A MASTER’S THESIS

A NUMERICAL ANALYSIS OF THE WAVE
FORCES ON VERTICAL CYLINDERS BY
BOUNDARY ELEMENT METHOD

CHEJU NATIONAL UNIVERSITY GRADUATE SCHOOL

Department of Civil & Ocean Engineering

Cao Tan Ngoc Than

February 2009



A NUMERICAL ANALYSIS OF THE WAVE
FORCES ON VERTICAL CYLINDERS BY
BOUNDARY ELEMENT METHOD

Cao Tan Ngoc Than
(Supervised by Professor Nam-Hyeong Kim)

A thesis submitted in partial fulfillment of the requirement for the

Degree of Master of Engineering

2009.2

This thesis has been examined and approved

Thesis director, Sang-Jin Kim, Prof. of Civil & Ocean Engineering

Thesis director, Byoung-Gul Lee, Prof. of Civil & Ocean Engineering

Thesis director, Nam-Hyeong Kim, Prof. of Civil & Ocean Engineering

February.2009

Department of Civil & Ocean Engineering

GRADUATE SCHOOL
CHEJU NATIONAL UNIVERSITY



CONTENTS

(00 01 1=] 1 1< U P TSP OTRRURRTI i
I ES A0 T U= S ii
SUIMMAIY ...ttt e et e be e e e s beesteeseesbe e teeneesae e teensesteebeannesnaenen o as viii
CHAPTER 1: INTRODUCTION ....ooiiitiiieeieies st sve e snasnaanens 1
1.1 Backgroumele . ... ...l Rl 1
1.2 ODbjeGhVOBE...F ..o B eecrnercnecsnncenseecnneresseesrnees e ane s ol e eesneesns 2
1.3 STUAY CONMTENTS. ...ttt be bbb en s e e 3
CHAPTER 2: FORMULATION OF BOUNDARY ELEMENT ANALYSIS ......... 5
2.1 Diffraction PNENOMENON .......oivitiitiitiitieieeiieieee e sbe bbbt 5
2.2 Basic equations and boundary conditions..............ccceveeresiesieeiesieieere e s 8
2.3_Green function ... B0 8 .. L 12
2.4 Derivation of integral @QUALIONS ..........c.ocuiiiiiiiiieeiiesee et es e e 13
2.5 FOrmulation OF WaVe TOICE..........ocveiiiiecieeie et sree e eenne e e 15
2.6 FOrmulation OF WaVe FUN=UP .......ciuueueireineiaienieeseesnsessaesseeeesseesseeseessaessesssessenses on 16
CHAPTER 3: DISCRETIZATION OF INTEGRAL EQUATION ......ccccovvvnnn. 17
3.1 Discretization of the boundary........ccccociviiiiii i 17
3.2 The collocation Method .............cciiiiiiarineie e o 17
3.3 Calculation of Matrix €leMENt .........c.ooiiiiiiiiie e 18
3.4 Derivation 0f Green fUNCLION .......cooviieiieiicie e e 19
CHAPTER 4: NUMERICAL EXAMPLES ......ccco ittt e 22
4.1 Wave forces on two vertical circular Cylinders ..........ccccoovvvieieneneneniseeeee 22



4.1.1 The effects of cylinder spacing on wave forces on two vertical circular
(03] 1110 =T £ USSR 26
4.1.2 The effects of position of the cylinders on wave forces on two vertical
CIFCUIAN CYHINTBIS ... e e 30
4.1.3 The effects of incident wave angle on wave forces on two vertical circular

(037 1110 =TSSR 31

4.1.4 Run-up on the outer walls of two vertical circular cylinders ................... 34
4.1.5 Free-surface elevation around two vertical circular cylinders.................. 38

4.2 Wave forces on three vertical circular cylinders ............ccvveveiieiiine e 41

4.2.1 The effects of cylinder spacing on wave forces on three vertical circular

R/inders. .. ..o e B L 45

4.2.2 The effects of incident wave angle on wave forces on three vertical
CIFCUIAr CYHINABIS ... it ciecie et 51
4.2.3 Run-up on the outer walls of three vertical circular cylinders ................. 56
4.2.4 Free-surface elevation around three vertical circular cylinders................ 60
CHAPTER 5: CONCLUSIONS AND RERARKS ......cooiiiiiiieeieiee s e 64
REFEREMNEGES ............. LR ..........3 /- 308 ... ... % .} .. 67
ACKNOWLEDGEMENT ..ottt bbbttt o 68



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

10

11

List of Figures

Different flow regimes in the (KC,D/L) plane. Adapted from Isaacson (1979)

Regimes of flow around a smooth, circular cylinder in oscillatory flow for
small KC numbers (KC < 3). Data: Circles from Sarpkaya (1986a); crosses for
Re <1000 from Honji(1981) and crosses for Re >1000 from Sarpkaya (1986a)
Vortex-shedding regimes around a smooth circular cylinder in oscillatory flow.
Data: Lines, Sarpkaya (1986a) and Williamson (1985) and: squares from
ustesen (1989) ......cocvvee e BB s 7
Definition of: a)Two vertical circular cylinders, b) Three vertical circular

QI IO S AR 10
Numerical model configurations: a) Two vertical circular cylinders, b) Three
vertical Circular CYHNOEIS ......ooviiie i e 11
Geometries of: a) Two transverse cylinders; b) Two tandem cylinders........... 22

Wave forces in X-direction acting on cylinder 1 in two transverse cylinders
versus wave numberkafor D/a=6, h/@a =10 ....cccccceririiniinininiieeciienn, 23
Wave forces in y -direction acting on cylinder 1 in two transverse cylinders
versus wave number kafor D/a=6, h/a=10 .......ccccoccvrierivnirnienrcennnn, 24
Wave forces in X -direction acting on two tandem cylinders versus wave
number kafor D/a =5, h/@ =10 .....cccccesiiiiiiiiiiiiiiiiee e 25
Wave forces in x -direction acting on two transverse cylinders versus ratio
y =2alDfor h/a=10:a) wave number ka =0.1; b) wave number ka=0.5;

C) Wave NUMDBEN K& =1.0 ....cccveieiieiiee et 27
Wave forces iny -direction acting on two transverse cylinders versus ratio

y=2alD for h/a=10:a) wave number ka=0.1; b) wave number ka=0.5;

C) Wave NUMDBEN K& =1.0 ....ccoeeieiieiieie e 28



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Wave forces in X -direction acting on two tandem cylinders versus

ratio y =2a/D for h/a=10: a) wave number ka=0.1; b) wave number

ka=0.5; c) wave nUMDEr Ka =1.0 ......cccccsiverriiniiere e 29

Wave forces in x -direction acting on two cylinders versus ratio ¢ for ka =0.5,

NTA=10,D/8 =5 . 30
Wave forces in X -direction acting on cylinder 1 in two transverse cylinders
versus wave numberkafor h/a=10,D/a=5 .....ccccooriririnininininieienn, 31
Wave forces in X -direction acting on cylinder 2 in two transverse cylinders
versus wave numberkafor h/a=10,D/a=5 ..o, 32
Wave forces in x -direction acting on cylinder 1 in two tandem cylinders versus
wave numberkafor h/a=10,D/a =5 32
Wave forces in x -direction acting on cylinder 2 in two tandem cylinders versus
wave numberkafor h/a=210,D/a=5...ccccccriiiiiiiiininiee i, 33
Run-up on the outer walls of the cylinders in two transverse cylinders for
h/a=10,D/a=5,Ka=1.0 .cccreetrreiiiiieciiriiii e ss sttt aaaes 34
Run-up on the outer walls of the cylinders in two tandem cylinders for
h/a=10, D/@=5,Ka=1.0 .cccooiireiirerieie ettt e 35
Run-up on the outer wall of cylinder 1 in two transverse cylinders versus
incident wave angle gfor h/a=10,D/a=5,ka=21.0 ...c..ccccvrvrrieiiiernunnn. 35
Run-up on the outer wall of cylinder 2 in two transverse cylinders versus
incident wave angle gfor h/a=10,D/a=5,ka=1.0.....cccccceceerirrrirerirrrnrns 36
Run-up on the outer wall of cylinder 1 in two tandem cylinders versus incident
wave angle gfor h/a=10,D/a=5,ka=1.0 ..cccccceeeerrrriiiininrriieeneennn, 36
Run-up on the outer wall of cylinder 2 in two tandem cylinders versus incident
wave angle Sfor h/a=10,D/a=5,ka=1.0.....cccccoeviiiiiieiiiicirerecrennen, 37
Free-surface elevation contour around two transverse cylinders for h/a =10,
D/a=5,Ka=1.0 it 39
Wave height distribution around two transverse cylinders using three-
dimensional graphic technique forh/a=10,D/a=5,ka=1.0 .....cccoevenrne. 39
Free-surface elevation contour around two tandem cylinders for h/a =10,
D/a=5,Ka=1.0 et 40



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Wave height distribution around two tandem cylinders using three-dimensional
graphic technique for h/a=10,D/a=5,ka=1.0 ..c.cceverririrnierirriieenn 40
Geometries for: (a) Three cylinders in triangular array, (b) Three cylinders in
row array, (c) Three cylinders in column array ........ccovvvvieviiiieiieinennennns 41
Wave forces in X -direction acting on cylinder 1 and cylinder 2 in triangle array
versus wave number kafor h/a=10, D/a=5 ... 42
Wave forces in y -direction acting on cylinder 1 and cylinder 3 in triangle
array versus wave number kafor h/a=10, D/a=5 ..o, 43

Wave forces in x -direction acting on cylinder 1 and cylinder 2 in row array

versus wave number kafor h/a=10, D/a=5 .....ccccoovriiiinniiiiinceiene 43
Wave forces in y -direction acting on the cylinders in row array versus wave
number kafor h/a=10, D/@=5 .....c.cccceiiiiiiiiiieeee e s 44

Wave forces in X -direction acting on the cylinders in column array versus
wave number kafor h/a=10, D/a=5.......c.cccccoiiiiminieriinciiiieieiee e 44

Wave forces in X -direction acting on cylinder 1 in triangular array versus the
ratio ¥ =2a/ D for h/@ =10 ...c.cccoveieiiiece e e e 45

Wave forces in X -direction acting on cylinder 2 in triangular array versus the
ratio y =2a/DfOr N/@ =10 .....ccccoiiiiiiieice e e 46

Wave forces in y -direction acting on cylinder 1 in triangular array versus the
ratio y =2a/Dfor h/@a =10 .....ccccoiiiiiiieiei it e 46

Wave forces in x-direction acting on cylinder 1 in row array versus the ratio
7 =22/ DTOr RTA=10...cccicitiiiieiece e e s 47

Wave forces in x -direction acting on cylinder 2 in row array versus the ratio
Y =281 DFOr RT@ =10 e 48

Wave forces in y -direction acting on cylinder 1 in row array versus the ratio
Y =28/ DFOr /@ =10t e 48
Wave forces in x-direction acting on cylinder 1 in column array versus the
ratio ¥y =2a/ D for h/@a =10 ...c.cccoeiiiiiiee e 49
Wave forces in x-direction acting on cylinder 2 in column array versus the
ratio ¥ =2a/ D for h/a =10 ...cccceoeieieieei e 50



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Wave forces in x-direction acting on cylinder 3 in column array versus the
ratio ¥ =28/ D fOr N/@a =10 ....ccooiiiiieee e e 50

Wave forces in x-direction acting on cylinder 1 in triangular array with four
different incident wave angles #=0°,30°,45°,60° for h/a=10,D/a=6 .51
Wave forces in x -direction acting on cylinder 2 in triangular array with four
different incident wave angles g =0°,30° 45° 60° for h/a=10,D/a=6..52
Wave forces in x -direction acting on cylinder 3 in triangular array with four
different incident wave angles 8 =0°,30°, 45°,60° for h/a=10,D/a=6...52
Wave forces in X -direction acting on cylinder 1 in row array with four
different incident wave angles #=0°,30°,45°,60° for h/a=10,D/a=6...53
Wave forces in X -direction acting on cylinder 2 in row array with four
different incident wave angles #=0°,30°, 45°, 60° for h/a=10,D/a=6...53
Wave forces in x -direction acting on cylinder 3 in row array with four
different incident wave angles 3 =0°,30° 45° 60° for h/a=10,D/a=6...54
Wave forces in X -direction acting on cylinder 1 in column array with four
different incident wave angles #=0°,30°, 45°,60° for h/a=10,D/a=6...54
Wave forces in x -direction acting on cylinder 2 in column array with four
different incident wave angles 8 =0°,30°,45°,60° for h/a=10,D/a=6...55
Wave forces in x -direction acting on cylinder 3 in column array with four
different incident wave angles 8 =0°,30°,45° 60° for h/a=10,D/a=6...55
Run-up on the outer walls of three cylinders in triangular array for h/a=10,
D/a=6kaEdo ... Ws.............ccoc o JE R RN 57
Run-up on the outer walls of three cylinders in row array for h/a=10,
D/@a=6,Ka=1.0 ..cccoriiriiiciee e e 58
Run-up on the outer walls of three cylinders in column array for h/a=10,
D/@=6,Ka=1.0 ..coceiiiieiee e 59

Free-surface elevation contour around three cylinders in triangular array for
h/a=10,D/a=06,Ka=1.0 ..c.ccocerrrrririerririiee st s 61

Vi



Fig. 56

Fig. 57

Fig. 58

Fig. 59

Fig. 60

Wave height distribution around three cylinders in triangular array using three-

dimensional graphic technique for h/a=10,D/a=6, ka=1.0........ccccoc...... 61

Free-surface elevation contour around three cylinders in row array for
h/a=10,D/a=06,Ka=1.0 ....ccoiiirrirriiriirsee e e 62

Wave height distribution around three cylinders in row array using three-
dimensional graphic technique for h/a=10,D/a=6, ka=1.0........cccoc...... 62

Free-surface elevation contour around three cylinders in column array for
h/a=10,D/az6,ka=10 .... L. 8 E 0. & B & . . 63

Wave height distribution around three cylinders in column array using three-
dimensional graphic technique for h/a=10,D/a=6, ka=1.0........c.c........ 63

vii



Summary

With the advances in the design and construction, various types of offshore
structures are now commonly constructed with a composite configuration of several
legs such as cylinders. Thus, the interaction between waves and multiple cylinders is
becoming more and more important. The wave pressure and wave forces acting on the
cylinders must be exactly estimate to evaluate the wave effects and the stability of

structures.

The interaction between waves and offshore structures causes problems such as
diffracted waves, reflected waves, and wave forces. Consider N large vertical circular
cylinders placed on the bottom. As the incident waves impinge on each cylinder, the
reflected waves move outward. On the sheltered side of the cylinders there will be a
“shadow” zone where the wave fronts are bent around the cylinders, the so-called
diffracted waves. The reflected waves and diffracted waves, combined, are usually
called the scattered waves. The scattered waves of each cylinder can affect other
cylinders in the group. This process is generally termed diffraction. By the process of
diffraction the pressure around the cylinders will be changed and therefore the forces on
the cylinders will be influenced. The problems could be dealt with the boundary value

with the velocity potential.

There have been several studies dealing with the interaction of water waves and
multiple cylinders. Twersky (1952) constructed a solution using an iterative procedure
in which successive scattered waves by each of the cylinders were introduced at each
other. This method was extended to the water wave case by Ohkusu (1974). The main
drawback of the iterative procedure is that it rapidly becomes unmanageable as the
number of the cylinders increases. Another approach is the direct matrix method, Spring
and Monkmeyer (1974) proposed a solution for the interaction of water waves and the
cylinders using eigenfunction expansion approach. They formulated the problem in
terms of matrix equation and the solution is obtained by the inversion of the matrix.

viii



Chakrabarti (1978) extended the work of Spring and Monkmeyer (1974), and obtained
the solution for the diffracted wave of multiple cylinders by carrying out the analysis in
a complex domain. Subsequently, Linton and Evan (1990) made a major simplification

to the theory proposed by Spring and Monkmeyer (1974).

On the other hand, there are many studies to solve the diffraction problems of water
waves by using boundary element method. Notably, Kim and Park (2007) studied a
numerical analysis method to calculate the wave force on isolated vertical circular
cylinder by boundary element method and the numerical results of their study are strong
agreement with those of MacCamy and Fuchs (1954). Also, Kim and Cao (2008)
studied wave forces acting on the two vertical cylinders and three vertical cylinders in

water waves.

The boundary element method is divided into direct boundary element method and
indirect boundary element method. The direct boundary element method derives from
the integral equation by Green’s or Cauchy’s theory. This deriving process is solved by
the special application of weighted residual method and it has general integral
formulation. Derived integral equation is divided into twao parts: the unknown functions
and the derivatives of normal direction. One side of them generally has unknown values.
The indirect boundary element method is derived integral equation in boundary
conditions and is made operation function by singular value of governing equation. The
coefficient that is involved operation function is unknown value in direct boundary

element.

In this paper, a numerical analysis by boundary element method for calculating wave
forces acting on multiple cylinders is presented. The numerical analysis method by

Green function in direct boundary element method using velocity potential ¢ is

developed. Attention has been concentrated on wave forces on N large vertical
cylinders, having radius aand placed on the bottom. To verify this numerical method
and to investigate the effect of the neighboring cylinders on the wave forces acting on a
cylinder, two-cylinder configuration and three-cylinder configuration are used in this

study. The wave forces acting on two vertical circular cylinders and three vertical



cylinders obtained from this numerical method are compared with those of Ohkusu
(1974) and Chakrabarti (1978). The comparisons show that the computed results of this
study are strong agreement with their results. Also in this study, several numerical
examples are given to illustrate the effects of various parameters on the wave forces
acting on the cylinders such as the cylinder spacing, the wave number, and the incident
wave angle. The run-up and free surface elevation around two vertical cylinders and

three vertical cylinders are also calculated.



Chapter 1
INTRODUCTION

1.1 Background

Recently with the advances in the design and construction, various types of offshore
structures are now commonly constructed with a composite configuration of several
legs such as cylinders. Thus, the interaction between waves and group of cylinders is
becoming more and more important. The wave pressure and wave forces acting on the
cylinders must be exactly estimate to evaluate the wave effects and the stability of

structures.

The interaction between waves and offshore structures causes problems such as
diffracted waves, reflected waves, and wave forces. Consider N large vertical cylinders
placed on the bottom. As the incident waves impinge on each cylinder, the reflected
waves move outward. On the sheltered side of the cylinders there will be a “shadow”
zone where the wave fronts are bent around the cylinders, the so-called diffracted waves.
The reflected waves and diffracted waves, combined, are usually called the scattered
waves. The scattered waves of each cylinder in the group cylinders can affect other
cylinders. This process is generally termed diffraction. By the process of diffraction the
pressure around the cylinders will be change and therefore the forces on the cylinders
will be influenced. The problems could be dealt with the boundary value with the

velocity potential.

Linear diffracted wave theory which uses linear free surface conditions proposes
many different methods because the linear diffracted wave theory is easy and simple.
The diffracted wave problem of a vertical cylinder was initially developed by Havelock
(1940) for the special case of infinite water depth. MacCamy and Fuchs (1954)
proposed a linear theory for the problem of diffraction of plane waves from a vertical
circular cylinder in the case of finite water depth and the results are exact to the first

order.



After these researches, there have been many studies dealing with the interaction of
waves and multiple cylinders. Twersky (1952) constructed a solution using an iterative
procedure in which successive scattered waves by each of the cylinders were introduced
at each other. This method was extended to the water wave case by Ohkusu (1974). The
main drawback of the iterative procedure is that it rapidly becomes unmanageable as the
number of the cylinders increases. Another approach is the direct matrix method, Spring
and Monkmeyer(1974) proposed a solution for the interaction of water waves and the
cylinders using eigenfunction expansion approach. They formulated the problem in
terms of matrix equation and the solution is obtained by the inversion of the matrix.
Chakrabarti (1978) extended the work of Spring and Monkmeyer, and obtained the
solution for the diffracted wave of multiple cylinders by carrying out the analysis in a
complex domain. Subsequently, Linton and Evan (1990) made a major simplification to
the theory proposed by Spring and Monkmeyer.

1.2 Objectives

In recent years, the Boundary Element Method has emerged as a strong numerical
method for investigating dynamic problems especially for radiation and scattering
problems. The reasons are that the boundary integral equation satisfies radiation
condition automatically and correctly, and for linear problems only the surface of the

boundaries need to be discrestized.

The boundary element method is divided into direct boundary element method and
indirect boundary element method. The direct boundary element method derives from
the integral equation by Green’s or Cauchy’s theory. This deriving process is solved by
the special application of weighted residual method and it has general integral
formulation. Derived integral equation is divided into two parts: the unknown functions
and the derivatives of normal direction. One side of them generally has unknown values.
The indirect boundary element method is derived integral equation in boundary
conditions and is made operation function by singular value of governing equation. The
coefficient that is involved operation function is unknown value in direct boundary

element.



Basing on boundary element method, there are many studies to solve the diffraction
problems of water waves and structures. Notably, Kim and Park (2007) studied a
numerical analysis method to calculate the wave forces on isolated vertical circular
cylinder by boundary element method and their numerical results are strong agreement
with those of MacCamy and Fuchs (1954). Also, Kim and Cao (2008) studied wave

forces acting on two vertical cylinders and three vertical cylinders in water waves.

The main objectives of this study are to solve the diffraction problem of water waves
by multiple cylinders by using boundary element method. In this study, a numerical
analysis by boundary element method using velocity potential ¢ is developed. Once the
wave velocity potential is known, the wave pressure, wave forces acting on the
cylinders can be calculated by using it. Also, the wave run-up on the outer walls of the
cylinders and free-surface elevation around the cylinders are calculated in this study.

1.3 Study Contents

A numerical analysis by boundary element method for calculating wave forces
acting on multiple cylinders is described in this study. The numerical analysis method
by Green function in direct boundary element method using velocity potential ¢ is
developed. To verify this numerical analysis and to investigate the effect of the
neighboring cylinders on the wave forces on a cylinder in the group, two-cylinder
configuration and three-cylinder configuration are used in this study. The numerical

results are carried out as follows:

(1) The wave forces acting on two cylinders and three cylinders are computed.

(2) To verify this method, the numerical results obtained from this study are
compared with those of Ohkusu (1974) and those of Chakrabarti (1978).

(3) The effects of the cylinder spacing and wave angular frequency on the wave

forces acting on the cylinders are analyzed.



(4) Also, the effects of incident wave angle on wave forces are investigated in

this study.

(5) The run-up on outer walls of the cylinders and the free-surface elevation
around the cylinders are also calculated.



Chapter 2
FORMULATION OF BOUNDARY ELEMENT ANALYSIS

2.1 Diffraction Phenomenon

This section will describe the diffraction phenomenon of waves by multiple vertical
cylinders. Attention has been concentrated on the interaction of N vertical cylinders
with the incident waves where the cylinder diameter D is assumed to be much larger
than the wave length L. As the incident waves impinge on each cylinder, the reflected
waves move outward. On the sheltered side of the cylinders there will be a “shadow”
zone where the wave fronts are bent around the cylinders, the so-called diffracted wave.
The reflected waves and diffracted waves, combined, are usually called the scattered
waves. The scattered waves of each cylinder can affect the other cylinders in the group.
This process is generally termed diffraction. By the process of diffraction the pressure
around the cylinders will be changed and therefore the forces on the cylinders will be
influenced. It is generally accepted that the diffraction effect becomes important when
the ratio D/L becomes larger than 0.2 (Issacson, 1979).

Normally, in the diffraction flow regime, the flow around the circular cylindrical
bodies is unseparated. This can be shown by the following analysis:

The amplitude of the horizontal component of water-particle motion at the sea
surface is as follows:

H %

a=—x (1)

2 tanh(kh)
where H is the wave height, his the water depth andk is the wave number.

2r

k=— 2
3 (2)

The Keulegan-Carpenter number for a vertical circular cylinder will then be:
KC:Zﬂa— z(H/L) 3)

D (D/L)tanh(kh)



The largest KC number is obtained when the maximum wave steepness is reached,

namely whenH /L=(H/L) The latter may be given approximately as (Isaacson,

max *

1979):

(%) nax = 0.14tanh(kh) 4)

Therefore, the largest KC number that the body would experience may be written
as:

_0.44
D/L

If KC number is larger than this limiting value, the waves will break. Eg. (5) is

KC )

plotted as a dashed line in Fig. 1. The vertical line D/L=0.2in Fig. 1 represents the
boundary beyond which the diffraction effect becomes significant. Also, Fig. 1 indicates
that the KC numbers experienced in the diffraction flow regime are extremely small,
namely KC < 2. Fig. 2 shows that for KC < 2the flow will be unseparated in most of the
case.

The preceding analysis suggests that the problems regarding the flow around and
forces on a large body in the diffraction regime may be analyzed by potential theory in

most of the situations, since the flow is unseparated.

1--—-'2—-—
Iy
KC \ ,ﬁ l ==
] |
6 3 = —
%
L%
L]
. Waves
4L '% *. break
T e .
%G%v"‘ “~_H/L = {H*lenllax
2 R S
%% §-- =
e Diffraction
00 0.1 0.2 Q.3 0.4

D/L

Fig. 1 Different flow regimes in the (KC,D/L) plane. Adapted from
Isaacson (1979)
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2.2 Basic Equations and Boundary Conditions

Considering N vertical circular cylinders, having radiusa, are placed in the water

of uniform depthh. The global Cartesian coordinate system(x,y,z)is defined with the
origin located on the still-water level, the z axis directed vertically, xand y axis directed

horizontally. The geometry of this problem is shown in Fig. 4.
As usual, it is assumed that the fluid is inviscid, incompressible, its motion is
irritation. The cylinders subjected to a strain of regular wave of height H and angular

frequency o propagating at an angle £ to the positive x axis.
The velocity potential ®(x, y, z;t) can be defined by:
D(x,y,2;t) = R,[4(x, y, 2)e "] (6)
where R, [] denotes the real part of a complex expression.
From the linear feature of potential flow, the total potential ¢ can be written as the
sum of incident wave velocity potential and scattered wave velocity potential:
=6 +¢ (7)
where ¢, is the velocity potential of incident wave and ¢, is velocity potential of the

scattered wave.

The incident wave velocity potential ¢, is given as follows:

—i gﬂ COSh k(h ik Z) eik(xcosﬁ+ysinﬂ) (8)
o 2 coshkh

where H /2is wave amplitude, gis the acceleration due to gravity, iis the imaginary

¢ =

unit i =+/~1, Kk is the wave number (k=2x/L;L: wave length). The quantity o is the
angular frequency and related to wave number k by the dispersion relation:
o’ = gk tanh(kh) 9)
It is known that the incident wave potential function in Eq. (8) satisfies boundary
conditions.

Boundary problems by the formulation of scattered wave velocity potential ¢, are

given as follows:



e  Laplace equation:
Vg =0 (in Q) (10.a)

e  Free surface boundary condition:

% - %Zqﬁs =0 (on I':) (10.b)
e  Cylinder surface boundary condition:

%":}5 = —% (on I, ,m=1..,N) (10.c)
e  Sea bed boundary condition:

% =0 (on I7}) (10.d)
e  Radiation boundary condition:

lim \/E{% —ikg.}=0  (on Ty) (10.e)

where € is the fluid region, Iz is the free surface, I'; ,m=1...,N is the body surfaces

of N cylinders, I';is the sea bed, I'; is the virtual boundary at infinity, n is the

outward unit normal on the boundary, and R =/x* + y* .

The incident wave velocity potential can be defined as follows:

y __igﬂcoshk(hH)
' o 2  coshkh

The scattered velocity potential is defined as follows:

g H coshk(h+2z)
o 2  coshkh

If the definitions of equations (11), (12) are substituted into Eqs.(10.a)~(10.e), the

lPi! \Pi 5 eik(xcosﬂ+ysinﬂ) (11)

¢s =i \Ps (X’ y) (12)

boundary value problems with ¥ are obtained as follows:

VY, +k*WP, =0 (in Q) (13.a)
ov. v

S =——1 onS, ,m=1..,N 13.b
p P (on Sy ) (13.b)
lim \/E{‘?F;s _ikP}=0  (on'S,) (13.0)



In Egs. (13.a)~(13.c), boundary value problems are two-dimension problems of

X—Yy plane as shown in Fig. 5. Finally, because of analyzing boundary value problems
by ¥, , the scattered wave velocity potential is calculated. Then the total velocity

potential, wave pressure, and wave forces are calculated by using it.

4 | |

incident wawve
p
X

a) incident wave

: 4
i )

X

incident wave

b
L

I'r

7

Fig. 4 Definition of: a) Two vertical circular cylinders,

b) Three vertical circular cylinders
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Fig. 5 Numerical model configurations:

a) Two vertical circular cylinders, b) Three vertical circular cylinders
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2.3 Green Function

Green function plays an important role in the solution of partial differential
equations, and is the key component to the development of boundary element method.
Green function is a two-point function and it has peculiarity of 1/r, excludes special
point in case r =0. Green function satisfies the Laplace equation and other boundary

conditions except the boundary condition at the body surfaces.

VG ==5(x=&)5(y —1)5(2~¢) (inQ) (14)
ﬁ_a_zc;zo (onT;) (15)
oz g

ﬁzo (on I'y) (16)
0z

!Lrgﬁ{%—ikoG}:O nT,) (17

where G is Green function, 8 is Dirac Delta function and (&,7,<) is the coordinate of
the point in the fluid region.
According to John (1950), the Green function is derived as follows:

(k& —v?)coshk,(h+¢)

6(P.Q) =i 2An(kZ —v2) + v}

cosh hk, (h + Z)H® (k1)

= (k2 +v?)cosk, (h+¢)
+nZ:;‘ ok (K v3)—v} coshk_ (h+2)K,(k,r) (18)

r =y (=& +(y-n)’
where, H®: denotes the Hankel function of the first kind order m; K_: denotes the
modified Bessel function of the second kind order m; k, (n=0,1....) : are the roots of
the dispersion relation for free surface (k, tan(k,h)=-o*/g)and are increasing size

(k, <k, <..). Also, v=c?/g; P(&n,¢)andQ(x,y,z) are two points in the fluid

region.
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2.4 Derivation of Integral Equations

The basic step in boundary element method is transforming the governing
differential equation into an integral equation. The governing Laplace’s equation for

scattered wave potential ¢, (Eq. (10.a)) can be transformed into an integral equation by

using the method of weighted residual:
[]], viecia=0 (19)

where the test functionG is Green function.
The integral equation of scattered wave potential in the domain Q (Eg. 19) can be

transformed into boundary integral equation on the boundary S via Green’s second

identity and the result as follows:

% g

where Sis the boundary of the fluid domain ©,n is the outward unit normal on the

[T, wvie-evigya-] | @52 -6 s (20)

boundary. As shown in Fig. 4, the boundaries of the fluid domain are the cylinder

surface boundariesT';, .m=1,..., N, free-surface boundary T , sea bed boundary I' , and

the virtual boundary I, . Thus Eq. (20) can be written as follows:

2 2 L oG _ 99 oG . 04,
[ ove-cvianas| [ 165 et ], w5050

o[, 020w ], 6 S2-0%m e

Due to scattered wave potential ¢, and Green function G satisfy the boundary

conditions at I'- , I';and I';, the integral equations at the boundaries I'z , I';and I';on

the right hand side of Eq. (21) are vanish. Therefore, Eq. (21) can be rewritten as
follows:

2 : — [ [ G _;9.
[ 1], @vie-6vig)da=| jmszm (9. -G~ *)ds 22)

Now employing the sifting property of the Dirac distribution, this yields:
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[[], aviGda=-y4(P) (23)

Finally substituting Eq. (19) and Eq. (23) into Eq. (22), the integral equation is
obtained as follows:

oG %)ds

14, (P)=-] Jim (9.5 (24)

where, ¥ =1 as the point P places in the domain Q, and y =1/2 as the point P places

on the boundary of the domain.
In two-dimensional problems (Fig. 5), if the observation point iis presented over the

boundary S plane, the boundary value problems of Egs. (13.a)~(13.c) with using\¥;, ¥,

are defined by the integral equation as shown in Eq. (25):

1 oG oY

S\ 7S ¢ - i 25

2 " -[ZISHMS@O *on on (25)
and rearranging, the results is derived as follows:

1 ¥

ElPsi +J‘25Hm+s S_ds IZSH +S, on 3 (26)

If observation point i is nearS,, -, the Eq. (26) is the integral equation for S, .

When S_is near S,, with r>>1, kr=r, r=R, the Hankel function is given as

i(kR-Z)
Hé”(kr);,/%e{ el

@ i(kR-7)
HP Ly [2 ] (on'S.) 27)
R AR

follows:

The integral term for S_ of Eq. (26) is substituted as follows:

J. ‘P—d —jmaaiseds

12 &, (0¥
S jswﬁ(a Je
- j ei® R ( jds (28)

By substituting Eq. (28) into Eq. (13.c), the result is obtained as follows:
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oG o,
jsw\P ﬁd _Lw R

Therefore, the finally boundary integral equation on scattered wave potential is

Gds=0 (29)

given as follows:

_\P jzs st

Eqg. (30) is the integral equation for the near curve S,, .m=1,...,N of the cylinder

8‘1’5 ds (30)

surfaces and the scattered wave velocity potential on the boundary is derived by solving
this equation.

The scattered wave potential in the domain Q can be calculated after the scattered
wave potential on the boundary has been known. If the observation point iis placed in

the domain Q) the integral equation for scattered wave potential is given as follows:

¥, = [ 8;1’5 Gds — IZSH ‘Pe—ds (31)

e

where V¢, > are the scattered wave potential and normal derivative of the scattered

wave potential on the boundary.
Once the incident wave potential and scattered wave potential are known then the

pressure, the wave forces and run-up on the cylinders can be calculated.

2.5 Formulation of Wave Force

The wave pressure acting on the cylinder is defined as follows:

P(x,y,z;t) =R.[p(x y,2)e™"] (32)
The Bernoulli equation is used to get the wave pressure:
p(x,y,z) =iopd(x,y,2) (33)

where p is the water density.
The wave pressure is presented by using ¥;, ‘¥ as follows:

H coshk(z+h)(
2 coshkh

The wave force in j direction acting on the cylinder mth is defined as follows:

¥) (34)
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F' =R,[f J.me-“"] (35)

The wave force in j direction is presented by using ‘¥;, ‘¥ as follows:

o cosh k(z+h)
fl= dz Y. +W¥,)n.ds 36
! ngJ._h coshkh I ( I, (36)
Finally, by integrating the wave force in z direction, the total wave force on the

cylinder is defined as follows:

o H tanhkhJ-

; pg? " H(‘I’iJr‘I’S)njds (37)

Also the moment M {" in j direction on the cylinder mthis defined as follows:

]

Ho, {khsinh(kh)+1—cosh(kh)
2

(kh)? cosh(kh) }X'[SHm (¥ +¥)n;ds  (38)

where n; is the normal vector in the j direction element.

2.6 Formulation of Wave Run-up

The free-surface elevation is given by:
(% y;t) = R [n(x,y)e ] on z=0 (39)

where E(X, y) is presented by using ¥;, ‘¥, as follows:

7(x y)=%(‘l’i L) (40)
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Chapter 3

DISCRETIZATION OF INTEGRAL EQUATION

3.1 Discretization of the Boundary

To approximate the geometry, the surfaces of the cylinders are divided into N

boundary elements A, (i =1,2..N) . Inside each element A,, the potential ¢, and the

op,

normal derivative of velocity potential — 3 are interpolated using the shape function
n

and the node values. Therefore, the integral equation (24) leads to:

¢(P)+Z¢(P)H aG( Do - i%(np")fhj G(R.Q)ds  (41)

where P, P; are the coordinate of the points located in the middle of element ith and

jth respectively.
In two dimensional boundary value problems (Fig. 5), the surfaces of the cylinders

Sy, are divided into N boundary elements A, (i=1,2..N) . The integral equation Eq. (30)

leads to:

P,Q)ds (42)

N, O
—‘P(P)+Z‘P(P)I aG( Q)ds—z a:] )j

j=1

3.2 The Collocation Method

The collocation method allows calculate the unknown boundary data from Eq. (42).
The principle of collocation means to locate the load point sequentially at nodes of all
the elements of the boundary such that the variable at the observation point coincides
with the nodal value.

By collocating the observation point i with the nodes 1 to N of the elements of the

boundary, we can write Eq. (42) in matrix notation as follows:
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S, 6, Gy |(Ws(P)) (Gu Gu o Gy ) ¥ (P)
Gz]_ Gzz G2N \PS(PZ) — GZl GZZ GZN ng(PZ) (43)
Gy Gy, Gy \E.(P)) \Gu G — Guw ) E(R)
In Eq. (43) the matrix element éij and G;; is defined as follows:
A
=1 aeer 0
J’ Mds (i #j)
Aj on
and G, = jA G(P,Q)ds (45)
i

Also in Eqg. (43), on the left hand side ¥ (P) is the velocity potential value of

scattered wave at the node P, of element i, and on the right hand side ‘i’S(Pi) is normal

derivative value of velocity potential of scattered wave at the node P, of element i.
3.3 Calculation of Matrix Element

On the left-hand side of Eq. (43), éij is the derivative of Green function respect to

the normal drawn outwardly vector n on the boundary and is defined asoG/on . Also,

on the right-hand side, ‘i’s is the derivative of velocity potential of scattered wave

respect to the normal drawn outwardly vector n on the boundary and is defined as

o¥,/on . If the unit normal vector component n,n,n, is used, 6G/on and

D TRy 'z
0¥, / onare defined as follows:

ﬁznxﬁ—i_ny@—}_nz% (46)
on OX oy 0z

S=n >+n S+n, — (47)

In two dimensional x—y plane,dG/on and 0¥, / onare defined as follows:

oG oG oG
=n,—+n

E_ X ox ya (48)
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s=n —>+n,—° (49)

where 0G/ox,0G /0oy ,0G/0z are the derivative of Green function respectto x, yandz.
oY, /ox,0¥, /oy, 0¥, /ozare the derivative of scattered velocity potential respect to
X, yand z respectively.

To calculate coefficients G;; and G; in Eqg. (44) and Eq. (45), the integral equations

can be approximated as follows:

J-A'G(Pi,Q)ds;G(Pi,Pj)Aj (50)

| oG(R.Q) 4, L C(R.P)

51
i on on 1)

where A is the area of the element j .

3.4 Derivation of Green Function

Green function is the function which satisfies the boundary conditions Egs.(14)~(17).
The eigenfunction expansion satisfies the free surface boundary condition Eq. (15) and

sea bed boundary condition Eq. (16) is defined as follows:

2
\/ 2k coshk, (h +z) for n=0)

h(kZ-v*)+v) coshk,z
; (52)
: 2knz coshk, (h+2) (for n=12,.)
h(k, —v°)+v) coshk,z

¢.(2) =

The Delta function can be expanded as follows:
52-¢)=2.4:(2)4,($) (53)
n=0

where ¢3n is the conjugate function of ¢, .

The Green function G is supposed as follows:

G(P.Q)= X6, (%Y., (D6, (£) 54
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By substituting Eq. (54) into left hand side of basic equation (14) and substituting
Eqg. (53) into the right hand side, the result is obtained as follows:

> (V*G, +kIG, ) (2)4, (&) = =D 8 (x = )5 (y = n) (D)4, (&) (55)
n=0 n=0

where V? is the Laplace operator. In the parentheses, as n =0 the double sign is plus
sign (+) and as n=1,2... the double sign is minus sign (-).

Therefore, the Green function, G,(n=0,12...), need to satisfy condition as follows:
vzGn - knan 3 _5(X_§)§(y_77) (56)
Eq. (56) is the two dimensional Helmholtz equation as n=0, and is the modified
the two dimensional Helmholtz equation as n=12...

The fundamental solution for Helmholtz equation is obtained as follows:

THOWR)  (=0)

GOuyiem=1% &
= K, (k.R) (n=012..)
2r

R=v/(x=&)* +(y-n)*
where, H{" denote the Hankel function of the first kind and order zero, K, denote the
modified Bessel function of the second kind and order zero.
Substituting Eq. (57) into Eq. (54) and using the eigenfunction, ¢,(n=0,12...), the
three- dimensional Green function of wave motion can be derived as follows:

G(P.Q) =i k¢ Cosh(zko(h:r &) cosh(k, gh +12))
2{h(k, —v*) +v}cosh(h“k,h)

Hy (k,R)

| i k2 cos(k,(h+¢))cosk, (h+2)

= m{h(k?+v?)—v}cosh?(k,h) KolkiR) (58)
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In which, cosh?(k,h) ™ =1-tanh?(k,h) and (cosh®k,h)™ =1+tanh?(k,h) and the
dispersion relation k,tanhk,h=v and k,tanhk,h=-v . By substituting these

coefficients into Eq. (58), the result is derived as follows:

(kg —v*)coshky (h+ )
2An(k2 —v?) + v}

G(P,Q) = cosh hk, (h+ 2)H ® (k,R)

z (kZ +v?)cosk,(h+¢)
+nZ=1: k1)) coshk, (h+2)K,(k,R) (59)
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Chapter 4

NUMERICAL EXAMPLES

4.1 Wave Forces on Two Vertical Circular Cylinders

Fig. 6 demonstrates the geometries of two transverse cylinders and two tandem

cylinders used in this study. The figure shows two cylinders, having radius a, =a, =a,

subjected to incident wave comes from the left side. D is the distance between the

centers of the cylinders. The wave exciting force on the cylinders, run-up and free-

surface elevation around the cylinders 10a distance are calculated. In order to compare
with the results of Chakrabarti (1978) and Ohkusu (1974), in all figures the wave forces

are nondimensionalized by pg(H /2)a®and the magnitude of run-up and free-surface

elevation are nondimensionalized by wave height H .

| 10e

10a

PR

Lincident
wave

FEEL

O

e

=

[

a)

S

L incident
wave

P~

10

10z

@\r

L}(@ -

D

10
.

b)

Fig. 6 Geometries of: a) Two transverse cylinders; b) Two tandem cylinders
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Fig. 7 and Fig. 8 show the wave forces in x -direction and y -direction acting on

cylinder 1 in two transverse cylinders versus the wave number ka. Due to the symmetry
of the geometry, the wave forces acting on cylinder 2 are the same. The wave forces
acting on an isolate cylinder are also plotted for purpose of comparison. Fig. 7 shows
that the wave forces on each cylinder in two transverse cylinders are higher than that on
isolate cylinder because of the interaction of two cylinders. The numerical computation
results of this study are strong agreement with those of Chakrabarti (1978).

81 ——'Wave force on cylinder 1 (Mumerical calculation)
¢+ Chakrabarti (1978)
i - = Wave force acting on single cylinder

incident

wave

FORCE (F,/ pg(H/2)a’)

0.0 'S (il .5 2.0
ka

Fig. 7 Wave forces in x-direction acting on cylinder 1 in two transverse

cylinders versus wave number kafor D/a=5, h/a=10
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0.0 ' I 1 1 1

0.0 0.5
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Fig. 8 Wave forces in y -direction acting on cylinder 1 two transverse

cylinders versus wave number kafor D/a=5, h/a=10
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Fig. 9 shows the wave forces in x-direction acting on the cylinders in two tandem
cylinders versus the wave number ka. The wave forces in y -direction on the cylinders
in two tandem cylinders are zero. The results in Fig. 9 show that the wave forces on two
cylinders reach maximum values near ka =0.5and the variation of the wave force on
the front cylinder is more than that on the back cylinder. In two tandem cylinders, the
wave forces on the rear cylinder are reduced by the shielding effect. Also, Fig. 9 shows
that the numerical computation results of this study are strong agreement with those of
Ohkusu (1974).

—-— Wave force on the Cylinder 1 (Mumerical calculation)
-----Wave force on the Cylinder 2 (Mumerical calculation)
o Ohkusu (1974)
& Ohkusu (1974)
8 1 -+~ WWave force acting on isolate cylinder

incident

FORCE (F/ p gH/2)d")

00 05 1.0 15 20
ka

Fig. 9 Wave forces in x-direction acting on two tandem cylinders versus

wave number kafor D/a=5, h/a=10
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4.1.1 The Effects of Cylinder Spacing on Wave Forces on Two Vertical

Circular Cylinders

The effects of the separation distance among two cylinders on the wave forces on
two cylinders are also investigated in this study. Fig. 10 and Fig. 11 show the wave
forces in x - direction and y - direction acting on each cylinder in two transverse
cylinders versus the ratio y=2a/D for three special wave numbers
ka=0.1,0.5,and 1.0. In which, ais the radius of the cylinders, and D is the distance
between the centers of the cylinders. In this geometry, y =1 represents that the
cylinders are touching each other, whereas y =0 represents that the distance between
two cylinder centers D — co. Due to the symmetry of the geometry, the wave forces in
X - direction and Y - direction acting on each cylinder 1 and cylinder 2 are the same.

Fig. 12 shows the wave forces in x - direction acting on the cylinders in two tandem
cylinders  versus the ratio y=2a/D for three special wave numbers
ka=0.1,0.5and 1.0. The wave force in y - direction is zero due to the symmetry of the
geometry. In all figures, the corresponding wave forces acting on isolated cylinder are
also plotted for the purpose of comparison.

From the results shown in Fig. 10 to Fig. 12, as the cylinder spacing increases, the
wave forces on the cylinders do not decrease linear to the wave forces on an isolated
cylinder, however it oscillates around the wave forces on an isolated cylinder. The
amplitude of oscillation is extremely large as the ratio ¥ >0.2. As the cylinder spacing
approaches infinity, the wave forces on the cylinders reach the wave force amplitude on
an isolated cylinder.

Fig. 12 shows that the wave forces on the rear cylinder are extremely less than the

wave forces on the front cylinder because of the shielding effect.
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Fig. 10 Wave forces in x -direction acting on two transverse cylinders

versus ratio y =2a/D for h/a=10: a) wave number ka=0.1;

b) wave number ka=0.5; c) wave number ka=1.0
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Fig. 11 Wave forces iny -direction acting on two transverse cylinders
versus ratioy =2a/D for h/a=10: a) wave number ka=0.1;

b) wave number ka=0.5; c¢) wave number ka=1.0
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Fig. 12 Wave forces in x -direction acting on

two tandem cylinders versus

ratioy =2a/D for h/a=10: a) wave number ka=0.1; b) wave

number ka=0.5; c) wave number ka=1.0
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4.1.2 The Effects of Position of the Cylinders on Wave Forces on Two

Vertical Circular Cylinders

The effects of the position of the cylinders on the wave forces are also investigated
in this study. Fig.13 shows the wave forces on the cylinders versus the variation of
angle ¢ for special wave numberk=0.5, D/a=5, h/a=10. In which, ¢ is the
counter-clockwise angle among the line joining the two cylinder centers and the x -axis.
It can be seen from Fig. 13 that the maximum wave forces on the front cylinder as the

angle ¢ is zero (two tandem cylinders) and it tend to decrease as the angle ¢ increases

from 0< ¢ <90°.

10 - _ -
Wiave force on cylinder 1 4 5
_ v )
1| YWave force on cylinder 2 incident [
wave X
Q

4 — 77— T T
0 20 40 50 80 100 120 140 160 180

Angle ()

Fig. 13 Wave forces in x -direction acting on two cylinders versus ratio ¢

for ka=05, h/a=10,D/a=5
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4.1.3 The Effects of Incident Wave Angle on Wave Forces on Two

Vertical Circular Cylinders

When incident wave is propagating at various angles 5 =0°,30°, 45°,60°, the wave

forces acting on the cylinders in two transverse cylinders and two tandem cylinders are
computed as shown in Fig. 14 to Fig. 17. From the numerical computation results, the
wave forces on the cylinders tend to decrease gradually as the incident wave angle
increases in both two geometries. The variation of the wave forces on the cylinders in

two tandem cylinders is larger than that on the cylinders in two transverse cylinders.

Incident wave angle p=0"

------- Incident wave angle p=30°
7 4 p=0 ---=-- Incident wave angle p=45"
- -= - |Incident wave angle p=60°

(Nihcident 7297

n
|

FORCE (F, / pg(H2)2")
I
1

I T : T L T ' 1
0.0 0.5 1.0 1.5 20

ka

Fig. 14 Wave forces in x -direction acting on cylinder 1 in two transverse

cylinders with four different incident wave angles g =0°,30°,

45° 60°forh/a=10,D/a=5
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Fig. 15 Wave forces in x -direction acting on cylinder 2 in two transverse

cylinders with four different incident wave angles g =0°,30°,

45° 60°forh/a=10,D/a=5
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Fig. 17 Wave forces in x -direction acting on cylinder 2 in two tandem

cylinders with four different incident wave angles 8 =0°,30°,

45° 60°forh/a=10,D/a=5
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4.1.4 Run-up on the Outer Walls of Two Vertical Circular Cylinders

The numerical computation results of run-up on the outer walls of the cylinders in
two transverse and two tandem cylinders are shown in Fig. 18 and Fig. 19. The
computation results show that due to the interaction of the cylinders, the run-up profiles
of the cylinders are quite different from that of an isolated cylinder. In two tandem
cylinders, the run-up on the front cylinder is higher than that on the back cylinder
because the shielding effect. Also, the numerical computation results have strong
agreement with those of Chakrabarti (1978).

Fig. 20 to Fig. 23 present the run-up on the outer walls of the cylinders in two

transverse cylinders and two tandem cylinders for D/a=5, h/a=10, ka=1.0at four

different incident wave angles  =0°,30°,45°, and 60°.

Run-up on cylinder 1 ( Nurerical Calculation) n
------- Run-up on cylinder 2 { Murmerical Calculation) incident k Y
¥* Run-up an cylinder 1 (Chakrabarti (1978)) e D

*  Run-up on cylinder 2 (Chakrabarti (1978))

1049 ... Run-up on isolated cylinder 2“‘{ e
\

isolated cylinder N L 2q4

o2 +——-v—s—r—rr—r—-r——v1——1—
0 40 80 120 160 200 240 280 320 360

ANGLE («)

Fig. 18 Run-up on the outer walls of the cylinders in two transverse
cylinders for h/a=10,D/a=5,ka=1.0
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Fig. 19 Run-up on the outer walls of the cylinders in two tandem
cylinders for h/a=10,D/a=5,ka=1.0
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Fig. 20 Run-up on the outer walls of cylinder 1 in two transverse cylinders

versus incident wave angle gfor h/a=10,D/a=5,ka=1.0
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Fig. 21 Run-up on the outer walls of cylinder 2 in two transverse cylinders

versus incident wave angle gfor h/a=10,D/a=5,ka=1.0
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Fig. 22 Run-up on the outer walls of cylinder 1 in two tandem cylinders

versus incident wave angle gfor h/a=10,D/a=5,ka=1.0
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4.1.5 Free-Surface Elevation around Two Vertical Circular Cylinders

The free-surface elevation contour around two transverse cylinders and two tandem
cylinders for special wave number ka =1.0 and incident wave angle # =0°is computed

as shown in Fig. 24 and Fig. 26. The run-up on the cylinders in Fig. 18 and Fig. 19 is
presented by the same value as in Fig. 24 and Fig. 26.
Fig. 25 and Fig. 27 show the wave height distribution around two transverse and two

tandem cylinders using three-dimensional graphic technique.
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Fig. 24 Free-surface elevation contour around two transverse cylinders for
h/a=10,D/a=5,ka=1.0
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three-dimensional graphic technique for h/a=10,D/a=5,ka=1.0
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4.2 Wave Forces on Three Vertical Circular Cylinders

Fig. 28 demonstrates the geometries of three vertical circular cylinders used in this

study. The figure shows three cylinders, having radiusa, =a, =a, =a, subjected to the

incident waves come from the left side. Three different geometries of three cylinders are

used in this study: triangular array, row array and column array. The wave forces, run-

up and free-surface elevation around three cylinders 10a distance are calculated.

incident
WAVE

incident
Wave

|'— 10a

|'-— 10a —T— 104 —"|

@ ¥

® 7

—

)
&
.

[ R

b)

incident
Wave

B T N

(@B &

Lo o o

c)

Fig. 28 Geometries for: (a) Three cylinders in triangular array, (b) Three cylinders

in row array, (c) Three cylinders in column array
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Fig. 29 and Fig. 30 show the wave forces in x -direction and Yy -direction acting on
cylinder 1 and cylinder 2 in triangular array versus wave number ka. Due to the
symmetry of the geometry, the wave forces in x -direction and y -direction on the
cylinder 1 and cylinder 3 are the same and the wave forces in y -direction on cylinder 2
IS zero.

Fig. 31 and Fig. 32 show the wave forces in x -direction and Yy -direction acting on
cylinder 1 and cylinder 2 in row array versus wave number ka. In this geometry, the
wave forces in x -direction and y -direction on the cylinder 1 and cylinder 3 are the
same and the wave forces in y -direction on cylinder 2 is zero.

Fig. 33 shows the wave forces in x -direction acting on the cylinders in column array
versus wave number ka. The wave forces in y -direction are zero.

The computed results show that due to the interaction of the cylinders, the graphs of
wave forces acting on the cylinders in three different geometries are quite different with
the wave forces acting on isolated cylinder. In triangular array and column array, the
wave forces reach the maximum value near ka=0.5. However in row array, the wave
forces reach the maximum value near ka = 0.3. Also, the computed results are strong
agreement with those of Ohkusu (1974).

—— Wave forces on cylinder 1 and cylinder 3 A Ohkusu (1974)
12 s Wave torces on cylinder 2 - Ohkusu (1974

o Wave forces onisolated cylinder

10 o
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3 ¥ — cylinder 2 % JD
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LY (1

FORCE (F, / pg(H

0.0 0.z o4 0.6 0.8 1.0 1.2 1.4
fra

Fig. 29 Wave forces in x -direction acting on cylinder 1 and cylinder 2 in

triangle array versus wave number kafor h/a=10, D/a=5
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Fig. 30 Wave forces in y -direction acting on cylinder 1 and cylinder 3 in

triangle array versus wave number kafor h/a=10, D/a=5
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Fig. 31 Wave forces in x -direction acting on cylinder 1 and cylinder 2 in

row array versus wave number kafor h/a=10, D/a=5
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Fig. 33 Wave forces in x -direction acting on the cylinders in column

array versus wave number kafor h/a=10, D/a=5
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4.2.1 The Effects of Cylinder Spacing on Wave Forces on Three

Vertical Circular Cylinders

The effects of the cylinder spacing on the wave forces acting on three cylinders
are also investigated in this study. Fig. 34 to Fig. 36 show the wave forces in x -
direction and y -direction acting on the cylinders in triangular array versus the ratio
y =2alD for three special wave numbers ka=0.1,0.5,1.0. In this geometry, the wave
forces in x -direction and Y -direction acting on cylinder 1 and cylinder 3 are the same,
the wave forces iny -direction acting on cylinder 2 is zero.

The computed results show that the wave forces acting on three cylinders oscillate
extremely large around the wave forces acting on an isolated cylinder as the
ratioy >0.2.

Also, the computed results are strong agreement with those of Chakrabarti (1978).

—— k=07 ( Numerical calculation) ¥ odr=0F (Chakrabarti (1978])
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12 4
7 oo 2a
o ol
10 T D ;,_fo
incident @d B
o wave a >
oy ;
I .
=2 9 /
&) k=05 s
et /
o 5 ““NA’*\A k‘_,-"’ "
& XVAM
=) )
5 i
el N s
S 44 Yae em AT o
a mg ¥ S L
. k=10 -
e g -
2 T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
v=2a/D

Fig. 34 Wave forces in x -direction acting on cylinder 1 in triangular

array versus the ratio y =2a/D for h/a=10
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Fig. 35 Wave forces in x -direction acting on cylinder 2 in triangular

array versus the ratio y =2a/D for h/a=10
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Fig. 36 Wave forces in y -direction acting on cylinder 1 in triangular

array versus the ratio y =2a/D for h/a=10
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Fig. 37 to Fig. 39 show the wave forces in x -direction and y -direction acting on
three cylinders in row array versus the ratio y =2a/D for three special wave numbers
ka=0.1,0.5,and1.0 . The wave forces in x -direction and y -direction acting on

cylinder 1 and cylinder 3 are the same, the wave forces in y -direction acting on cylinder

2 is zero.
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Fig. 37 Wave forces in x-direction acting on cylinder 1 in row array

versus the ratio y =2a/D for h/a=10
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Fig. 38 Wave forces in x-direction acting on cylinder 2 in row array versus
the ratio y =2a/ D for h/a=10
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Fig. 39 Wave forces in y -direction acting on cylinder 1 in row array

versus the ratio y =2a/D for h/a=10
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Fig. 40 to Fig. 42 show the wave forces in x -direction acting on three cylinders in

column array versus the ratio y=2a/D for three special wave numbers
ka=0.1,0.5and1.0. Due to the symmetry of this geometry, the wave forces iny -

direction are zero.
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Fig. 40 Wave forces in x-direction acting on cylinder 1 in column array

versus the ratio y =2a/D for h/a=10
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Fig. 42 Wave forces in x-direction acting on cylinder 3 in column array

versus the ratio y =2a/D for h/a=10
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4.2.2 The Effects of Incident Wave Angle on Wave Forces on Three

Vertical Circular Cylinders

The effects of incident wave angle on the wave forces acting on three cylinders
are studied in this paper. Fig. 43 to Fig. 51 show the wave forces acting on three
cylinders in three different geometries as the incident waves are propagating at various
angles 8 =0°,30°, 45°,60°. The numerical results show that the wave forces acting on
the cylinders in x -direction tend to decrease gradually as the incident wave angle

increases.
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Fig. 43 Wave forces in x -direction acting on cylinder 1 in triangular

array with four different incident wave angles £ =0° 30°,

45° 60° for h/a=10,D/a=6
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Fig. 44 Wave forces in x -direction acting on cylinder 2 in triangular
array with four different incident wave angles £ =0°,30°,
45°,60° for h/a=10,D/a=6
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Fig. 45 Wave forces in x -direction acting on cylinder 3 in triangular

array with four different incident wave angles g =0° 30°,

45°,60° for h/a=10,D/a=6
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Fig. 46 Wave forces in x -direction acting on cylinder 1 in row array with

four different incident wave angles g=0° 30° 45° 60° for

h/a=10,D/a=6
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Fig. 47 Wave forces in x -direction acting on cylinder 2 in row array with
four different incident wave angles £=0°30° 45° 60° for

h/a=10,D/a=6
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Fig. 48 Wave forces in x -direction acting on cylinder 3 in row array with

four different incident wave angles g=0° 30° 45° 60° for

h/a=10,D/a=6
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Fig. 49 Wave forces in x-direction acting on cylinder 1 in column array

with four different incident wave angles 3 =0°,30°,45°, 60° for

h/a=10,D/a=6
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Fig. 50 Wave forces in x -direction acting on cylinder 2 in column array

with four different incident wave angles #=0°,30°,45°,60° for

h/a=10,D/a=6
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Fig. 51 Wave forces in x-direction acting on cylinder 3 in column array
with four different incident wave angles 3 =0°,30°,45°, 60° for

h/a=10,D/a=6
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4.2.3 Run-up on the Outer Walls of Three Vertical Circular Cylinders

Fig. 52 to Fig. 54 shows the computed results of run-up on the outer walls of three
cylinders in triangular array, row array and column array for special wave number
ka =1.0. The magnitude of run-up is nondimensionalized by wave height H. The results
show that the run-up profiles of the cylinders are quite different from that of an isolated
cylinder due to the interaction of the cylinders. In addition to, the run-up profiles are
quite different with different geometries.
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Fig. 52 Run-up on the outer walls of three cylinders in triangular array
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Fig. 54 Run-up on the outer walls of three cylinders in column array for
h/a=10,D/a=6,ka=1.0
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4.2.4 Free-Surface Elevation around Three Vertical Circular Cylinders

Fig. 55 to Fig. 60 show the computed results of free-surface elevation contour and
wave height distribution around three cylinders in three different geometries for special
wave number ka=1.0. The computed results present the same value as the run-up in
Fig. 52 to Fig. 54.

-60 -



-
=3

®

incident wave
T ——p i g

&
&
o
&
N
IS
®
@
=

Fig. 55 Free-surface elevation contour around three cylinders in triangular
array for h/a=10,D/a=6,ka=1.0

y A
y n
7 i 4, ==
W i W =N
Yy < ’/,/,/,/,////////,/,7/;;,; ”/////////%"" ,':,‘%,::;,-;;; SR
Y N LTS
e =N
~ Nl e =N
I, S S
7 0

7
=
253 T
I N
ZZ o e\ MW

7 SSE
TS
s LSR5
5

it il S 4 s
% % TN
I,'i":‘ :.I,I,N%y

> %

Y LK
9% %w

Nl

LY

Fig. 56 Wave height distribution around three cylinders in triangular array

using three-dimensional graphic technique for h/a=10,D/a=6,
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Fig. 58 Wave height distribution around three cylinders in row array using

three-dimensional graphic technique for h/a=10,D/a=6, ka=1.0

-62 -



incident wave
———p

Fig. 59 Free-surface elevation contour around three cylinders in column
array for h/a=10,D/a=6,ka=1.0
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Chapter 5
CONCLUSIONS AND REMARKS

A numerical analysis for the wave forces acting on multiple vertical circular
cylinders has been derived. The wave forces acting on the cylinders are calculated by

boundary element method using velocity potential ¢. To verify this numerical method

and to investigate the effects of the neighboring cylinders on the wave forces on a
vertical cylinder, two-cylinder configuration and three-cylinder configuration are used
in this study. The results obtained from this study are compared with those of
Chakrabarti (1978) and Ohkusu (1974). The comparisons show the excellent agreement
between the results of this study and their results. Thus, this numerical analysis by using
boundary element method is verified.

Also in this study, several numerical examples are given in order to illustrate the
effects of various parameters on the wave forces on the cylinders such as the cylinder
spacing, the wave number and the incident wave angle. The run-up on the outer walls of
the cylinders and wave height distribution around the cylinders are also calculated. The

major results gained from this study are as follows:

(1) The maximum wave forces on the cylinders in two-cylinder configuration
and three-cylinder configuration are higher than that on isolate cylinder due

to the interaction of the cylinders.

(2) As the wave number increases, the wave forces acting on the cylinders
oscillated around the wave forces acting on an isolated cylinder and the
amplitude of oscillation of the wave forces on the front cylinder is larger than
that on the back cylinder. The wave forces on the rear cylinder are reduced

by the shielding effect.

(3) In two tandem cylinders, the wave forces on the cylinders reach maximum

values near ka=0.5.
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(4) In three-cylinder configuration, the wave forces acting on three cylinders in
triangular array and column array reach the maximum value near ka=0.5.
However in row array, the wave forces reach the maximum value near
ka=0.3.

(5) As the cylinder spacing increases, the wave forces acting on the cylinders in
two-cylinder configuration and three-cylinder configuration do not decrease
linear to the wave forces acting on an isolated cylinder, however it oscillates
around the wave force amplitude on an isolated cylinder. The amplitude of

oscillation is extremely large as the ratioy >0.2. As the cylinder spacing

approaches infinity, the wave forces acting on the cylinders reach the wave
force amplitude acting on an isolated cylinder.

(6) When incident wave is propagating at various angles 8 =0°,30°,45°% 60°,
the wave forces on the cylinders tend to decrease gradually as the incident

wave angle increases.

(7) Due to the interaction among the cylinders, the run-up profiles of the
cylinders in two-cylinder configuration and three-cylinder configuration are
quite different from that of an isolated cylinder. The run-up on the front
cylinder is higher than that on the back cylinder because the shielding effect.

This numerical analysis will be used broadly in the design of vertical cylinders to be

constructed in the coastal zones in the future.
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