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I. Introduction

Partly because of their association with nonnegative real matrices, Boole-
an matrices [(0,1)-matrices with the usual arithmetic except 14+1=1] have
been the subject of rescarch by many authors. Recently Kim [8] has pub-
lished a compendium of results on the theory and applications of Boolean
matrices. Often, parallels are sought for results known for field-valued ma-
trices or other rings. See de Caen and Gregory [3], Rao and Rao [12,13],
Richman and Schneider [15], Beasley and Song [2], Song [14] and Hwang,
Kim and Song [6].

Let M, . (S) be the set of m x n matrices and T : My, n(S) = My n(S)
be a linear operator over algebraic structure S. Say that T is a

(1) (U, V )-operator if there exist invertible matrices U and V" such that
T(A)=UAV for all 4 € M,,, o(S),or T(A) =UA"V for m = n.

(2) rank preserver if rank(T(A)) = rank(A) for all 4 € M, »(S).

(3) rank 1 preserver if rank(T(A4)) = 1 whenever rank(A4) = 1 for all

Ae M.
The fact that (1), (2) and (3) are equivalent for a field S was established
in the work of Marcus and Moyls [10,11], Westwick [16] and Lautemann [9].
In [1], Beasley and Pullman obtained nearly analogous results for “linear
operators” on Boolean matrices (operators that fix 0 and preserve sums),
employing a particular definition of Boolean rank.

Section II contains all definitions and other preliminaries.

Section III concerns Boolean rank 1 preservers. Marcus and Moyls [11]

and Westwick [16] have shown that



(1.1) Over F, T preserves rank 1 if and only if T is a (U, V)-operator.
Beasley and Pullman [1) showed that over B, although all (U, V)-operators
are rank 1 preserver, the converse is false. In analogy with terminology
introduced in [11}, we call a family of Boolean matrices consisting of 0 and
some Boolean rank 1 matrices a “Boolean rank 1 space” if it is closed under
addition.

Section IV concerns Boolean rank k preservers. In this section, we obtain

the following theorem.

Theorem. Let T be a Boolean linear operator on Mo n(B). Then T is
an invertible rank k preserver, k > 1 if and only if T is a (U, V)-operator

(Theorem 4.10).

Section V concerns Boolean rank preserver. Marcus and Moyls [10] and
Lautemann [9] have shown that

(1.2) Over F, T is a rank preserver if and only if T is a (U, V)-operator.
It follows from (1.1), (1.2) that

(1.3) Over F, T is a rank preserver if and only if T is a rank 1 preserver.

In this thesis, we obtain analogue results for m x n Boolean matrix as follows.

Theorem. Let T be a Boolean linear operator on Mo a(B). Tisa(U,V)-

operator if and only if T strongly preserves rank 1 (Theorem 5.6).



II. Notations, Definitions and Other Preliminaries

We let M, ,,(B) denote the set of all m x n matrices with entries in B =
{0,1}, the two-element Boolean algebra. Arithmetic in B follows the usual
rules except that 1+1=1. The usual definitions for adding and multiplying
matrices apply to Boolean matrices as well. Throughout this thesis we shall
adopt the convention that m < n, unless otherwise specified. Also lowercase,
boldface letters will represent vectors, all vectors u are column vectors (u' is
a row vector), and J, ,, denotes the matrix in M, ,(B) all of whose entries

are 1.

2.1 Rank of Boolean Matrix

There are several notions of rank for Boolean matrices. We have found
the following definition useful for our purposes. It appears in [1], where it
1s ascribed to B. M. Schein. If A is'a nonzero m x n Boolean matrix. its
Boolean rank, b(A). is the least integer & for which there exist m x kA and

k x n Boolean matrices B and C with .4 = BC. The Boolean rank of 0 is 0.

It is well known([8]) that b(A) is the least k such that A is the sum of ¥ ma-
trices of Boolean rank 1. Although Boolean rank enjoys many properties of
the rank of ficld-valued matrices (b(A4) = b(A"), b(AB) < min(b(A), b(B))),
there are others which it fails to enjoy. For example, even though b(4) = r,

A may contain no r x 7 submatrix of Boolean rank r ([4]).

2.2. Singularity and Invertibility of Boolean Matrices



We say that a Boolean matrix A is singular if Ax = 0 for some vector
X #0(x € M, (B)). Note that having full Boolean rank (i.e., b(A) = m)
is a sufficient, but not a neccessary condition for nonsingularity when A is
m x n and that the nonsingularity of a squre matrix does not guarantee the
nonsingularity of its transpose, A'. For any 4 in M,, ,(B), 4 is nonsingular
if and only if A has no zero column.

An n x n Boolean matrix A is said to be invertible if for some X. AX =
XA = I, where I, 1s the n x n identity matrix. This matrix X is necessarily
unique when it exists. It is then denoted 471, It is well known that the
permutation matrices are the only invertible Boolean matrices and therefore
A™! = A" when 4 is invertible. The characterization of nonsingularity given
above shows that nonsingularity does not inply invertibility, Of course,

invertible matrices are nonsingular.
2.3. Boolean Vector Subspaces, Bases and Dimension

For our purpose, we can define a Boolean vector space to be any subset of
B™(= M, 1) containing 0 which is closed under addition. If x and y are
in B™, we say x absorbs y, written x >y, if r; = 0 only when y; = 0, for
all 1 < < m. If V, W are vector spaces with V C W, then V is called a
subspace of W. We identity M, »(B) with B™" in the usual way when we
discuss it as a Boolean vector space and consider its subspaces.

Let V be a Boolean vector space. If S is a subset of V, then (S) denotes
the intersection of all subspaces of V containing S. This is a subspace of
V too, called the subspace generated by S. If S = {s), s, - , Sp}, then
(S§) = {37, zisi : z; € B}, the set of linear combinations of §. Note that



(¢) = {0}. Define the dimension of V, written dim(V), to be the minimum of
the cardinalities of all subsets S of V generating V. We call a generating set
of cadinality equal to dim(V) a basis of V. A subset of V is called independent
if none of its members is a linear combination of the others. Evidently every

basis 1s independent.

2.4. Linear Transformations, Operators and Boolean

Matrix Representation

IV, W are Boolean vector spaces, a mapping T : V — W which preserves
sums and 0 1s said to be a (Boolean) linear transformation. If V.= W, the
word operator is used instead of “transformation.” Evidently, when T is
lincar its behavior on 17's basis determines its behavior completely. As with
transformations of vector spaces over fields, by ordering the basis of V and
W we can represent T by an m x n matrix [t;;] in an analogous way. But
the #,; are not usually uniquely defined by Boolean T, so T may have several
matrix representations for the sane bases orderings.

A matrix 4 € M, ,(B) determines a linear transformation T4 of B™ into
B" by TA(X) = Ax for all x € B". The image of Vin W, T(V). is generated
by the image. T(B). of the basis B of V. This proves that

Lemma 2.4.1. For every linear Boolean transformation T, dim(T(V)) <

dim(V).

Proof. Let T : ¥V — W be a linear Boolean transformation T. For any
x €V, x =3 a;x; where x; € B is the basisof Vand a; € B = {0, 1}. Then
T(x) = T(Y, aix;) = > o, T(x;). Thus T(B) generates T(V). Therefore
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dim(T(V)) < dim(V). O

Lemma 2.4.2. If the Boolean linear transformation T : V — W is injective

then dim(T(V)) = dim(V) and T maps the basis of V onto the basis of T(V).

Proof. From Lemma 2.4.1, dim(T(V)) < dim(V). Suppose dim(T(V)) <
dim(V). Let B = {x;,x2, -, X, } be a basis of V. Then there exist x; € B

such that
T(.T,) = ZajT(.rj) for a; €EB = {0, 1}
J#i
=T()_ a;z;)
for i # j. Since T is injective, x; = > a;x;. This is a contradiction that
{x1, -+, x,,} is linearly independent. Therefore dim(T(V)) = dim(V). Since
T(B) generates T(V) and it is lincarly independent, T(B) is the basis of

T(V). O

2.5. Invertibility of Boolean Transformations

A transformation T : V — W is invertible if and only if T is injective and
T(V) = W. As with vector spaces over fields, the inverse, T~!. of a Boolean
linear transformation T is also linear. Let T7!(x) = a and T (y) =b
fora, b € Vand x,y € W. Then x +y = T(a) + T(b) = T(a + b). Thus
T-'(x+y)=a+b=T"Yx)+ T y).

Lemma 2.5.1. If T : V — W is a surjective Boolean linear transformation,

then T is invertible if and only if T preserves the dimension of every subspace

of V.

Proof. Suppose T is not invertible, that is, T is not injective. Then for
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some X # y, T reduces the dimension of (x, y). That is, there exist x and
y such that x # y and T(x) = T(y). Thus T((x,y)) = (T(x)). This
is a contradiction that T preserves the dimension of every subspace of V.

Conversely, if T is invertible, then the conclusion follows by Lemma 2.4.2. O
The finiteness of |[V| and the previous lemma give us that

Corollary 2.5.2. IfT is a linear Boolean operator on V, then the following
statements are equivalent.

(a) T is invertible.

(b) T is injective.

(c) T is surjective.

(d) T permutes the basis of V.

(e) T preserves the dimension of every subspace of V.

Proof. By the definition of invertible, (a) <= (b). Since |V| is finite, T is
injective if and only if T is surjective, i.e., (b) <= (c). In the following,
we prove that (d)— (e)— (a)— (d). Suppose T permutes the basis B of U
subspace of V. Then T(8) is the basis of T(U). Thus dim(U) = dim(T(U)).
Let T preserve the dimension of every subspace of V. By Lemma 2.5.1, (a)
holds. By Lemma 2.4.2, if T is invertible then T maps the basis B onto the

basis T(®B). Since T is injective and dim(B) 1s finite, T permutes ‘B. a

We note that T4 is invertible if and only if A is invertible. Suppose
Ty is invertible. Then x = T;'(Ta(x)) = T;'(4x). Put T;' = A°"
Then A is invertible. Suppose A is invertible. Put (T4)™!' = T4-1 = A~
Then Ty-1(Ta(x)) = Ty-1(Ax) = A 'Ax = x. That is, T is invertible.

By Corollary 2.5.2(d). T, is invertible if and only if T4 permutes the basis
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of every subspace of V. Therefore the invertible Boolean matrix A is the
permutation matrix.

The main application of the ideas in section 2.5 in this thesis is to the
linear operators on the space .M m,n(B) of all m x n Boolean matrices. Let
Dmn={(7):1<i1<m1<j< n}, E'Imjn be the m x n matrix whose
(z, 7)-th entry is 1 and whose other entries are all 0 and Emmn = {E:n]" :

(1,7) € Amn}.

Corollary 2.5.3. The linear operator T on M, ,(B) is invertible if and

only if T permutes Em,n if and only if T preserves the dimension of every

subspace of M, .(B).

Proof. Suppose T is invertible. Then T permutes the basis £ of Mo n(B).
by Corollary 2.5.2(d). Let T permute €. Then dim(€) = dim(T(£)). Let T
preserve the dimension of every subspace of M, .(B). By Corollary 2.5.2,

T is invertible. O

We can describe any operator T on M, ,(B) by expressing (7(X)); ; as
a scalar-valued function of X for all (e, J) € & n. The operator T will be
linear if and only if each component function tij : X —= (T(X));j is a linear
transformation of M, »(B) into B. (T(x+y));; = T(x+y) = T(x)+T(y) =
(T(x))i; +(T(y))i;. Applying Corollary 2.5.3, we see that the operator T on
Mn n(B) is invertible if and only if there exists a permutation 7 of A,, ,

such that T'([zy;]) = [z,(;, ;)] for all X € M, .(B).
2.6 Boolean Rank-1 Matrices and Rank-1 Spaces

It is easy to verify that (just as with field-valued matrices) the Boolean
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rank of A is 1 if and only if there exist nonzero (Boolean) vectors x and
Yy [x € M, (B) and y € M, ;(B)] such that 4 = xy’. Unlike the cor-
responding situation for field-valued matrices, these vectors z and y are u-
niquely determined by A. Let A = xy' = x,y! where x = [z,, 24, -+~ , T,
Xe = [z, 2y 2y = [y v2s L ynl Yo = (¥l vhs -+ 4 ¥l Note
that

[ T1y1  Tiy2 o Tiyn T
1‘2'(1' T2 xIo
xy' = Y Yy Yn
LTyl ITmY2 rTmYn -
S0 ) Y
[y Y, T1Yn
[ o [
_ | T2 T2¥ LaYn
L ! ! _.,,' /
-‘rmyl ‘rmy2 Trln 4
t
= x*yx‘

Suppose X # X,, then there exist ¢ such that z; # z!. Let z; = 1 and i =0.
Then for some yx # 0. z,yx # 0 and 2y} = 0, a contradiction. Similarly,
it holds for y # y.. Therefore there are exactly (2™ — 1)(2" — 1) rank 1
m X n matrices. We use the notation 4 < B to mean bij = 0 only if a;; = 0.
Equivalently, A < B if and only if A + B = B. For any vector x, let |x| be
the number of nonzero entries in x and when 4 = ab! is not zero, define the

perimeter of A, p(A), as |a| + |b|.

Lemma 2.6.1. If A < B and i(4) = b(B) = 1, then p(A) < p(B) unless
A =B.

Proof. Since b(A) = b(B) = 1, we can write A = ab', B = cd!, where
a,c € My, (B) and b,d € M, ;(B). Since 4 < B, b;j = 0 only if a;; =

a;b; = 0. Thus ¢; = 0or d; = 0 implies a; = 0 or b; = 0. Therefore

p(A) = |a|+ |b] < |c| + |d| = p(B). Hence p(A4) < p(B)unless A =B. 0O
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Analogously with [13, 22], we define a subspace of M, ,(B) whose nonzero
members have Boolean rank 1 as a rank 1 space. If A = ax! is a rank 1
matrix, then a and x are uniquely determined by 4. We call a the left factor

and x the right factor of A.

Lemma 2.6.2. If A,B and A + B are rank 1 matrices and neither A < B

nor b < A, then A, B and A + B have a common factor.

Proof. Let A = ax', B=by' and C = A + B = cz' be the factorization of
A, B and C. We have for all 1, 7, a;x + b;y = ¢;z and zja+y;b = z;c where
a;, b; and ¢; are i-th entry of all a. b and ¢, respectively, and z;, y; and z;
are j-th entry of x, y and z, respectively. Since A £ Band B£ A,iffa¢ b
and b ;{_ a then for some ¢. j,a; = 1,5, = 0.a; = 0 and b; = 1. Then
x=cizandy =c¢;z. But x#0andy #0,sox =y =z. Thus 4, Band C
have a common right factor. If a < b, then x f y (as A j{_ B). Thus r, = 1.
yi = 0and a = z;c for some 7, and r; =0 ,y; = l and rja+ yjb = b = zjc
for some j. Since a # 0 and b # 0, a=b = c¢. Thus A, B and C have a

common left factor. A parallel argument if b < a. O

Convention: Since we can write 0 as 0x‘ or a0’ for all a and x, let us agree
to say that 0 and A have a common left factor and a common right factor

any rank 1 matrix A.
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IT1. Boolean rank 1 Preserving Operators

As was mentioned in section 1, Marcus, Moyls and Westwick showed that
if T is a linear operator on M, ,,(F) (T algebraically closed) and T maps rank
1 matrices to rank 1 matrices(i.e., T preserves rank 1 matrices ) then (and
only then) T is a (U, V' )-operator. This result does not hold in the Boolean
case. The following example shows that not rank 1 preserving operators T
are of the form T(X) = UXV for some nonsingular U, V!, contrary to the
situation for algebraically closed fields. Since invertible Boolean matrices
are nonsingular, it also shows that not all rank 1 preserving operators T are

(U, V)-operators.

Example 3.1. Let

T[Zj (e) ;} :(b+c+c+f)[i i ” + [8 8 (Oi]
Here, T is a linear operator and H(T(X)) = 1 whenever 5(X) = 1 (in fact
whenever X # 0). That is, T is a rank 1 preserver. Suppose T is (U, 17)-
operator. Then there exist nonsingular matrices U € My 2(B) and V! €
Ms3 3(B) such that T(X) = UXV for all X € Mj 3(B) and for j = 1, 2, 3,
we have T(E, ;) = uv]‘- where u is the first column of U and v; is the ;-th

column of V. But since

T(El,l):T([(l) 8 8]):[5 8 8]:[3}[1 0 0]=uv!

and
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1 - . : :
hence [0 =u=| | this is a contradiction that there exist nonsingular

matrices U and V such that T(X)=UXV.

Suppose U and V! are nonsingular members of My (B) and M, »(B)
respectively and T is the operator on M, ,(B) defined by T(X) = UXV
for all X. Clearly T is linear. Moreover T(X) has rank 1 whenever X has
rank 1. Suppose X has rank 1, so that X = ab' where a # 0, b # 0.
Then T(X) = Uab!V = (Ua)(V'b)" and since U and V! are nonsingular,
neither Ua or V'b is 0, so T(X) has rank 1. It follows that all Boolean

(U, V )-operators are rank 1 preservers.

Example 3.2. Suppose C is a fixed rank 1 member of M, (B), and T is
the operator defined by T(Y) = C if X # 0 and T(0) = 0.

Example 3.2 shows that for each & (1 < & < n) there exist a linear operator
T} that preserves the Boolean rank of every rank & m x n matrix but is not
a (U, V)-operator when & > 1 (just take C to be a fixed rank k matrix; recall
that (U, V')-operators preserve rank 1). Beasley [1] showed that over F, for
most k < n, each operator on field-valued matrices preserves the rank of rank
k matrices if and only if it is a (U, V)-operator. We were unable to find a
condition necessary and sufficient for a Boolean operator to preserve the rank
of all rank 1 matrices, so the Boolean analogue of the work of Marcus, Moyls
and Westwick mentioned in section I, charaterizing the rank 1 preservers,

remains to be discorvered.

Lemma 3.3. If T is a rank 1 preserving operator on M, .(B) that pre-
serves the dimension of all rank 1 spaces, then the restriction of T to the

rank 1 matrices is injective or T reduces the rank of some rank 2 matrix to
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1.

Proof. Let M' = {A € M, n(B) : b(A) = 1} and W = {0} U {X € M!:
T(X) = T(B)} for each B € M'. If W is a rank 1 space then dim(W) =
dim(T(X)) = 1, so W = (B). Thus T|w is injective. Otherwise there are
X,Y in W such that (X +Y) = 2. O

Corollary 3.4. IfT is a linear operator on M, ,(B) that
(1) preserves the rank of all rank 1 and rank 2 matrices and
(11) preserves the dimension of all rank 1 spaces,

then
(a) T is invertible and

(b) T~ satisfies (1) and (11).

Proof. Part (a): Let & be the basis of M, »(B). T isinvertible if it permutes
€. Lemma 3.3 implies that T permutes M. But M! D &, so it suffices to
show that T(£) C & Let E € £, then £ = T(C) for some C € M. Since
C # 0, we have (' > F for some F in the basis £. Therefore E > T(F).
Then E = T(F) by Lemma 2.6.1 (because p(T(F)) = p(E) =2 > p(F) =1,

a contradiction). Part (b) follows directly. 0l

The idea of a permutation of A, ,, = (7,j): 1 <7 <m, 1< < n repre-

senting an invertible operator was introduced in section 2.5.

Lemma 3.5. IfT is an invertible linear operator on M, »(B) that preserves
the rank of every rank 1 matrix and 7 is the permutation of A\, , represent-
ing T', then there exist permutations o, 3 of {1,2,--- ,m} and {1,2,--- ,n}
respectively such that

(a) T(Z’]) = (G(l),ﬁ(])) for all (7,]) € Am,n or
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(b) m =n and 7(i,5) = (8(j), a(?)) for all (,5) € Dpun.

Proof. We will denote the abscissa of (i, j) by u;; and its ordinate by vij. So
7(¢,7) = (uij. vij). Let [7] be the m xn array whose (7, 7 )-th entry is (usj,vij).
Any two entries in the same row (or culumn) of [r] have a common abscissa
or common ordinate. This is because T((Eij, Eix)) and T((Eji, Ey;)) are
rank 1 spaces. It follows that if u;; = uj, (respectively vy = v;o) then uj
is the abscissa (respectively ordinate) of each entry in the i-th row of (7).
Let Bi(j) = vij(respectively u,;). Then for all i, 3; permutes {1,2,--- ,n}.
If z were a common abscissa for one row and y were a common ordinate for
another then (z,y) would belong to both rows (because m < n and each 3
is a permutation), contradicting the injeetivity of 7. Therefore either
(1) for all (z,7) € A yyone u{j = Uy or
(2) for all (z,7) € Ay vij = vy,

Suppose (1) holds. Define a(i) = u;; for all 1,1 < i < m. For some Iy vij =
u; because 3; is a permutation. It follows that (ui1,u41) occurs in the :-th
row of [r] and in no other. Thus a permutes {1,2, - .m}. If 1 # 1, then
T((Er;, Eij)) = (Euz,Evy) is a rank 1 space with u = a(1), v = a(z) and
B1(7) = =, Bi(j) = y. But a(1) # af(i), so z = y. Therefore 3; = 3, for all
1,1 <1< m. Let 3 =B, then 7(¢,7) = (afi), 3(;)) for all (1,7) € A If
(2) holds then m = n. Let 7/(1,j) = (v, ui;) for all (7,7) € A, and apply
(1) to 7’ to complete the proof of the lemma. a.

Lemma 3.6. If T satisfies the conclusion of Lemma 3.5, then T is a (U, V)- |

operator.

Proof. Let m be any permutation of {1,2,- - ,k}. Let E,";" denote an m x n
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matrix of the form E;; defined in section II. Let Pi(x Z, ) l"(l
Then Pi(7) is a permutation matrix. But E'«'"-’"E"" = 6u'jE31l;r (where
6u; is the Kronecker delta). Thus E[S"Py(x) = E/r.
Pm(a"])E:,"j‘"Pn(ﬂ) O(t) s I (a) holds in Lemma 3.5 then we define
U = Pu(a~")and V = Pa(3). If Ais any m x n Boolean matrix, we have 4 =
2 A{Eij:aj =1} and hence T(A) = Y {E,; ;) : @i = 1} = S{UE;;V :
a;; = 1} = UAV. If (b) holds in Lemma 3.5, define U = P,(87") and
V = Py(a). Let T' be the operator on M, (B) defined by T'(4) = [T(A)]!
for all Ain My, (B). Then T'(Ey;) = Eagsy. gi5y. 50 T'(A) = Pa(a=)APA(8)
by the result for conclusion (a). Hence T(A4) = UA'V. O

and therefore

Theorem 3.7. If T is a linear operator on M m,n(B), then the followings
are cquivalent.

(a) T is invertible and preserves the rank of all rank 1 matrices.

(b) T preserves the ranks of all rank 1 matrices and rank 2 matrices and
preserves the dimension of all rank 1 spaces.

(c) T is a (U,V)-operator.

Proof. In the following, we prove that (a) = (c). Let T be invertible and
preserves the rank of all rank 1 matrices. By Lemma 3.5, there exist permu-
tations o, 3 of {1,2, .-+, m} and {1, 2, --- | m} respectively such that

(a) 7(z, 7) = (a(?), 3(j)) for all (2, j) € Ay or

(b) m =n and 7(:. j) = (3()), a(7)) for all (i, j) € JANS—-
Let = be any permutation of {1,2, .-, k}. Let ET]-’" denote an m x n
matrix of the form E;; defined in section II. Let Py(7) = Z;C:l . W(, Then

Pi(7) is a permutation matrix. But E"’»‘"E"'r, = &y, 'E-m'r (where 4, ; is the

Kronecker delta). Thus E;"}" P,(r) = E'" '(1 , and therefore Pp(a™')E""

1]
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P,(B) = E;‘"(l’)1 s(;)- I (a) holds in Lemma 3.5 then we define U = P,,(a™!)
and V = P,(3). If A is any m x n Boolean matrix, we have A = Y AE:; :
aij = 1} and hence T(A) = Y {E,; ;) : aij = 1} = S{UE,;V : ai; =
1} = UAV. If (b) holds in Lemma 3.5, define U = P,(87!) and V = P,(«a).
Let T' be the operator on M,, ,(B) defined by T'(A) = [T(A)]" for all A
in My, 2(B). Then T'(Ei;) = Eqy, 55y, so T'(A) = P,(a"')AP,(j) by the
result for conclusion (a). Therefore T(A) = UA'V. By Corollary 3.4, (b)
implies (a). So it suffices to show that (c) implies (b). Any operator T
that satisfies (c) is invertible. In fact, T7'(4) = UT1AV~! or T71(A4) =
U-TA'WV~! Let b(X) = 1. Then X = ab' where a is a m x 1 Boolean
matrix and b is a n x 1 Boolean matrix. Thus T(X) = UXV = Uab'V =
(Ua)(b'V) where Ua € M,,,(B) and V'b € M, 4(B). By the defnition
of Boolean rank. H(T(X)) = 1. Let (X) = 2. Then X = AB where A. B
are m X 2 Boolean matrix and 2 x n Boolean matrix. respectively. Thus
T(X) =UXV = UABV = (UA)BV) where UA is a m x 2 matrix and
BV is a 2 x n matrix. ‘Thus &(T(X)} < 2. Suppose J(T(X)) = 1. Then
T(X) = UXV = CD, where C € M,,1(B), D € M, ,(B). Therefore
X =U'CDV™! and ¥(X) = 1, a contradiction to b(X) = 2. That is, T
is rank 2 preserver. Since T is invertible, we conclude that T preserves the

dimension of all rank 1 spaces by Lemma 2.4.2. a
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IV. Boolean Rank-k Preserving Operators

We study the extent to which known properties of Boolean linear operators
preserving the ranks of Boolean matrices. For our purpose, we can define a
Boolean linear operator preserving rank k& matrices.

We say that an operator T strongly preserves Boolean rank k provided

that 4(7T(X)) = k if and only if b(X) = k.

Lemma 4.1. IfT is an invertible linear operator on M,,, ,(B) that preserves

the rank of every rank k matrix then T strongly preserves rank k, 1 < k < n.

Proof. Since T is a rank k preserver, we will show that if 6(T(X)) = k
then b(X) = k. Consider the restriction of T to rank k matrices. Let
V={X € M, ,.(B): {X) = k}. Then |V|is finite. Since T is rank k
preserver, T(V') C V. Thus we can write T|yv : V — V. Suppose T|y- is
not mjective. Then T(X) = T(Y)if X # Y, for some X, Y € V. This is a
contradiction to injectivity of T. Thus T|y- is injective.. Let 5(T(X)) = k, for
HX) # k., X € My, »(B). But since T|y is injective and |V| is finite, we can
choose B € M, »(B) such that b(B) = k and T(B) = T(X). Then X # B
if T(X) = T(B). This is a contrandiction to injectivity of T. Therefore

b(X) = k, that is, T strongly preserves rank k. O

Lemma 4.2. If T is a Boolean linear operator on M,,, ,(B) that preserves
the rank of every rank 1 matrix then T({Eij, Ei)) and T({E;;, E.;)) are

rank 1 space for any i, j,1<i<m,1<j <n.

Proof. Since T is a rank 1 preserver, T(E:; + Eis) = T(Eij) + T(E;,) and
b(Ei; + Eis) = 1. Thus T((E;j, Eis)) is a rank 1 space. Similarly, H(T(E;:; +
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E,;)) =1, that is, T((E;;, E.;)) is rank 1 space. 0

Lemma 4.3. IfT is an invertible Boolean linear operator on M, n(B) that
preserves the rank of every rank 2 matrix then T((E;;, Ei,)) and T((E;;, E,;))

are rank 1 space for any i, j,1<i<m,1<j <n.

Proof. Since T is invertible, T permutes &, », by Corollary 2.5.3. And since
T permutes &, 5, 8(T(E;;+E;)) = 1 or 2. Suppose T((E;j, Eis)) is not rank
1space. Forany E;;, Eiy € &y n. T(Ej+Ei) = T(E:;;)+T(Ei,) = E;y+Ey,
with £ # u, y # v. Thus WT(E:;; + Eiy)) = (E;y + Ey.) = 2. Since T is
an invertible and rank 2 preserver, T strongly preserves rank 2 by Lemma
4.1. This is a contradiction to assumption. Therefore T({Ei;, Eis)) is rank 1
space. Suppose T((E};, E,,)) is not rank 1 space. For any E;j, E.j € & n.
T(Eij + Erj) = T(E;;) + T(E,j) = Eyeye + Eyepe with z% # u*, y* # 0"
Thus 5(T(E;;+E,;)) = b(E;+y- +Ey+,+ ) = 2. Since T is invertible and rank 2
preserver, T strongly preserves rank 2 by Lemma 4.1. This is a contradiction

to assumption. Therefore T((E,;, E,;)) is rank 1 space. O

Lemma 4.4. IfT is an invertible Boolean linear operator on M,, ,(B) that
preserves the rank of every rank k matrix with 3 < k < n then T((Ei;, Eis))

and T({E;;, Ey;)) are rank 1 space for any i, j, 1 <i<m,1<j<n.

Proof. Since T is an invertible linear operator, T permutes Em n, by Corollary
2.5.3. And since T permutes Em n, W(T(Eij, Eiy)) = Y(T(Ei;) + T(Ei,)) =
1 or 2. Suppose T((E,;, E;,)) is not rank 1 space. For any E;;, E;, € & p,
T(Ei; + Eis) = T(Ei;) + T(Eis) = Epy + Eyy with 2 # u, y # v. Since T
is an invertible, T is bijective by Corollary 2.5.2. We can choose FEy.1, such

that b(Zf;lz Exi;) = k—2for ki # x, ki # vand l; # y, l; # v. Then
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b(2f=_12 Ekili + EIy + Euv) = k and

k-2 k—2
T Eviti + Eey + Eud) = ) T (Exit) + T (Ezy) + T7'(Euw)
i=1 =1
k—2
= ZT_I(Ek.vl.-) + Eij + Ej,.
=1

Thus b(Ef:_f T~YEx,1,) + E;; + Eis) < k. This is a contradiction that T
strongly preserves rank & by Lemma 4.1. Therefore T((E;;, Ey,)) is rank 1
space. Similarly, T((E;;, E,;) is rank 1 space. a

From Lemma 4.2 , Lemina 4.3 and Lemma 4.4, we obtain the following.

Theorem 4.5. If T is an invertible Boolean linear operator on M,, ,(B)
that preserves the rank of every rank k matrix with 1 < k < n then
T((Ei;, Eiy)) and T({Ey;, E,;)) are rank 1 space forany i, j,1 <:<m, 1 <

j<n

Lemma 4.6. IfT is an invertible linear operator on M, ,(B) that preserves
the rank of every rank 2 matrix and 7 is the permutation of A\,, , representing
T, then there exist permutations «, 3 of {1,2,---, m} and {1, 2, -, n}
respectively such that

(a) 7(z, 7) = (a(2), 3(3)) for all (2, j) € Ay or

(b) m =n and 7(7, j) = (B(J), «(2)) for all (i, j) € Dnon-

Proof. We will denote the abscissa of 7(z, j) by u;; and its ordinate by v,;.
So (1, j) = (uij, vij). Let [r] be the m x n array whose (7, j)-th entry
is (uj, vij). Since T is rank 2 preserver and invertible, T((E;;, Ei)) and

T((Eij, Ek;)) are rank 1 spaces, by Lemma 4.3. Thus any two entries in the
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same row (or culumn) of [r] have a common abscissa or common ordinate.
This is because T((E;;, E;x)) and T((E;i, Ex;)) are rank 1 spaces. It follows
that if u;; = u;p (respectively v;; = viz) then u; is the abscissa (respectively
ordinate) of each entry in the i-th row of [r]. Let 3;(j) = v;;(respectively usij).
Then for all ¢, 3; permutes {1, 2, ---, n}. If £ were a common abscissa for
one row and y were a common ordinate for another, then (z, y) would belong
to both rows (because m < n and each 3, is a permutation), contradicting
the injectivity of 7. Therefore either

(1) for all (z, j) € Dpn, Uj; = uj Or

(2) for all (2, j) € Ao, vi; = vj1.
Suppose (1) holds. Define a(7) = wu;; for all i, 1 < i < m. For some Jyvij =
u;1 because 3; is a permutation. It follows that (ui1, usp) occurs in the i-
th row of [r] and in no other. Thus a permutes {1, 2, --- ,m}. Since T is
invertible and rank 2 preserver, for i # 1, T((E;, Eij)) = (Eu,, E,,) is a
rank 1 space with u = a(1), v = a(i) and 3,(j) = z, 3i(j) = y by Lemma
4.3. But a(1) # a(z), sox = y. Therefore 3; = 3, foralli, 1 < < m. Let
B = B, then 7(7, j) = (a(z), B(})) for all (i, j) € Aonn- I (2) holds then
m =n. Let 7'(¢,7) = (vij, uy;) for all (1, j) € A, and apply (1) to 7 to

complete the proof of the lemma. O

Lemma 4.7. If 7 satisfies the conclusion of Lemma 4.6, then T is a (U, V)-

operator.

Proof. Let m be any permutation of {1, 2, --- | k}. Let E,-""j’" denote an m xn

matrix of the form E,; defined in section II. Let Pi(m) = Ef:n Elk’:(,).

Then Pi(m) is a permutation matrix. But ETNERT = 8y E[, (where

bu,j is the Kronecker delta). Thus E"Pa(r) = E™7.. and therefore

» m(J)
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Pm(a_l)EZ'j‘"P,,(,B) = E';"(:; s(;)- 1f (a) holds in Lemma 4.6 then we define
U= Pp(a™')and V = P,(8). If A is any m x n Boolean matrix, we have
A =3 {E;:ai; =1} and thus T(4) = 3 {E.(, ;) ai; = 1} = Y {UE;V :
aij = 1} = UAV. If (b) holds in Lemma 4.6, define U = P,(8~') and
V = P,(a). Let T" be the operator on M, »(B) defined by T'(A) = [T(A)]*
for all Ain M, »(B). Then T'(E;;) = Eqi), a(j) 50 T'(A) = Pa(a 1) AP, (8)

by the result for conclusion (a). Hence T(A) = UA'V. ]

Lemma 4.8. If T is an invertible linear operator on My, ,(B) that pre-
serves the rank of every rank k matrix and 7 is the permutation of A\, ,
representing T, then there exist permutations «, 3 of {1,2, -, m} and
{1, 2, -+, n} respectively such that

(a) 7(1, j) = (a(2), #(y)) for all (z, j) € Dyn or

(b)m=nand 7z, j) = (3), a2)) for all (z, j) € Do

Proof. We will denote the abscissa of 7(z, j) by u;; and its ordinate by v,;.
So (1, 3) = (u,j, vi;). Let [r] be the m x n array whose (7, j)-th entry
is (uy;, vi;). Since T is rank & preserver and invertible, T({E;;, E;x)) and
T((E;j, Ev;)) are rank 1 spaces, by Theorem 4.5. Thus any two entries in the
same row (or culumn) of [r] have a common abscissa or common ordinate.
This is because T((E;;, Eix)) and T({E;;, Ei)) are rank 1 spaces. It follows
that if u;; = u;p (respectively v;; = v42) then wu;; is the abscissa (respectively
ordinate) of each entry in the i-th row of [r]. Let 3;(j) = v;j(respectively wu;;).
Then for all ¢, 3; permutes {1, 2, --- , n}. If r were a common abscissa for
one row and y were a common ordinate for another then (r, y) would belong
to both rows (because m < n and each J3; is a permutation), contradicting

the injectivity of 7. Therefore either
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(1) for all (7, j) € Ao, wij = uiy or

(2) for all (2, j) € O n, vij = vir.
Suppose (1) holds. Define a(z) = u,; for all 7, 1 <7 < m. For some j, v;; =
uir because f; is a permutation. It follows that (wir, uii) occurs in the i-
th row of [r] and in no other. Thus a permutes {1, 2, ---, m}. Since T is
invertible and rank k preserver, for i # 1, T({(Eyj, Eij)) = (Eyz, Euy) is a
rank 1 space with u = a(1), v = «(¢) and 31(j) = z, 8i(j) = y, by Theorem
4.5. But a(1) # a(1), so z = y. Therefore 3; = 3 for all 7, 1 <7 < m. Let
B8 = By, then 7(z, j) = (a(z), 3(J)) for all (7, j) € Ay . If (2) holds, then
m =n. Let 7'(z,7) = (vij, ui;) for all (¢, j) € &yup, and apply (1) to 7’ to

complete the proof of the lemma. a

Lemma 4.9. If 7 satisfies the conclusiou of Lemina 4.8, then T is a (U, V')-

operator.

Proof. Let 7 be any permutation of {1, 2, --- , k}. Let E,-'Z-’" denote an m xn
matrix of the form E;; defined in section IL Let Pi(m) = Y., Ef %,
Then Pi(r) is a permutation matrix. But EM"ENT = §, EM (where
bu,; 1s the Kronecker delta). Thus EJ}"P,(r) = Ezl,}’(lj) and therefore
Pp(a™)E™"Po(8) = E(T(‘.")l,ﬂ(]‘)' If (a) holds in Lemma 4.8 then we define
U= Pyp(a™')and V = P,(B). If A is any m x n Boolean matrix, we have
A=73{Ei;:a;j=1}and thus T(A) = Y {E,; ;1 ai; =1} = S {UE;V :
a;j = 1} = UAV. If (b) holds in Lemma 4.8, define U = P,(8~!) and
V = Py(a). Let T' be the operator on M,, »(B) defined by T'(4) = [T(A)]*
for all Ain M, o(B). Then T'(Ey;) = Ea(sy. (), 50 T'(A) = Pa(a=")APa(8)
by the result for conclusion (a). Hence T(A) = UA'V. O
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Theorem 4.10. Let T be a Boolean linear operator on My, o(B). Then T

is invertible and rank k preserver, k > 1 if and only if T is a (U, V )-operator.

Proof. Suppose T is a (U, V)-operator. Then T is a invertible by Theorem
3.7. And let b(X) = k. Then X = AB, A € M, x(B) and B € M (B).
Thus for X € M,.(B), T(X) = UXV = UABV = (UA)(BV) where
UA € M, x(B) and BV € M ,(B). Thus b(T(X)) < k. Suppose (T (X)) =
I.1 < k. Then T(X) = UXV = CD, where C € M,,, (B),D € My .(B).
That is, X = U7'CDV ™! and b(X) <, a contradiction to b(X) = k. Thus
T is a rank k preserver. Therefore T is invertible and rank k preserver.
Conversely, let T be an invertible rank & preserver. Hence T is a (U,V)-

operator, by Lemma 4.9. 0

Corollary 4.11. Let T be a Boolean linear operator on My, ,(B). The
followings are equivalent.

(a) T is invertible and rank 1 preserver.

(b) T preserves the ranks of all rank 1 matrices and rank 2 matrices and
preserves the dimension of all rank 1 spaces.

(c) T is invertible and rank k preserver, k > 1.

(d) T is a (U, V')-operator.

Proof. From Theorem 3.7, (a) <= (b) <= (d). By Theorem 4.10, (c)
<~ (d). 0
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V. Boolean Rank preserver

The following is true for operator T on m X n matrices over an algebraically
closed field F. It characterizes the rank-preserving operators (see Marcus and
Moyls [10] or Lautemann [9]).

(5.1) The rank of T(A) equals the rank of 4 for all A if and only if T is
a (U, V)-operator.

In this case, the characterization carries over completely to Boolean oper-
ators (Theorem 5.3). The theorem quoted at the outset of section 111 implies
that

(5.2) Over F, T is rank-preserving if and only if T perserves the rank of
each rank 1 matrix.

Theorem 5.4 below gives a nearly exact analogue.

Lemma 5.1. If A, B are in My, ,(B), A # B, p(4) > p(B), m > 1 and
b(A) = b(B) = 1, then there exists C in M, ,(B) such that b(A + C)=1
and b(B + C) = 2.

Proof. If b((A + B) = 2, then the conclusion is obtained by letting C =
A. So we may assume that b(A + B) = 1. Define E,, as in section 2.5.
Factoring A, B and E,¢, we have 4 = ax', B = by and E,, = e f;. By our
hypotheses and Lemma 2.6.1, A £ B. Therefore Lemma 2.6.2 implies that
(1)a=bandx;£y,or(2)x:yanda;éb,or(B)bga,b#a,ygx_
and y # x.

Case (1). We have x £ y because a = b and A £ B. So we can select
Jyl<nsothatz; =1,y; =0and z; =0, y; = 1. Since A # 0, there exists
¢ < m such that a; = 1. If ¢; = 1 and others are 0 then B = E;;. Put



25

C = E; with k # i. Then b(A+C) =1and b(B+C) = b(Eu+ Ex;) = 2. If
there exists s so that s # i, a, = 1 then (B + E;;) = 2. On the other hand,
A > E;, (A + E;j) = b(A) = 1. Thus the conclusion is obtained by letting
C = E;;.

Case (2). We have a £ b because x =y and A £ B. So we can select
Jy 1 <nsothat a; =1,b; =0and a; =0, by = 1. Since A # 0, there exists
¢ < m such that z; = 1. If z; = 1 and others are 0 then B = E;;. Put
C = E,i with k # i. Then b(A + C) =1 and b(B + C) = b(Eyi + Ej) = 2.
If there exists s so that s # i, ry, = 1 then 8B + E;;) = 2. On the other
hand, A > Eji, b(A + E;;) = b(A) = 1. Thus the conclusion is obtained by
letting C' = E;;.

Case (3). Since b <a.b#a y<xandy # x,a; =1, b = 0 and
z;=1,y;, =0,a, =1, b, =1, and 2y = 1, y; = 1, for some i, j, s, [. Then
b(B + E;j) = 2. On the other hand, A > E;;, b(A + E;;) = b(A) = 1.Thus

the conclusion is obtained by letting C = E;;. O

Lemma 5.2. If T is a linear operator on M, o(B) with m > 1 and T is
not invertible but preserves the rank of rank 1 matrices, then T decrease the

rank of some rank 2 matrix.

Proof. By the proof of Corollary 3.3, T is not injective on My so T(X) =
T(Y) for some X, Y in M; with X # Y. Without loss of generality, we may
suppose that p(X) > p(Y). By Lemma 5.1, there is some matrix D such that
b(X + D) = 2 while (Y + D) = 1. However, T(X + D) =T(X)+ T(D) =
T(Y)+T(D)=T(Y + D). O

Theorem 5.3. Suppose T is a linear operator on M, ,(B) with m > 1.
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Then T is a rank preserver if and only if T is a (U, V)-operator.

Proof. Suppose T is a rank preserver. Then T preserves the rank 1 and
rank 2 matrices. By the contraposition of Lemma 5.2, T is invertible. By
Theorem 3.7, T is a (U, V)-operator on M,, »(B). Conversely, let T be a
(U,V)-operator and for X € M,, .(B), let H(X) = k, with 1 < k < m.
Then X = AB where A € M, x(B), B € My .(B). Thus T(X) = UXV =
UABV = (UA)BV) where U € M, n(B),V € M, ,(B). Since UA €
Mo x(B) and BV € My .(B),HT(X)) = k, by the definition of Boolean

rank. Hence T is a rank-preserver. O

Theorem 5.4. Suppose T is a linear operator on M, ,(B). Then T is a
rank preserver if and only if T preserves the rank of all rank 1 and rank 2

matrices.

Proof. Obviously, if T is a rank preserver then T preserves the rank of all
rank 1 and rank 2 matrices. Conversely, let T preserve the rank of all rank
1 and rank 2 matrices. Then T is invertible, by Lemma 5.2. And since T
1s invertible and rank 1 preserver, T is a (U, V)-operator, by Theorem 3.7.

Hence T is a rank preserver, by Theorem 5.3. O

Lemma 5.5. Let T is a rank 1 preserving linear operator on M. 2 (B).
Then b(X) > b(T(X)).

Proof. Let b(X) = k. Then X = X; + X3 + --- + X4, where (Xi)=1,1<
i <k T(X) = T(Xy + Xo + - + X&) = T(X1) + T(X2) + - + T(Xa).
Since T is a rank 1 preserver, T(X;) has Boolean rank 1. By the property of
Boolean rank, 5(T(X)) < k. a

Using the previous lemma, we obtain the following.
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Theorem 5.6. Let T be a Boolean linear operator on M., ,(B). T is a

(U, V)-operator if and only if T strongly preserves rank 1.

Proof. Suppose T strongly preserves rank 1. Obviously, T is rank 1 pre-
server. Let b(X) = 2. By Lemma 5.5, 5(T(X)) = 1 or }(T(X)) = 2. If
H((T(X)) = 1 then b(X) = 1 since T strongly preserves rank 1. This is a
contradiction. Therefore T is rank 1 and rank 2 preserver. Thus T is a
(U, V)-operator, by Theorem 5.3 and Theorem 5.4. Conversely, suppose T is
a (U, V)-operator. We will show that if 5(T(X)) = 1 then b(X) = 1. Since
T is (U, V)-operator, T(X) = UXV for nonsingular matrices U € M, ,,(B)
and V€ M, o(B). Then X = UT'T(X)V~1. Since b(T(X)) = 1, we can
write T(X) = ab. where a and b’ are m x 1 and n x 1 Boolean matrices.
Therefore X = U7'T(X)V ™! = U 'ab*V~! where U~ 'a € M,, 1(B) and
b‘V~=! € M, ,(B). By the definition of Boolean rank, 5(X) = 1. Hence T

strongly preserves rank 1. a

Corollary 5.7. Let T be a Boolean linear operator on M,, ,(B). The

followings are equivalent.
(a) T is invertible and rank k preserver, with 1 < k < m.
(b) T is rank 1 and rank 2 preserver.
(c) T is a (U, V)-operator.
(d) T is a rank preserver.

(e) T strongly preserves rank 1.

Proof. By Theorem 5.3 and Theorem 5.4, (b) <= (c¢) < (d). (a) <= (c),
by Theorem 4.10. (¢) <= (e), by Theorem 5.6. O
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Example 5.8. Let T : M; 3(B) — A3 3(B) be a Boolean linear operator

given by T((a;;)) = (@siyr(;)) where 8, T € S3 are permutations correspond-

ing
0 0 1 0 0 1
toU=(0 1 O0landV=1|1 0 0 , respectively.
1 00 0 1 0
110 (1.0 0
Let A= 10 1 1|.ThenT(4)= 1|1 1 0f.
010 1 0 1
00 1][1 1 0]f0 01 100
SinceUAV = |0 1 0| (0 1 1 1 0 0f=|11 0(=T(4)
1 00f[0 1 0]|0 10 1 01
T is a (U, V)-operator.
1 01 01
Let B=]1 0 1 . Then b(B) =1and T(B)=UBV = [0 1
1 0 1 0 1 1
0
=|1][1 1 1],thatis, §(T(B)) = 1.
1
1 01 0 1 1
Let C= |1 1 1| .Thenb(C)=2and T(C)=UCV =|1 1 1 ,
1 01 011

that is, H(T(C)) = 2.

O = O

1
0
1

OO =

1
Let D = lj }.Thenb(D)=3andT(D)=UDV= [0
1

O O =
o = O
—

that is, b(T(D)) = 3.
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Example 5.8 shows that T satisfies the equivalent conditions of Corollary 5.7

Thinking of a Boolean matrix M as a zero-one matrix over a field, the
(field) rank of M is 1 if and only if 5(M) = 1 and the field rank of M is 2
only if (M) = 2. Suppose the field rank of M is 1. Then the column rank

of M is 1 and M = [a, a, -+, a] where a is m x 1 zero-one matrix. Then
M = a[l,1,---,1]. Thus (M) = 1. Let b(M) = 1. Then M = ab’ =
[aby, aby, -+, ab,] where b; = 0 or 1, 1 < ; < n. Thus field rank of M is

1. Suppose the field rank of M is 2. Since M is zero-one matrix and has
column rank 2, M = X, + X, where X; and X, are rank 1 zero-one matrices
over field. By above X, and X, are Boolean rank 1 matrices. Therefore

BM) = 2.

Corollary 5.9. Suppose T is a linear operator on M n(B). Then T pre-
serves the Boolean rank of all matrices if it preserves the field rank 1 and 2

zero-one m X n matrices.

Proof. Suppose M is zero-one matrix over field. If the field rank of M is 1
then M has the Boolean rank 1, by above. If the field rank of M is 2 then M
has the Boolean rank 2, by above. By Corollary 5.7, T preserves the Boolean

rank of all matrices. O
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< Abstract >

Boolean Rank Preserving Linear Operator

In this thesis, we study Boolean rank preserving linear operator and
found several equivalent conditions of Boolean rank preserving linear op-
erator. That is, a linear operator preserves all rank if and only if either it
strongly preserves rank 1 or it is invertible and rank k preserver for any k.
This equivalent conditions generalize Boolean rank preserving linear operator

which were obtained by L. B. Beasley and N. J. Pullman in [1].
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