 

The pseudo measurement error is 

 

( )| 1 | 1

| 1 .

k k k k k k k k k k

k k k k k

y y H x x V v

H e V v

e - -

-

= - = - +

= +
                               (3.33) 

 

and its variation is 

 

T T
| 1cov( ) .

kk k k k k k k kS H P H V R Ve -= = +                                 (3.34) 

 

The updated state is assumed to be 

 

| | 1 + .k k k k k kx x K e-=                                                   (3.35) 

 

The updated error is 

 

( )
| | | 1 | 1 | 1

| 1

( )

,

k k k k k k k k k k k k k k k k k k

k k k k k k k

e x x e K e K H e V v

I K H e K V v

e e- - -

-

= - = - = - +

= - -
              (3.36) 

 

and the updated error covariance will be 

 

( ) ( )
T T T

| | 1| 1cov( ) .k k k k k k k k k k k k k k kP e I K H P I K H K V R V K- -= = - - +               (3.37) 

 

Now, the nonlinear model is written in a linearized form as (3.26) and (3.28). 

Comparing the linear model (3.1) and (3.2) with the above linearized model (3.26) 

and (3.28) and their error covariance, finally, we have a full set of recursive 
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equations to estimate the state variable when the process and observation models are 

nonlinear as following 

Time Update Equations 

 

( )| 1 1| 1 , 0 ,k k k kx f x- - -=  

1

T T
| 1 1 1| 1 1 1 1 .

kk k k k k k k kP F P F W Q W
-- - - - - - -= +  

 

Measurement Update Equations 

 

( )
1

T T
| 1 | 1 ,

k kk k k k k k kK P H H P H R
-

- -= +  

| | 1 | 1( ),k k k k k k k k kx x K z H x- -= + -  

( )| | 1.k k k k k kP I K H P -= -  

 

3.3 Expectation maximization algorithm 

 
Since the EKF is a sub optimal estimator based on linearisation of a nonlinear 

mapping, kx  is only an approximation to the expected value and kP  is an 

approximation to the covariance matrix. The EKF algorithm for state estimation 

suffers from serious shortcomings, namely choosing the initial states and covariance.  

It is necessary to estimate the system parameters in an effective way. Maximum 

likelihood techniques involving the use of scoring or Newton Raphson techniques are 

generally used to estimate the system parameters (Gupta and Mehra 1974). They 

involve differentiating the log-likelihood function obtained from non-linear 

equations to estimate the parameters. Feasibility of these methods applied to several 

cases has been shown in (Ledolter 1979, Goodrich and Caines 1979).    

The likelihood methods explained above have some limitations which can be 

circumvented using EM algorithm (Dempster 1977). Firstly the correction steps 

involve large calculation of inverse of the second order partials and this is 

complicated if more number of parameters are involved. Furthermore, Newton 

methods may not necessarily increase the likelihood function sometimes it reduces 
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due to large number of steps. On the other hand, EM steps always increase the 

likelihood function and one is guaranteed convergence to a stationary point for an 

exponential family (Wu et al. 1981). One may find a local or global maximum there 

or one may be indefinitely along a ridge (Boyles 1980) depending on the shape of the 

likelihood function. EM algorithm is relatively simple in implementation unlike the 

Newton methods which involve the calculation of second order partials for 

maximizing log-likelihood function. EM does not consider the evaluation of second 

order partials therefore it is not available for estimating standard error. Another 

disadvantage in EM is that it has slow convergence in later stages of iterations 

therefore can switch to some other algorithm at this stage.  

Using the Markovian property embedded in the evolved model, the likelihood 

of the complete data can be represented as below 

 

0 1
1 1

( , | )

( | ) ( | , ) ( | , ),
k k

s s s s
s s

L p x z

p x p x x p z x

q

q q q-
= =

=

= Õ Õ
                              (3.38)                                        

 

where [ , , , , ]F Q Rq m P=  denotes the unknown system parameters, m  and P are the 

mean and covariance of the initial states 0x , kF  is the state evolution matrix, Q  and 

R  are the covariance of process and measurement noise, respectively. 

The log-likelihood of the complete data is given by  
 

T 1

2

T 1
1 1

2

T 1
1 1

1
log [ { ( )} { ( )}]

2

1
[ { } { }]
2

( )1
{ } { } log(2 )

2 2

1 1
log log log ,

2 2 2

n

k k k k

n

k k k k k k

L z h x R z h x

x F x Q x F x

n m q
x x

n n
R Q

m P m p

P

-

-
- -

-

= - - -

- - -

+
- - - -

-
- - -

å

å
                    (3.39) 

 

where log-likelihood function (log L) is to be maximized with respect to the system 

parameters [ , , , , ].F Q Rq m P=  In the above notation the log-likelihood function 

depends on the unobserved data kx , therefore in implementation of EM we consider 
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the expectation of the log-likelihood function based on the observations ky  

( 1,2, , )k n= L  

 

3.4 EM algorithm principle and implementation 

 
The EM algorithm is a widely applicable iterative algorithm. It consists of two major 

steps; expectation step and maximization step. The expectation is with respect to the 

unknown hidden variables using the current estimate of the parameters and 

conditioned upon the observations. The maximization step provides a new estimate 

of the parameters. These two steps are iterated until convergence. 

For the implementation of EM Algorithm we need to calculate the expectation 

of the log-likelihood equation (3.39) and then differentiate it with respect to the 

parameters so as to maximize it. 

 

T 1

2

T 1
1 1

2

T 1
1 1

1
(log | ) [ [{ ( )} { ( )}]]

2

1
[ [{ } { }]]
2

( )1
[{ } { }] ln(2 )

2 2

1 1
ln( ) ln( ) ln( ).

2 2 2

n

k k k k k

n

k k k k k k

E L z E z h x R z h x

E x F x Q x F x

n m q
E x x

n n
R Q

m P m p

P

-

-
- -

-

= - - -

- - -

+
- - - -

-
- - -

å

å
                     (3.40) 

 

In order to calculate the expectations in (3.40), it is convenient to define conditional 

mean and covariance 

 

| 1( | , ......, )k n k nx E x z z=                                              (3.41) 

| 1COV( | ,......, )k n k nP x z z=                                         (3.42) 

, 1| 1 1COV( , | ,......, ).k k n k k nP x x z z- -=                                  (3.43) 

 

Here, |k kx  is the usual Kalman estimator whereas |k nx  is the minimum square error 

smoothed estimator of kx  based on complete observed data i.e. ( 1,2, , )k n= L . These 

expected values of states and covariance can be obtained using extended Kalman 

smoother 
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where 

 

� T
1| 1| 1|

1

( )
n

k n k n k n
k

A P x x- - -
=

= +å                                              (3.45)                                    

� ( )
, 1|

T
| 1|

1
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n

k n k n
k

B P x x
- -

=

= +å                                                (3.46) 

� ( )T
| | |

1

.
n

k n k n k n
k

C P x x
=

= +å                                                    (3.47) 

 

Maximizing the last two lines of log-likelihood function (3.44) we obtain the 

values for system parameters which increase the log-likelihood function 

      

��1
( 1)F r BA

-
+ =                                                             (3.48)                                                                                                                    

� �� �1 T1
( 1) ( )

1
Q r C B A B

n

-
+ = -

-
                                          (3.49)                                                                                          

T T
| | |

1

1
( 1) {( )( ) }

n

k k n k k k k n k k k n
k

R r J p J z J x z J x
n =

+ = + - -å                     (3.50)                                                       

1|( 1) nr xm + =                                                             (3.51)                                                                                 

1|( 1) .nr pÕ + =                                                             (3.52)                                                                            

 

In some cases we may want to add constraints to the elements in state transition 

matrix F such that � �F M G=  then (3.48) and (3.49) are modified as 

 

� �� � � � �T T1 11( 1) ( )( )cF r F F M G M A M M A
- --+ = - -                                (3.53) 

� �� � � � �T 1 1 T( 1) ( )( ) ( ) .cQ r Q F M G M A M F M G
- -+ = + - -                          (3.54) 

 

The value of log-likelihood function can be evaluated at each step using the formula 

given below (Gupta and Mehra 1974) 
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            (3.55) 

 

The EM algorithm always increases the log-likelihood function in each step and this 

is used as convergence criteria when the value of log-likelihood function decreases 

then iterations are terminated.  

 

3.5 Extended Kalman smoother 

 
In EKF, it proceeds only forward in time to estimate the parameters. By 

incorporating the future measurements we can have improved estimates of the 

previous time steps. This is known as smoothing operation. The smoothing is done 

by using fixed point or fixed lag or fixed interval. Here we use fixed interval 

extended Kalman filter which entails forward and backward computations to 

estimate at each time step. 

 

Step 1) Predicted (a priori) state 

 

| 1 1 1| 1.k k k k kx F x- - - -=                                             (3.56) 

 

Step 2) Predicted (a priori) error covariance 

 

T

| 1 | 1 1 1| 1 1 1cov( ) .k k k k k k k k kP e F P F Q- - - - - - -= = +                             (3.57) 

 

Step 3) Predicted measurement error 

 

| 1 | 1 .k kk kk k k kz z z H xe - -= - = -% % %                                  (3.58) 

 

Step 4) Predicted measurement error covariance 
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T
| 1cov( ) .k k k k k k kS H P H Re -= = +                                (3.59) 

 

Step 5) Kalman gain 

 
T 1

| 1 .k k k k kK P H S -
-=                                             (3.60) 

 

Step 6) Updated (a posteriori) state 

 

| | 1 | 1 | 1( ).kk k k k k k k k k k k kx x K x K z H xe- - -= + = + -%                      (3.61) 

 

Step 7) Updated (a posteriori) error covariance 

 

( )| | 1.k k k k k kP I K H P -= -                                       (3.62) 

 
Step 8) Initialize Rauch-Tung-Stribel smoother 

 

|n n nx x=  

| .n n nP P=                                                    (3.63) 

 
Step 9) Smoother gain 

 
T 1

1 1| 1 | 1( ) .k k k k k kG P F P -
- - - -=                                           (3.64) 

 
Step 10) Smoothed estimate 

 

1| 1| 1 1 | 1| 1( ).k n k k k k n k k kx x G x F x- - - - - -= + -                                    (3.65) 

 
Step 11) Smoothed covariance update 

 

T
1| 1| 1 1 | | 1 1( ) .k n k k k k n k k kP P G P P G- - - - - -= + -                                (3.66) 

 
Step 12) Compute smoothed cross-covariance 

 

T T

1, 2| 1| 1 2 1 , 1| 1| 1 2( ) .k k n k k k k k k n k k k kP P G G P F P G- - - - - - - - - -= + -                (3.67) 
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In conventional maximum likelihood estimation procedure, the log-likelihood 

condition (3.39) is used along with nonlinear methods to solve for system parameters. 

These methods are difficult to implement and need to compute the inverse matrix of 

second order partial equations. Also, these methods do not increase the log-

likelihood function value. However, through EM using (3.48), (3.49) and (3.50), the 

system parameters are estimated. These are simple to implement as they are just 

multivariate regression calculations. The better estimation performance of EM is 

achieved at the expense of additional computational effort needed to calculate the 

smoothed estimators |k nx , |k nP , , 1|k k nP -  needed to compute system parameters (3.42-

3.44). For this one requires to apply backward recursions where as conventional 

methods needs forward computations to compute (3.39). In the conventional methods 

for solving maximum likelihood function, it requires a set of derivates for | 1k kx - , | 1k kP -  

to solve for system parameters which also takes comparable amount of computation.  
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4.  Estimation of region boundaries in flow field using 

expectation maximization algorithm 

 
In many industrial processes such as heat exchangers and combustion systems, 

liquid-gas or liquid vapour phases are formed under normal or accidental conditions 

(Holand and Bragg 1995, Fairuzov 2000). Location of these region boundaries in the 

flow field is important for the safety operation of the mechanical systems. In this 

regard, there have been numerous methods proposed for the visualization of two-

phase flows (Gladden and Alexander 1996, Xu et al. 1997, Shollenberger et al. 1997). 

Some of these methods such as gamma densitometry are expensive, hazardous and 

have side effects. A few other methods are intrusive and disturb the flow field. 

Finally, some techniques have large data acquisition time making it difficult to 

visualize two-phase flows. Electrical impedance tomography (EIT) is a non-intrusive 

method and has high temporal resolution characteristics thus making it a potential 

method for visualization of two-phase flows. Image reconstruction in EIT comprises 

of forward and inverse problem. In forward problem, a set of electrical currents are 

injected through the electrodes attached around the boundary of the object to be 

imaged and the excited voltages are measured on the electrodes. In inverse problem 

based on the current-voltage relationship, the internal conductivity distribution is 

reconstructed. The main disadvantage in EIT is its low spatial resolution because like 

many inverse problems, reconstruction using EIT is highly non-linear and ill-posed. 

To mitigate the ill-posedness, regularization methods are often employed (Lionheart 

2004). If the process vessel contains some region boundaries (voids) enclosed by 

background and the knowledge of the conductivity distribution of the background 

and that of the voids are known a priori, then the unknown parameters will be the 

location and size of the boundaries. If the problem is to estimate the boundary of the 

void rather than the conductivity distribution then it is defined as phase boundary 

estimation problem. These boundary estimation problems can be classified as open 

and closed boundary problems according to the topology of the boundary to be 

estimated. The boundary is termed as closed boundary if the anomalies are enclosed 

by the background substance (Han and Prosperetti 1999). In case of the open 
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boundary problem, the domain is divided into disjoint zones separated by an 

interfacial open boundary (Butler and Bonnecaze 2000, Kim et al. 2007b). The 

methods used to describe the open boundary problems are not applicable to closed 

boundary problems. The work concerned here is about estimation of the region 

boundaries, which is a closed boundary problem. 

Several methods have been proposed in literature to represent the closed 

boundary. Han and Prosperetti (1999) assumed the boundary to be smooth and 

described the boundary using Fourier series. Shape decomposition method based on 

boundary element method was used to solve the boundary problem. Kolehmainen et 

al. (1999) developed a method to recover the piece wise coefficients of an elliptic 

PDE for an application of optical tomography which is similar in principal with that 

of EIT. Using EIT, numerous methods have been proposed to recover the Fourier 

coefficients that represent the boundary. Static methods like Newton methods and 

neural networks were employed for boundary estimation (Jeon et al. 2005, Kim et al. 

2006). These static methods offer slow convergence and therefore are not fast 

enough to track the transient changes of the object. In such situations, dynamic 

algorithms such as EKF and UKF filter give a better performance (Kim et al. 2007b, 

Ijaz et al. 2007).  

The EKF is the most popular algorithm used to track the fast transient changes 

of the object. EKF uses a state-space model which consists of process and 

observation models to estimate the state parameters. The process model describes the 

dynamic behavior of the object while the observation model establishes the 

relationship between the measurements and the state vector. Statistical properties are 

used in the implementation of process and observation model. The process model is 

used to predict the motion of the object and the predicted values are corrected using 

the available measurements. Using this predictor-corrector mechanism, it 

approximates an optimal estimate due to linearization of the process and observation 

models. For the application of EKF, the exact dynamics of the evolution, initial states 

of the noise covariance of process and measurement models have to be predefined. In 

practice, we do not have any prior information about the evolution of the motion 

parameters, therefore, random-walk model is employed. In some cases, interactive 

multiple models such as constant velocity and constant acceleration are used (Bar 
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and Shalom and Li 1993).  In real situations, the dynamics of the evolution are 

complex and it is difficult to represent the model parameters in a prior form. The 

values of noise covariance are set through experience or manually tuned which is a 

major drawback of EKF for parameter estimation. The determination of dynamic 

evolution matrix, noise covariance matrices and initial estimates are accomplished 

using expectation maximization algorithm. The EM algorithm is a method of finding 

a mode of the proposed likelihood function through the expectation and 

maximization. The most remarkable aspect of EM algorithm is that it ensures the 

increase in log likelihood function. A method of EM for learning a linear dynamic 

system has been studied in Grahahmani and Hinton (1996). Extension to the system 

of linear dynamics and nonlinear measurement are given in Grahahmani and Beal 

(1999). EM algorithm has been applied in field of medical and economics to estimate 

the hidden states using the missing data. 

This study involves estimation of voids in the flow process using EIT as an 

application of process tomography to visualize two-phase flows. The smooth closed 

boundary is represented using truncated Fourier series and the Fourier coefficients 

are estimated using expectation maximization algorithm. The proposed model 

assumes that state transition obeys Gaussian distribution and the Markovian chain 

theory. The state transition matrix, initial states, process and measurement noise 

covariance matrices is estimated using EM algorithm and then the estimated system 

parameters are applied to EKF to estimate the unknown region boundaries. 

Numerical and experimental studies have been carried out to evaluate the 

performance of the proposed method. The results show that EM has better estimation 

performance of the void boundary (location, shape and size) as compared to 

conventional EKF.  

 

4.1 Boundary representation 

 
In this section, the shape parameterization and the recovery of smooth region 

boundaries are presented. Since the conductivities of the background and that of 

object are known a priori, the coefficients that represent the boundary are estimated 
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instead. The forward solver is then modified accordingly as a set of coefficients 

representing the boundary shape. 

Let us assume that the problem domain 2WÎÂ  is divided into � 1P +  disjoint regions 

kA  as shown in figure 4.1 
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Figure 4.1. Region boundaries enclosed by background. 
 

 
Let 0A  be the background region whose outer boundary is ¶W  whereas the region 

�( )1, ,kA k P= L  is bounded by smooth boundary �( 1, , )kC k PÎW = L  Let ( )k rc  be the 

characteristic function of sub region kA , the conductivity in the region is a known 

constant and can be expressed as 
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k k
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rs s c
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= å                                                        (4.14) 

 

By substituting (4.14) into (4.10), we obtain 
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where supp( )i jj j  is a part of domain W  where both the basis functions ij  and jj  is 

non-zero. The implementation of the integrals of the form (4.15) has been described 

previously in (Kolehmainen et al. 1999, Tossavainen et al. 2006). As a first step, mesh 

elements mW  are classified into sets of elements inside the region ( 0,1)kA k =  for two-

phase flow and a set of elements intercepted by the boundary kC . For the elements that 

lie in the region kA , they are assigned their corresponding conductivity values ks . 

However, for the elements that lie on the boundary kC , the area weighted conductivity 

values are assigned as in Kolehmainen et al. (1999) 

 

          ,
( )
l l r r

e
e l r

S S

S S S

s s
s

+
=

= +
                                                      (4.16) 

 

where lS  and rS  denotes the area of lower and upper regions of the splitted element, 

respectively. If phase boundaries of the objects kC  are sufficiently smooth, they can be 

approximated as a linear combination of known functions   
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where ( )x swq  and ( )y swq  are periodic differentiable basis functions and Nq  is the 

number of basis functions. In this paper, we express the phase boundaries as Fourier 

series in two-dimensional coordinates with respect to parameter s, that is, we use the 

basis functions of the form 

 

1 ( ) 1saq =                                                      (4.18) 

( ) sin(2 ), 2,4,6...... 1
2

s s Na
w q

w
q p w= = -                         (4.19) 

                 
( 1)

( ) cos(2 ), 1,3,5...... ,
2

s s Na
w q

w
q p w

-
= =                              (4.20) 

 

where [0,1]sÎ  and a  denotes either x or y. Let G  be the coefficient vector which 

represents the boundary, that is,  
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                      1 1 1 1 T
1 1 1 1( ,..., , , ..., , ..., ..., , ..., , , ..., ) ,s s s sx x y yx x y y

N N N Nq q q q
g g g g g g g gG =                (4.21) 

 

where 
�2PNqGÎÂ . Now our goal is to estimate the coefficient vector with the 

information of injected currents and measured boundary voltages using an efficient 

inverse algorithm. 

 

4.2 Inverse problem: Estimation of Fourier coefficients 

4.2.1 State estimation approach 

 
In this section, we present the state estimation formulation for boundary estimation 

using EIT. The voids formed inside the process vessel are not stable and they change 

position and shape during the time of data acquisition. If the target changes so fast that 

its characteristics changes significantly with in one single image frame then the 

conventional static imaging techniques will not give desirable results. In order to 

enhance the temporal resolution in EIT, dynamic image reconstruction algorithms are 

required. The unknown Fourier coefficients that represent the boundary of the void are 

regarded as state variables and the inverse problem is treated as a state estimation 

problem. Assuming that the evolution of the state variables ng ÎÂ  is smooth, the 

dynamic equation is modeled by a stochastic linear differential equation  

 

 1 ,k k k kF wg g -= +                                                   (4.22) 

 

where kF is the state transition matrix, kw is the process noise vector, n  is the 

dimension of state vector �( )2n PNq= , and the index k represents the discrete time step.  

EIT measurements are described by the nonlinear equation 

 

   ( ) ,k k k kV U vg= +                                                 (4.23) 

 

where kV  is the vector of voltages measured at time step k, kv  is the measurement 

noise vector and ( )k kU g is the forward solution computed using FEM. Both the 
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process and observation noise, kw  and kv , are assumed to be mutually independent 

and zero-mean normally distributed random variables with known covariance matrix,  

 
~ (0, )kw N Q                                                       (4.24) 

~ (0, ).kv N R                                                      (4.25) 

 

The equations (4.22) and (4.23) constitute the state-space representation of the 

boundary estimation problem. In solving the state estimation procedure, the 

conditional expectations have to be determined. The conditional estimates |k kg are 

determined using recursive Kalman filter if the state and measurement equations are 

linear. In case of non-linear system of equations, suboptimal estimates can be 

obtained by applying the linear approximations of the state and/or observation 

equations. The method which has been formulated based on such an approach is 

known as extended Kalman filter (EKF) (Kim et al. 2008, Ijaz et al. 2008). State 

estimation using EKF assumes the prior knowledge of the model parameters 

0 0( , , , , )F Q R Pg . Evolution of the state is often very complicated in the case of two-

phase flows. Moreover, the process noise is heavily dependant on the environment 

surrounding the object, therefore, it is difficult to have prior information of actual 

dynamics of the model parameters. The estimation performance of EKF is affected 

by the choice of these model parameters. The EM algorithm can be used to 

effectively estimate these model parameters and the estimated parameters are then 

used in EKF for state estimation. First, we introduce maximum likelihood function 

before deriving the EM algorithm for boundary estimation. 

 

4.2.2 Maximum likelihood function 

 
We assume that the initial conditions, evolution of the states and the likelihood of the 

measurement data can be represented by Gaussian distribution. The conditional 

probabilities for the state and the measurements can be written as follows 

 

/2 1/2 T 1
0 0 0( | ) (2 ) ( exp[ {( ) ( )} / 2]np g q p P) g m P g m- - -= - - -                         (4.26) 

/2 1/2 T 1
1 1 1( | , ) (2 ) ( exp[ {( ) ( )} / 2]n

k k k k k k k kp Q F Q Fg g q p ) g g g g- - -
- - -= - - -              (4.27)                
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/2 1/2 T 1( | , ) (2 ) ( exp[ {( ( )) ( ( ))} / 2],m
k k k k k k k kp V R V U R V Ug q p ) g g- - -= - - -                 (4.28)             

 

where [ , , , , ]kF Q Rq m P=  denotes the unknown system parameters, m  and P are the 

mean and covariance of the initial states 0g , kF  is the state evolution matrix, Q  and R  

are the covariance of process and measurement noise, respectively. The likelihood of 

the complete data using the Markovian property embedded in state equations is given 

by 
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The log-likelihood of the complete data is given by  
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                   (4.30) 

 

where log-likelihood function log L is to be maximized with respect to the system 

parameters [ , , , , ].F Q Rq m P=   

 

4.2.3 EM algorithm for boundary estimation 

 
The EM algorithm is an iterative method for finding a mode of the likelihood function.  

The EM algorithm consists of two major steps; expectation step and maximization step. 

The expectation is with respect to the unknown variables using underlying variables 

using the current estimate of the parameters and conditioned upon the measurements. 

The maximization step provides a new estimate of the parameters. These two steps are 

iterated until convergence. The EM algorithm presented here is based on Shumway 

and Stoffer 1982 where the measurement matrix U is considered to be known. 

For the implementation of EM Algorithm we need to calculate the expectation of 

the log-likelihood (4.30) and then differentiate it with respect to the parameters so as to 
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maximize it. The log-likelihood function (4.30) depends on the unobserved data kg , 

therefore in the implementation of EM we consider the expectation of the log-

likelihood function based on the observations kV  ( 1,2,3 , )k n= L  
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         (4.31) 

 

To evaluate the conditional expectations in (4.31) we define the conditional mean and 

covariance  

 

| 1( | ,......, )k n k nE V Vg g=                                              (4.32) 

| 1COV( | ,......, )k n k nP V Vg=                                        (4.33) 

, 1| 1 1COV( , | ,......, ).k k n k k nP V Vg g- -=                              (4.34) 

 

Here, |k ng  is the smoothed estimate of kg  based on all the available measured data i.e. 

( 1,2,3 , )k n= L . Similarly, |k nP , , 1|k k nP -  are the covariance and cross covariance smooth 

estimates, respectively. These smooth estimates for mean and covariance are obtained 

using extended Kalman smoother which is explained in subsequent subsection. Using 

the conditional expectations of mean and covariance, the expectation of log-likelihood 

function is written as below 
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where 
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Maximizing the log-likelihood function (4.31) we obtain the values for system 

parameters which increase the log-likelihood function 
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g g
=
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1|( 1) nrm g+ =                                                     (4.42)  

1|( 1) .nr pÕ + =                                                     (4.43) 

 

The detailed description about the computation of derivatives of log-likelihood 

function for the evaluation of system parameters can be found in Shaumway and 

Stoffer 1982, Ghaharamani and Hinton 1999.                

 

4.2.4 Extended Kalman smoother 

 
EKF is an iteration algorithm which only proceeds in forward-step in time to estimate 

the state parameters. By incorporating the future measurements we can have improved 

estimates of the previous time steps. This is known as smoothing operation. The 

smoothing is done by using fixed point or fixed lag or fixed interval. Here, we use 

fixed interval extended Kalman filter which entails forward and backward 

computations to estimate at each time step (Gelb 1981). 

Rauch-Tung-Stribel smoother 

Step 1) Predicted (a priori) state 

 

| 1 1 1| 1.k k k k kFg g- - - -=                                                    (4.44)  

Step 2) Predicted (a priori) error covariance 
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T
| 1 | 1 1 1| 1 1 1cov( ) .k k k k k k k k kP e F P F Q- - - - - - -= = +                (4.45) 

 

Step 3) Predicted measurement error 

 

| 1 | 1 .k k k k k k k kV V V He g- -= - = -           (4.46) 

 

Step 4) Predicted measurement error covariance 

 

T
| 1cov( ) .k k k k k k kS H P H Re -= = +            (4.47) 

 

Step 5) Kalman gain 

 
T 1

| 1 .k k k k kK P H S -
-=                                        (4.48) 

 

Step 6) Updated (a posteriori) state 

 

| | 1 | 1 | 1( ).k k k k k k k k k k k k kK K V Hg g e g g- - -= + = + -                  (4.49)  

 

Step 7) Updated (a posteriori) error covariance 

 

                         ( )| | 1.k k k k k kP I K H P -= -                                         (4.50) 

 

Step 8) Initialize RTS smoother 

 

|n n ng g= , | .n n nP P=                                                (4.51) 

 

Step 9) Smoother gain 

 

   T 1
1 1| 1 | 1( ) .k k k k k kG P F P -
- - - -=                                      (4.52) 

 

Step 11) Smoothed estimate 

 

1| 1| 1 1 | 1| 1( ).k n k k k k n k k kG Fg g g g- - - - - -= + -                           (4.53) 
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Step 12) Compute smoothed covariance update 

 
T

1| 1| 1 1 | | 1 1( ) .k n k k k k n k k kP P G P P G- - - - - -= + -                           (4.54)   

 
Step 13) Compute smoothed cross-covariance 

 
T T

1, 2| 1| 1 2 1 , 1| 1| 1 2( )k k n k k k k k k n k k k kP P G G P F P G- - - - - - - - - -= + -                  (4.55) 

 

4.2.5 Jacobian for closed boundary 

 

In General, EIT has a nonlinear relationship between boundary voltages and 

conductivity hence measurement equation has to be linearized. The rate of change of 

potential with respect to the conductivity is popularly known as Jacobian and the 

matrix thus obtained is called the Jacobian matrix. Jacobian determines how sensitive 

the measurements are with respect to change of the conductivity inside the domain. 

However, for the case of boundary estimation the conductivity is replaced by the 

shape parameters which represent the boundary. The relative change of the measured 

voltage at the lth measurement electrode at the p th current pattern ( ˆ p
lU ) with respect 

to the change of the n th coefficient of the k th boundary ( , ,k

n x yag a = ), that is 

 

                                                  
ˆ

.
k

p

n

U
J

ag

¶
=
¶

l                                                       (4.56) 

 

Using the FEM formulation for CEM (2.24~2.32), the expression for Jacobian for 

boundary coefficients can be written as follows 

 

1 1 T
ˆ

,
k k k

n n n
a a ag g g

- -¶ ¶ ¶
= =

¶ ¶ ¶

U A A
MA A I R b% % %                   (4.57) 

 
1 T 1( )A A- -= , this is due to the symmetry of the stiffness matrix A . In A , the matrix 

B  is the only term dependent on k

n
ag  and the Jacobian will be 
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( )
T

T T T1
1 2 1

2

ˆ
.k k

k k
n n

n n

a a

a a
g g

g g

¶ ¶æ ö æ ö
æ ö æ ö¶ ¶ç ÷ ç ÷¶ ¶= - = - = -ç ÷ ç ÷ç ÷ ç ÷¶ ¶è øè ø ç ÷ ç ÷

è ø è ø

B B
0 ααRU B

R R R α
βR

0 0 0

%
% % %

%
   (4.58)  

 

The evaluation of the term 
k

n
ag

¶

¶

B
 can be found in (Tossavainen et al. 2007).  

4. 3 Results 

 
In this section we present the results for phase boundary estimation using expectation 

maximization algorithm. The method is tested with numerical and experiment data and 

the performance is compared with EKF. As a performance criterion, root mean square 

error (RMSE) of the estimated Fourier coefficients is computed. RMSE for boundary 

coefficients g , RMSEg , is defined as 

 

estimated true

true

RMSE .g

g g

g

-
=                (4.55) 

 

4.3.1 Results using simulated data  

 
In this section, the estimation of voids using numerical simulations is presented. The 

geometry of the phantom is the same which is used in laboratory experiments. The 

characteristics of the flow inside the phantom are chosen such that the contrast of the 

conductivities is high between the background fluid and the void present. In this 

respect, the background conductivity is set to 0.0033 S/cm and the conductivity of the 

void is set as 0.1 × 10-10 S/cm. The contact impedance between the electrode and the 

medium is taken as 0.005 Ωcm2
. To describe a single elliptic boundary, six Fourier 

coefficients are required and three Fourier coefficients for circular boundary. If same 

discretization model is adopted in both forward and inverse computations it is termed 

as inverse crime. In order to avoid such a situation, two different finite element meshes 

are used for forward and inverse problem. A fine mesh with 2409 nodes and 4560 

triangular elements is used in forward solver to generate the boundary voltage data. 

Inverse solver uses coarse mesh with 2121 nodes and 3984 triangular elements to 
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estimate the boundary coefficients that describe the target boundary. The voids formed 

in the flow process are not stable and they change their position and shape with respect 

to time. Three dynamic scenarios are considered in this respect for the evolution of the 

void. To generate the true data in all the three cases, first-order kinematic model is 

used to evolve the motion of the void. In inverse computation, it is assumed that we do 

not have the prior knowledge of the evolution, therefore, random-walk model is used. 

To simulate with that of actual conditions, random noise of zero-mean Gaussian noise 

having STD 2% of the value of the corresponding computed voltage is added to the 

computed voltage. 

        In case 1, (the moving case), the void changes its position as shown in figure 

4.2(a). Initially, the void is positioned at (2, 1) in Cartesian system and it moves with 

each current pattern while the size and shape of void remain constant during its motion. 

As an initial guess for the boundary, we choose a circular shaped void with radius 1 cm 

at center (figure 4.2(b)). The reconstructed phase boundary for case 1 without noise is 

shown in figure 4.3. In figure 4.3, it can be noticed that EM has better estimation of the 

phase boundary as compared to EKF. Better initial guess and model parameters 

estimated by EM result in better estimation of the boundary. The transition period is 

less as compared to EKF. The void location estimation for case 1 without noise is 

shown in figure 4.4. EM has better estimation of x and y position of the void. Similarly, 

the size of the estimated void when there is no noise is shown in figure 4.5. Size and 

shape are estimated better by EM when compared to EKF. RMSE for boundary 

coefficients is computed and is shown in figure 4.6. It can be seen that EM has lower 

RMSE values as compared to EKF in all the iterations. Figures (4.7~4.10) show the 

reconstructed results with noise for case 1.  The reconstructed phase boundaries are 

shown in Figure 4.7. Void location and size estimation is shown in figure 4.8 and 4.9. 

RMSE for boundary coefficients is shown in figure 4.10. From figures (4.7~4.10), it 

can be noticed EM has better estimation performance of phase boundaries, void 

location and size. The initial parameters used in the numerical simulation for case 1 are 

shown in Table 4.1. 
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Figure 4.2. Numerical results for case 1 (moving scenario) (a) generated scenario (b) 
initial guess.         
 

 
 
Figure 4.3. Reconstructed phase boundary estimation for case 1 without noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 

 (b) (a) 
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Figure 4.4. Estimation of boundary location for case 1 without noise (a) x position 
(b) y position.  
  

 
 
 
 
 
 

 
 

Figure 4.5. Void size estimation for case 1 without noise.  
 
  
 
 
 
 
 

(a) (b) 
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Figure 4.6. RMSE of estimated Fourier coefficients for case 1 without noise. 
 
 
 
 
 
 
 
Table 4.1. Initial settings of model parameters used in EM and EKF for case 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Noise 

Parameters 0 % 
2 % white Gaussian 

Noise 

F M M
MI ´ÎÂ  M M

MI ´ÎÂ  
Q  0.01 MI  0.05 MI  

R  500 LI  1000 LI  

0|0C  MI  MI  
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Figure 4.7. Reconstructed phase boundary estimation for case 1 with 2% noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 
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Figure 4.8. Estimation of boundary location for case 1 with 2% noise (a) x position 
(b) y position.  
 
 
 
 

 
Figure 4.9. Void size estimation for case 1 with 2% noise. 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Figure 4.10. RMSE of estimated Fourier coefficients for case 1 with 2 % noise. 
 
 
        In case 2, (expansion contraction case), the void grows and shrinks at a given 

location. Two image frames are considered in which void expands during first frame 

and then it contracts in the next image frame (figure 4.11). The reconstructed phase 

boundary for case 2 is shown in figure 4.12. EKF is seen to lag and takes a long time 

to reach the true position. It also fails in estimating the expansion changes. However, 

EM performs well during void expansion. In the case of second frame, where it 

contracts, EKF is found to lags behind EM in tracking the boundary. Figures (4.13) 

and (4.14) show the estimation of location and size of the void. EM has been able to 

estimate the location and size of the void with good accuracy. RMSE for boundary 

coefficients is shown in figure 4.15. EM demonstrates better estimation of the 

Fourier coefficients compared to EKF, therefore, lower RMSE values are registered 

for EM as compared to EKF. The reconstructed results for case 2 with noise are 

shown in Figures (4.16~4.19). EM shows better estimation performance in case 2 

with noise. As shown in no-noise case, the EKF has been found to lag in tracking the 

void boundary in expansion process (figure 4.16). The estimation of location (figure 
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4.17) and size (figure 4.18) of the void reveals better performance of EM. Moreover, 

as expected, the RMSE values of EM are lower than that of EKF (figure 4.19).  The 

initial parameters used in the numerical simulation for case 2 are shown in Table 4.2. 

        In case 3, (moving and expanding case), the void changes its position and shape 

with time (figure 4.20(a)). In this case, we have chosen an ellipse located at center as 

initial guess figure 4.20(b). The reconstructed phase boundary for case 3 is shown in 

figure 4.21. EM is able to track the fast changes in the size and location of void better 

than EKF. The estimation of void location and size for case 3 is shown in figure 4.22 

and 4.23. EM tracks the true location trajectory with good accuracy as compared to 

EKF. The void expands at a faster rate, therefore, the size is estimated less than the 

actual size by EM and EKF. RMSE for Fourier coefficients is shown in figure 4.24. 

EM shows better estimation of location as well as the size, therefore, EM has lower 

RMSE values compared to EKF. The estimation of phase boundary (its location and 

size) for case 3 with noise is given in figures (4.25~4.27). EM has better estimation 

of phase boundary in the presence of noise and it can easily be noticed that the 

location as well as size of the void has been tracked well. The RMSE is shown in 

figure 4.28 and it is noticed that EM has good approximation of Fourier coefficients. 

The initial parameters used in the numerical simulation for case 3 are shown in Table 

4.3. 

 

 
 
Figure 4.11. Numerical results for case 2 (expanding-contracting scenario)              
(a) generated (b) initial guess. 
 
 
 

(a) (b) 
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Figure 4.12. Reconstructed phase boundary estimation for case 2 without noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 
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Figure 4.13. Estimation of boundary location for case 2 without noise (a) x position 
(b) y position.  
 

 
 
 
 
 

 
Figure 4.14. Void size estimation for case 2 without noise. 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Figure 4.15. RMSE of estimated Fourier coefficients for case 2 without noise.  
 
 
 
 

 
 
Table 4.2. Initial settings of model parameters used in EM and EKF for case 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Noise 

Parameters 0 % 
2 % white Gaussian 

Noise 

F M M
MI ´ÎÂ  M M

MI ´ÎÂ  
Q  0.01 MI  0.01 MI  

R  5 LI  100 LI  

0|0C  MI  MI  
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Figure 4.16. Reconstructed phase boundary estimation for case 2 with 2% noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 
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Figure 4.17. Estimation of boundary location for case 2 with 2% noise (a) x position 
(b) y position. 
 
 
 
 
 

 
Figure 4.18. Void size estimation for case 2 with 2% noise. 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Figure 4.19. RMSE of estimated Fourier coefficients for case 2 with 2 % noise.  
 
 
 
 
 

 
Figure 4.20. Numerical results for case 3 (moving-expanding scenario) (a) generated 
scenario (b) initial guess. 
 
 
 
 

(a) (b) 
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Figure 4.21. Reconstructed phase boundary estimation for case 3 without noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 
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Figure 4.22. Estimation of boundary location for case 3 without noise (a) x position 
(b) y position. 
 
 
 
 
 
 

 
 
Figure 4.23. Void size estimation for case 3 without noise (a) radius along x 
direction (b) radius along y direction. 
 
 
 
 
 
 

(a) (b) 

(a) (b) 
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Figure 4.24. RMSE of estimated Fourier coefficients for case 3 without noise.  
 
 
 
 
 
 
Table 4.3. Initial settings of model parameters used in EM and EKF for case 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Noise 

Parameters 0 % 
2 % white Gaussian 

Noise 

F M M
MI ´ÎÂ  M M

MI ´ÎÂ  
Q  0.005 MI  0.01 MI  

R  500 LI  500 LI  

0|0C  MI  MI  
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Figure 4.25. Reconstructed phase boundary estimation for case 3 with 2% noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 
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Figure 4.26. Estimation of boundary location for case 3 with 2% noise (a) x position 
(b) y position. 
 
 
 
 
 
 

 
 
Figure 4.27. Void size estimation for case 3 with 2% noise (a) radius along x 
direction (b) radius along y direction. 
 

 
 
 
 
 

(a) (b) 

(a) (b) 
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Figure 4.28. RMSE of estimated Fourier coefficients for case 3 with 2 % noise.  
 

4.3.2 Results with experiment data  

 
The visualization of two-phase flows is carried out using the experimental setup as 

shown in figure 4.29. The experiments are carried out using an experimental 

phantom in our laboratory. The measurement setup consists of Agilent 4284A 

precision LCR meter used as a current source and for data acquisition Agilent 

43970A with 60-channel high speed data acquisition multimeter is used. The 

phantom used is of circular type with a radius of 40 mm and for injecting current and 

measuring voltages 32 stainless steel electrodes each of width 6 mm and 200 mm 

height are placed around its periphery.  

Brine solution of resistivity 300 Ωcm is filled inside the phantom. Plastic rods 

made of acryl which have infinite conductivity can be used in place of voids to 

visualize two-phase flow conditions. Acryl rods are placed at various locations inside 

the phantom during the experiment. Opposite method is used as a current injection 

mode. In such case, for 32 electrode configuration, we have 32 × 16 measurements 

available in each frame. Current of magnitude 10 mA is applied across the electrodes 

and the corresponding voltages are measured. Experiment is performed by moving 
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the plastic rods at four different locations inside the phantom. The position at which 

the plastic rod is placed is shown in figure 4.29(c). The position is changed at every 

eight current patterns. The data obtained is then tested with EM algorithm and is 

compared against EKF. In solving inverse problem, there is no prior information 

about the location and size of the void. Therefore as an initial guess a circular 

boundary with radius 1.1 cm located at the center is chosen. Mesh with 2121 nodes 

and 3984 triangular elements is used for testing the data. 

 

 

Figure 4.29. EIT measurement system used for two-phase flow visualization (a) 
phantom used for experiment; (b) plastic rod used as target; and (c) positions where 
the plastic targets are placed. 

(a) 

(b) (c) 

Plastic rod 



 

 71 

 
 

 
Figure 4.30. Reconstructed phase boundary with experimental data using circular 
plastic rod. Each row corresponds to different location of plastic rod. Alternate 
images have been displayed. Solid line represents the true boundary, dotted line is 
with EM algorithm and dashed line is using EKF. 
  
 

The reconstructed phase boundary of the plastic rods with experiment data is 

shown in figure 4.29. In center location the sensitivity is very low, therefore, the size 

is found to estimate a bigger by both EM and EKF. In other locations, boundary is 

tracked reasonably well using EM. The estimated location and size of plastic rod is 

shown in figures (4.30, 4.31). EM has tracked the changes of the plastic rod better as 

compared to EKF. RMSE is plotted for the estimated Fourier coefficients and it is 
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found that EM has lower RMSE values than EKF (figure 4.32). The results show that 

performance of EKF is improved by estimating the model parameters using EM to 

reduce the uncertainty. 

 
 

 
 
Figure 4.31. Estimation of plastic rod position placed inside the phantom                 
(a) x position (b) y position. 
 

 
 

 
 

Figure 4.32. Size estimation of plastic rod placed inside the phantom. 
 
 
 
 
 
 
 

(a) (b) 
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Figure 4.33. RMSE of estimated Fourier coefficients for experimental case.  
 
 
Table 4.4. Initial settings of model parameters used in EM and EKF for experiment 
data. 
 
 
 
 
 
 
 

In conventional maximum likelihood estimation procedure, the log-likelihood 

condition (4.30) is used along with the nonlinear methods to solve for system 

parameters. These methods are difficult to implement and need to compute the 

inverse matrix of second order partial equations. Also, these methods do not increase 

the log-likelihood function value. However, with (4.39~4.43) the model parameters 

are estimated using EM. These are simple to implement as they are just multivariate 

regression calculations. The better estimation performance of EM is achieved at the 

expense of additional computational effort needed to calculate the smoothed 

estimates |k ng , |k nP , , 1|k k nP -   needed to compute model parameters. For this one 

requires to apply backward recursions where as conventional method need forward 

F Q  R  0|0P  0|0g  

L´L
L ÂÎI  0.5IL  500IL  0.5IL  (0,0) 

r = 1.1 
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computations to compute (4.30).  In the conventional methods, for solving maximum 

likelihood function, it requires a set of derivates for |k ng , |k nP  to solve for model 

parameters which also takes comparable amount of computation. 

 

4.4 Discussion 

 
This paper presents application of expectation maximization algorithm to EIT in 

estimating the region boundaries in the flow field. The voids formed in the flow field 

are not stable and move randomly inside the process vessel. In the situations like 

two-phase flows, the model parameters are difficult to model in a prior form and 

therefore the algorithms which assume the predefined model parameters (EKF) 

would not perform satisfactorily. Expectation algorithm, which is a maximum 

likelihood based estimator, can estimate the model parameters with uncertainty. 

These estimated model parameters, when used with EKF, improve the estimation 

performance significantly. The EM algorithm is formulated for the boundary 

estimation of two-phase flows. Numerical and experimental tests are performed to 

test the performance of the proposed method. It is found that the performance of EM 

is better when compared with EKF.  
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5.  Estimation of moving interfacial boundary using 

expectation maximization algorithm 

 
Flow of two immiscible fluids through pipelines is of importance in several process 

tomography applications. For example, in petroleum industry it is important to know 

the amount of water present in the crude oil which is transported. The two fluids are 

separated by an interfacial boundary and the boundary changes with respect to time. 

Estimation of the time varying interfacial boundary is very important for the design 

and monitoring of the process (Fairuzov 2000). EIT is found promising in many 

tomography applications due to its non intrusive and high data acquisition rate. If the 

conductivity distribution of the flow field is known a priori, then the inverse problem 

can be transformed to a boundary estimation problem in which the interfacial 

boundary is estimated based on the voltage measurements. For the application of EIT 

to estimate the open boundary or free surface, see (Tossavainen et al. 2004). In two-

phase flows, the interfacial boundary changes before the time to acquire complete set 

of independent data, therefore, dynamic estimation algorithms are necessary to track 

the fast changes (Ijaz et al. 2008). In (Kim et al. 2007b), EKF has been used to track 

the fast moving interfacial boundary. The interfacial boundary is represented using 

front points and the front points are treated as the state variables to be estimated. 

Sensitivity analysis is done by varying the number of front points and the contrast 

ratio between the two fluids. In EKF, the state distribution is approximated by 

Gaussian random variable (GRV) and is propagated through a linear approximation 

of system around the operating point at each time instant. Linearization can only be 

applied if the Jacobian matrices can be formulated. However, some systems contain 

discontinuities and the representation of phase interface can be complex. In such 

cases, derivation of Jacobian matrices is often difficult (Julier et al. 2004). 

Furthermore, this linear approximation causes error in posterior mean and covariance 

of the transformed GRV. This result in sub-optimal performance and may lead the 

state to diverge over time. To overcome the limitations with EKF, the unscented 

transform (UT) was developed as a method to propagate mean and covariance 

information through a nonlinear transformation (Julier et al. 2004). The Kalman filter 
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based on UT is called as UKF. Ijaz et al. (2008) applied UKF to estimate the moving 

interfacial boundary and compared the performance against EKF. The results show a 

promising performance of UKF over EKF.  

In these Kalman type filters such as EKF or UKF, the model parameters such as 

the initial states, the state transition matrix, and the noise covariance matrices have to 

be known in advance. Measurement noise covariance can be computed through 

experiments. However, the evolution of the interface is complex in real situations 

therefore it is difficult to represent the state evolution matrix as a prior form as in 

case of kinematic models. Also, the process noise heavily depends up on the 

environment surrounding the target. In practical situations, where there is a lot of 

uncertainty involved, the standard algorithms based on Kalman-type do not give 

desirable performance. This uncertainty can be overcome with the help of 

expectation maximization algorithm. In this study, we employ expectation 

maximization algorithm to estimate the model parameters. The estimated model 

parameters are then used in EKF to estimate the time varying interfacial boundary. 

Numerical and experimental studies are performed to evaluate the performance of the 

proposed method and then it is compared against conventional EKF. Results show 

promising performance of EM compared to EKF. 

 

5.1 Boundary representation 

 
Consider a stratified two-phase flow through a horizontal circular pipe as shown in 

figure 5. 1. The two fluids flowing through the pipe are separated by an interfacial 

boundary. Several methods have been proposed to represent the open boundary 

between two fluids (Butler and Bonnecase 2000, Tossavainen et al. 2004, 

Tossavainen et al. 2006a, Kim et al. 2007b, Khambampati et al. 2009). Butler and 

Bonnecaze (2000) considered an open channel filled with conducting liquid and the 

open boundary was characterized by Chebyshev polynomials, whose coefficients 

were to be estimated. Another method involves representing the boundary using the 

mesh nodes and a Bézier curve for the application where a pipe is partially filled with 

water and has air slug filled in the other portion. A more attractive method has been 

presented in (Kim et al. (2007b)) where the interface is represented with discrete 
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front points. In this study we also use the same representation as in Kim et al. 

(2007b). Below we describe the front point description of the interface. 

 

x1 x2 xl xL

d1

d2 dl
dL

P1

P2

Pl

PL

upper region
s=su

A=Au

lower region
s=sl

A=Al

 
 

Figure 5.1. Representation of open boundary between two immiscible fluids. 
 

The open boundary between two immiscible liquids is approximated as an 

interpolation with discrete front points Pl , 1,2, ,l = LL  located on the boundary 

(Kim et al. 2007b).  The total number of the front points is L . 1P  and PL  are the 

leftmost and the rightmost front points, respectively. The front points are expressed 

in terms of dl . Excluding the end front points, the intermediate front points 

( 2,..., 1l = L - ) are denoted by the vertical distance from the reference point Xl . The 

end points are characterized by the arc length in order to restrict the interface to the 

outer surface of the pipe. The front points on the interface are represented as follows 

 

1 1
1 1( , ) cos , sin

d d
X Y R R

R R

æ ö
= -ç ÷
è ø

                                       (5.1) 

( , ) ( , )X Y x dl l l l= , 2, , 1l = L -L                                        (5.2) 

( , ) cos , sin .
d d

X Y R R
R R
L L

L L

æ ö
= ç ÷
è ø

                                     (5.3) 

 

The parameter to be estimated is written in the form  

 

T
1 2( , , , ) .d d d d L

L= ÎÂL                                          (5.4) 
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Let us assume that the region W  is divided into disjoint regions kS  given by, 

 

2

1

,k

k

S
=

W =U                                                       (5.5) 

 
where two regions exist in domain (k = 1,2) as shown in figure 5.1. If ( )k rc  denotes the 

characteristic function of sub region kS , the conductivities of each layer can be 

expressed as 

 

2

1

( ).k k
k

rs s c
=

=å                                                 (5.6) 

 
 

By substituting (5.5) into FEM formulation we get 

 

( )
2

supp( )
1 1

1
, ,

i j k l

L

k i j i jS e
k l l

i j d dS
zj j

s j j j j
Ç

= =

= Ñ ×Ñ W +å åò òB    , 1, 2, , ,i j N= L   (5.7) 

 

where supp( )
i j

j j  is a part of domain Ω where both the basis functions are non-zero. 

The implementation of the integrals of the form (5.7) has been described previously in 

(Kolehmainen et al. 2001, Tossavainen et al. 2006, 2007). In the first step, mesh 

elements mW  are classified into the set of elements inside the region ( 1,2)kS k =  and the 

set of elements intercepted by the boundary C  (figure 5.2). For the elements that lie in 

the region kS , they are assigned their corresponding conductivity values ks , however, 

for the elements that lie on the boundary C , the area weighted conductivity values es  

are assigned as 

 

 1 1 2 2

1 2

,e

A A

A A

s s
s

+
=

+
 (5.8) 

 

where 1A  and 2A  denote the area of the region above and below the interface, 

respectively (Figures 5.3(a)-(d)). 
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Figure 5.2. Mesh element crossing the interfacial boundary. 

 
 
 
 
 

 
 

Figure 5.3. Element classification for boundary estimation (a) elements lying above 
the boundary interface (b) elements lying below the interface (c) elements crossing 
the boundary interface (d) final conductivity profile of the flow domain. 

A1, 

C 

A0 
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5.2 Inverse problem 

5.2.1 State estimation approach to estimate the moving interfacial boundary  

 
In order to estimate the fast moving changes in the flow process we have to adopt a 

dynamic estimation approach. The estimation of the parameter d  of a discrete-time 

controlled process is governed by the linear stochastic difference equation given by 

 

1 1 1,k k k kd F d w- - -= +                                                   (5.9) 

 

with a measured voltage E kV ´ÎÂ  that is 

 

( ) ,k k k kV U d v= +                                                    (5.10) 

 

where the subscript k  is the time index, kF L´LÎÂ  is the state transition model and kU  

is the observation model and E  is the number of measurement electrodes. The random 

variables kw LÎÂ  and E
kv ÎÂ  denote the process and the measurement noise, 

respectively. They are assumed to be independent of each other and are modeled as 

unbiased normal probability distribution 

 

         ( ) ~ (0, )k kp w N Q                                                    (5.11) 

        ( ) ~ (0, ),k kp v N R                                         (5.12) 

 

where kQ L´LÎÂ  and E E
kR ´ÎÂ  are the process and the measurement noise covariance, 

respectively. These equations (5.9) and (5.10) are called state-space model. For 

description about state space models, see chapter 3.  

 

5.3 Interface boundary estimation with EM algorithm 

5.3.1  Maximum likelihood function 

 
For the state space representation given in (5.9-5.12), upon applying Markovian 

property, the likelihood function for the observations can be written as  
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0 1
1 1

( , | )

( | ) ( | , ) ( | , ).

k k

n n

k k k k
k k

L p d V

p d p d d p V d
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where we call { , , , , }F Q Rq m P=  the model parameters. Usually, these model 

parameters are set empirically through experiments. In this study, we use EM 

algorithm to estimate the model parameters as well as the front point variables 

representing the interfacial boundary. 

5.3.2 Extended Kalman smoother 

 

In Kalman smoother, it has two steps; one is the forward filtering process which is 

normal EKF computation, and then the backward smoothing considering the 

measurements n samples. 

The forward computations for EKS are as follows 

 

| 1 1 1| 1k k k k kd F d- - - -=                                                               (5.14) 
T

| 1 1 1| 1 1 1k k k k k k kP F P F Q- - - - - -= +                                                (5.15) 
T T 1

| 1 | 1( )k k k k k k k k kK P J J P J R -
- -= +                                          (5.16) 

| | 1 | 1( )k k k k k k k k kd d K V J d- -= + -                                            (5.17) 

( )| | 1.k k k k k kP I K J P -= -                                                        (5.18) 

 

The backward smoothing is done with the measurements available by 

 

T 1
1 1| 1 | 1( )k k k k k kG P F P -
- - - -=                                                      (5.19) 

1| 1| 1 1 | 1| 1( )k n k k k k n k k kd d G d F d- - - - - -= + -                                     (5.20) 
T

1| 1| 1 1 | | 1 1( )k n k k k k n k k kP P G P P G- - - - - -= + -                                    (5.21) 
T T

1, 2| 1| 1 2 1 , 1| 1| 1 2( ) ,k k n k k k k k k n k k k kP P G G P F P G- - - - - - - - - -= + -                 (5.22) 

 

using the initial values 

 

|n n nd d=                                                       (5.23) 

| |n n nP P=                                                       (5.24) 

T
, 1| 1( ) .n n n n n nP I K J FP- -= -                                         (5.25) 
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Given the model parameters { , , , , }F Q Rq m P= , the expected values of the parameter 

kd   and their corresponding covariance kP  and cross covariance  , 1|k k nP -  are 

computed using EKS. 

 

5.3.3 EM algorithm for front point estimation 

 
The EM minimizes the likelihood function (5.13) by iterating the E and M step.  

 
E step: Estimate the hidden variables ( kd ) with the assumed model parameters q  . 

M step: Estimate the new model parameters that increases the likelihood function 

(5.13) with the new parameters  kd    

The log-likelihood function of the complete data can be written as 

 

log log( ( , | )).k kL p d V q=                                                 (5.26) 

 

EM is formulated in such a way that the log-likelihood function increases in each 

step. In the E step the expectation of log-likelihood function is computed and the 

expected values of the parameter kd  and their corresponding covariance kP  and cross 

covariance , 1|k k nP -  are computed through Kalman smoother described in earlier 

section. These smoothed values are then used to compute the new model parameters 

as follows 

 

��1
F B A

-
=                                                          (5.27)                                                    

� �� �1 T1
( )Q C B A B

n

-
= -                                                   (5.28)                                                                                          

T T
| | |

1

1
{( )( ) }

n

k k n k k k k n k k k n
k

R J p J V J d V J d
n =

= + - -å                          (5.29)                                                       

1|( 1) nr dm + =                                                      (5.30)                                                                         

             1|( 1) ,nr pÕ + =                                                     (5.31) 

 

where  

                        � T
1| 1| 1|

1

( )
n

k n k n k n
k

A P d d- - -
=

= +å                                             (5.32)                                    
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5.3.4 Computation of Jacobian for front points 

 

In the inverse solver for the implementation of EM algorithm to estimate the 

unknown state variables ld  ( 1, 2, ,l = LL ), the Jacobian should be formulated. 

Using the FEM formulation for CEM (2.24-2.32), the Jacobian for front points 

ld¶¶ /Û  ( L= ,,2,1 Ll ) can be expressed as follows 

 

1 1 T
ˆ

,
d d dl l l

- -¶ ¶ ¶
= =

¶ ¶ ¶

U A A
MA A I R b% % %                 (5.35) 

 

where 1 ( 1)T N L E- + - ´= ÎÂR A M% %  is the pseudo resistance matrix, A  is the stiffness 

matrix in FEM formulation, b  is the solution vector in the FEM formulation. In A , 

the matrix B  is the only term dependent on ld  and the Jacobian will be 
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%
   (5.36) 

 

From the definition (5.1-5.3), the derivative ld¶¶ /B  is written as 
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Since we are considering a stratified flow of two immiscible liquids with distinct 

electrical properties, so the matrix B  will be 

 

( )
, 1

1
, ,

r

L

r i j i jA e
r l u

i j d dS
z

s j j j j
= =

= Ñ ×Ñ W +å åò òB
ll l

, , 1,2, , ,i j N= L       (5.38) 

 

where the subscript ‘l’ and ‘u’ denote the lower and the upper region, respectively 

(see figure 5.1). The derivative / dl¶ ¶B  can then be obtained as 
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                     (5.39) 

 

The detailed derivation for the above expression (5.39) to calculate Jacobian can be 

found in Kim et al. (2007b), Ijaz et al. (2008). 

5.4 Results 

5.4.1 Numerical results 

 
In this section, the numerical results obtained using EM are reported. Stratified flow 

of two conducting immiscible liquids through a cylindrical pipe of diameter 28 cm 

with 16 electrodes of width 2.5 cm each around its periphery is considered. For 

generation of measurement data, the flow area is discretized into 2088 triangular 

meshes with 1109 nodes and the cubic spline interpolation with the prescribed front 

points is used to describe the interface. In the image reconstruction, a slightly coarser 

mesh structure with 1968 triangular elements and 1049 nodes are used and the 

interface is approximated with a piecewise linear interpolation function based on the 

front points. The use of different interpolations to describe the interface and the 

different mesh structures for the simulated data generation and for the inverse 

solution will support the freedom from the inverse crime. The conductivity of each 

region is assumed to be known and initially set to 1 1500  S/cm for the upper region 
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and 1 300  S/cm for the lower region. Therefore a contrast ratio of 1:5 is considered 

for the two regions. Opposite method is used as a current injection mechanism. Two 

dynamic cases are considered in which the interface is assumed to change within 

time to acquire a single measurement. First-order kinematic models are used to 

describe the evolution of the true interface. To simulate the actual conditions, 

random noise of zero-mean Gaussian process noise having STD 1% of the value of 

the corresponding computed voltage is added to the computed voltage. The 

performance of EM is compared with EKF and as a performance index root mean 

square error of estimated front points and voltage is calculated 

The RMSE for the parameter d, RMSEd , is defined as 

 

 
|| ||

RMSE .
|| ||

estimated true
d

true

d d

d

-
=                                               (5.40) 

 
The RMSE for the boundary voltages, RMSEU , is defined as 

 

 
|| ||

RMSE .
|| ||

estimated meas
U

meas

U U

U

-
=                                            (5.41) 

 
        In case 1, where the interface is assumed to be flat and the front points have the 

same value (d = 5) and with time the interface at the left side moves towards up and 

the right side front points moves downwards with respect to time. The evolution of 

the true interface with respect to time is shown in figure 5.4(a). As an initial 

condition (figure 5.4b), we choose the initial interface to be a straight surface at       

(y = 3). The reconstructed interfacial boundary for case 1 without noise is shown in 

figure 5.5 and the RMSE for boundary and voltages are shown in figures 5.6-5.7, 

respectively. As can be observed in figures 5.5-5.7, the proposed EM algorithm has 

been successful in tracking the moving boundary with good accuracy as compared to 

EKF. The parameters used in the simulation for the initial setting of the inverse 

algorithms are given in Table 5.1. Figure 5.8 shows the reconstructed interfacial 

boundary for case 1, in which 1 % white Gaussian noise has been added to the 

simulated voltage data. The RMSE values for the estimated parameter d and voltage 

U are given in figures 5.9-5.10. In the presence of noise, EKF has been found to have 

wobbles in the interface and failed to track the interface. However, EM estimates the 
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interface with good accuracy. The better performance of the EM compared to EKF 

can also be visualized through RMSE plots, where EM has lower values for both 

parameter d and voltage U. The parameters used for initial settings of the inverse 

solver for case 1 with 1 % noise are given in Table 5.1.  

         In case 2, the opposite of the above scenario is considered where the front 

points on the left side of the interface moves down wards while the right most front 

points move upwards. The generated true scenario and the initial condition used for 

case 2 are given in figure 5.11. Figure 5.12 shows the reconstructed interfacial 

boundary for case 2 without noise. The RMSE for the parameter d and voltage U are 

given in figures 5.13-5.14. The results for the phase boundary reveal that except for 

the last image frame, EM has better estimation of the boundary, especially, near the 

center region where the interface is wavy. The better performance of EM can be 

observed in the RMSE plots where EM is found to have lower values than EKF. 

Figure 5.15 shows the reconstructed interfacial boundary for case 2 with 1 % noise. 

The performance deteriorates in EKF especially near the center region in the 

presence of noise. On the other hand EM is fairly successful in estimating the 

boundary. The RMSE plots for the estimated front points and voltage for case 2 with 

1 % noise is shown in figures 5.16-5.17. The figures reveal the performance gain of 

EM when compared to EKF. The parameters used in the initial setting for case 2 are 

shown in Table 5.2.  

 
Figure 5.4. Evolution of interface for numerical simulations with case 1 without 
noise (a) generated true scenario where interface changes with respect to time (b) 
initial condition used in inverse calculation. 
 

(b) (a) 
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Figure 5.5. Reconstructed phase boundary estimation for case 1 without noise. 
Alternate images have been displayed. Solid line represents the true boundary and 
dotted, dashed line represents estimated boundary using EM algorithm, EKF, 
respectively.    
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Figure 5.6. RMSE of estimated front points for case 1 without noise. 
 
 
 

       
Figure 5.7. RMSE voltage for case 1 without noise.  
 
 
 



 

 89 

 

 
Figure 5.8. Reconstructed phase boundary estimation for case 1 with 1% noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF.   

  
 
 
 

 
Figure 5.9. RMSE of estimated front points for case 1 with 1% noise.  
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Figure 5.10.  RMSE voltage for case 1 with 1% noise.  
 
 
 

 
Figure 5.11.  Evolution of interfacial boundary for numerical simulations with case 2 
(a) evolution of true interface with current pattern (b) initial condition (dashed dot 
line) used in inverse calculation.  
 
 
 
 

(a) (b) 
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Figure 5.12. Reconstructed phase boundary estimation for case 2 without noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF.  
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Figure 5.13. RMSE of estimated front points for case 2 without noise. 
 

 
 

Figure 5.14. RMSE voltage for case 2 without noise. 
 



 

 93 

 
 
 
 
 
 
 
 

 
Figure 5.15. Reconstructed phase boundary estimation for case 2 with 1% noise. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 94 

 
 

 
Figure 5.16. RMSE of estimated front points for case 2 with 1% noise. 
 
 

 
Figure 5.17. RMSE voltage for case 2 with 1% noise. 
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Table 5.1. Iinitial settings of model parameters used in EM and EKF for case 1. 

 
 
 
 
 
 
 
 
 
 
 
Table 5.2. Initial settings of model parameters used in EM and EKF for case 2. 
 
 
 
 
 
 
 
 
 
 

 

5.4.2 Experimental studies 

 
The experimental setup consists of a circular phantom with a radius of 150 mm and a 

height of 100 mm. 16 electrodes were considered mounted around the phantom (each 

of width 10 mm). Mesh with 2032 elements and 1097 nodes is used for solving the 

inverse solution. As for the current injection protocol, opposite current patterns are 

used. Traditionally, for 16 electrodes configuration, there are 8 opposite current 

patterns. However, since the goal of the current research is to use dynamic scenarios, 

a subset of opposite current patterns is considered in each image frame. Experiment 

for two immiscible fluids is performed using gelatin (4 mS/cm) and brine solution 

(6mS/cm) as shown in figure 5.18. The two fluids form the boundary and the 

position of the interface between gelatin and brine solution is varied by removing the 

gelatin layer based on guide placed below the phantom. Initially the gelatin brine 

interface is located at y = -10 and the interface is static for the eight current patterns 

 Noise 

Parameters 0 % 
1% white Gaussian 

Noise 

F L´L
L ÂÎI  L´L

L ÂÎI  
Q  0.01IL  0.01IL  

R  10 LI  10 LI  

0|0C  0.1IL  0.1IL  

 Noise 

Parameters 0 % 
1% white Gaussian 

Noise 

F L´L
L ÂÎI  L´L

L ÂÎI  
Q  0.01IL  0.05IL  

R  10 LI  10 LI  

0|0C  0.1IL  0.1IL  
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time injection and later the interface is changed by cutting the gelatin layer after 

every four current patterns.  

Figure 5.19 shows the reconstructed interfacial boundary for the experimental 

case study. In figure 5.19, images are illustrated after every two frames and the 

parameters used to set the initialize the inverse solver is given in Table 5.3. In 

reconstructing the interfacial boundary the interface is represented using seven front 

points. If the interface is wavier then higher number of front points are necessary, 

however, it should be noted that as the number of front points increases the 

estimation performance is effected. It is observed that EM estimates the interface 

fairly reasonable as compared to EKF. EM tracks the interface all the way whereas 

EKF is found to lag with true interface. Moreover, near the center of the phantom the 

interface is not tracked effectively because the sensitivity is low at the center of the 

phantom. This can be solved if current injection pattern is designed considering the 

distinguishability analysis. Figures 5.20-5.21 show the comparison of RMSE values 

for parameter d and voltage U, respectively. It is noticed that EM has RMSE values 

when compared to EKF which explains the superior estimation performance of 

interfacial boundary. 

 

 
Figure 5.18. Experiment setup for interfacial boundary estimation. Gelatin of 
conductivity 4 mS/cm and saline of conductivity 6 mS/cm are used as immiscible 
fluids inside the phantom. The interfacial boundary in between these two is estimated. 
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Figure 5.19. Reconstructed phase boundary estimation for experiment data. 
Alternate images have been displayed. Solid line represents the true boundary, dotted 
line is with EM algorithm and dashed line is using EKF.  
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Figure 5.20. RMSE of estimated front points for experiment data.  
 

 
Figure 5. 21. RMSE voltage for experiment data.  

 
Table 5.3. Initial setting of model parameters used in EM and EKF for experiments. 
 
 
 

F Q  R  0|0P  0|0P  

L´L
L ÂÎI  0.05IL  5000 LI  0.1IL  y =-10 
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6.  Conclusions 

 
In this study, electrical impedance tomography is used to estimate the boundary in 

the flow field as an application of process tomography. If the flow distribution is 

known a priori then the conductivity distribution is used as additional information 

for the solution and the unknowns are the boundary, location and the shape of the 

anomaly. The anomaly can be voids in case of closed boundary and interfacial 

boundary between two fluids for an open boundary problem. 

If the boundary is assumed to be smooth, the closed boundary is represented 

using truncated Fourier series where the Fourier coefficients characterize the 

boundary. In open boundary, the boundary is represented as an interpolation of 

discrete front points. It is assumed that the flow undergoes a fast transient such that 

the boundary properties changes before the time to obtain a full set of independent 

measurement data. The conventional static imaging reconstruction techniques usually 

do not give desirable results, therefore, dynamic methods are required to achieve 

better estimation performance. 

Extended Kalman filter is the standard algorithm used in dynamic estimation. 

However, in the implementation of extended Kalman filter, the model parameters 

such as the initial states, the state evolution matrix and the noise covariance matrices 

have to be predefined. Usually these parameters are determined empirically or 

through trial and error method. In real situations, the flow process is very complex 

and has a lot of uncertainties involved therefore it is difficult to represent the model 

parameters in a prior form. In such cases, the performance of conventional EKF 

would not give satisfactory performance. In the present approach, expectation 

maximization algorithm is formulated for boundary estimation and the problem is 

transformed into a state estimation problem and the time varying state parameters are 

estimated along with the model parameters. Numerical and experimental studies are 

performed to evaluate the performance of the proposed method. 

With respect to closed boundary problem, the voids formed are not stable and 

therefore move randomly inside the flow domain. The motion of the void is 

represented using first-order kinematic model and three cases such as moving, 

expanding and moving-expanding are considered. In the inverse computations it was 
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assumed that we do not have the knowledge of the model parameters and using EM 

algorithm these model parameters are estimated. Through numerical simulations, 

with and without noise, it was found that the EM has better estimation of fast moving 

closed boundaries compared to that of EKF. Through experiment studies it was 

observed that it was possible to estimate boundary of plastic targets which can be 

visualized as that of voids with good accuracy using EM algorithm. 

Interfacial boundary estimation is represented using 10 front points and the fast 

moving boundary is represented using first-order kinematic model. Numerical 

simulations have been successful up to contrast ratio 1:5. Also, we tested the 

proposed method with 1 % measurement noise. Experiments have been performed 

using gelatin and brine as two fluids inside the phantom. The results with 

experiments show that EM algorithm has been able to better track the interfacial 

boundary with good efficiency as compared to EKF. 

The present work is focused on two-dimensional boundary estimation and it can 

easily be extended to three dimensions. The currently employed technology for 

boundary estimation is using EIT and it is applicable to other tomography techniques. 

Generalized EM algorithm is formulated in this study and hence can easily adapt to 

other applications. Future work can include boundary estimation in three dimension 

and methods to improve the convergence of EM by improving the E and M steps.  
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Summary 

 
Visualization of two-phase flows provides an insight into the characteristics of flow 

parameters and thus helps in monitoring the flow process. Electrical impedance 

tomography (EIT), which offers high temporal characteristics, has potential to 

monitor fast transient processes. In EIT, current is applied through the current source 

across the electrodes attached to the boundary of the process vessel and the excited 

voltages are measured on the surface of the electrode. Based on the current-voltage 

relationship the internal conductivity distribution is reconstructed. In two-phase 

flows, the conductivities distribution can be known a priori. Using this prior 

information, the boundary between the two phases can be estimated. The phase 

boundaries can be classified as open and closed boundary type depending on the 

topology of the boundary. Closed boundary problem involves estimation of voids in 

the flow process. A typical open boundary problem is to estimate the interfacial 

boundary between the two immiscible fluids. Closed boundary is represented using 

truncated Fourier series where as the open boundary is represented as an 

interpolation of discrete front points. The boundary between the two phases is time 

variant and the flow process is quite complicated. To track the fast moving boundary 

changes, dynamic estimation algorithms are necessary.  

        In dynamic estimation, the inverse problem is treated as a state estimation 

problem and the time varying boundary coefficients are the state variables to be 

estimated. For the application of Kalman-type estimators like extended Kalman filter 

(EKF), unscented Kalman filter (UKF), the exact dynamics of the evolution, the 

initial states, and the noise covariance of process and measurement models have to 

be predefined. In practice, prior information about the evolution of the object is not 

known therefore random-walk model is often used. In some cases, kinematic models 

such as constant velocity and constant acceleration are employed. The values of 

noise covariance are set through experience or manually tuned which is a major 

drawback of EKF for parameter estimation. In real situations, the dynamics of the 

evolution are complex and it is difficult to model the evolution of the boundary in a 

prior form. Also, process noise depends on the dynamics of the target and the 
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environment surrounding it. In situations, when there is uncertainty in determining 

the model parameters, the estimation performance of the Kalman-type filters is 

affected. Therefore, in this study, we apply the expectation-maximization algorithm 

(EM) as an inverse algorithm to reduce model uncertainties in estimating the closed 

and open boundaries. EM is formulated for boundary estimation using Kalman 

smoother approach. The model parameters (state evolution matrix, noise covariance 

matrices and initial states) are estimated using expectation (E) and maximization (M) 

steps. The advantage with EM is that it always tries to increase the log-likelihood 

function, thereby guaranteeing the convergence. In this study, EM is applied for 

boundary estimation in two applications. One involves estimation of voids in flow 

process (closed boundary) while the other is estimation of moving interfacial 

boundary between two immiscible fluids (open boundary). Numerical and 

experimental studies have been performed for the above mentioned applications and 

the estimation performance is compared against EKF. The results show that EM has 

better estimation performance of the dynamic changes in the boundary (location, 

shape and size) as compared to conventional EKF.  
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