A Note on the Condition of the Parallelism of the Nonholonomic Frame in Vn

玄桂龍의 碩士學位 論文을 認准함

濟州大學校教育大學院

副審	(P)

1986年6月日

.

감사의 글

이 논문이 완성되기까지 바쁘신 가운데도 자상한 마 음으로 친절하게 지도하여 주신 현진오 교수님과 제주 대학교 수학과 여러교수님께 심심한 사의를 표합니다.

그리고 그동안 어려운 환경속에서도 저에게 사랑과 격려를 아끼지 않았던 아내와 부모님, 주위의 많은 분 들께 또한 감사를 드립니다.

현 계 룡

•

CONETNTS

Ι.	INTRODUCTION 1
Ũ.	PARALLEL DISPLACEMENT OF A NONHOLONOMIC CONTRAVA-
	RIANT VECTORS OF CONSTANT MAGNITUDE 2
Ⅱ.	PARALLEL DISPLACEMENT OF A NONHOLONOMIC COVARI-
	ANT VECTORS OF CONSTANT MAGNITUDE 5
	LITERATURE CITED

I. INTRODUCTION

Let e_i^* (i=1,2, ...,n)be a set of n lineary independent vectors in n-dimensional Riemannian space V_n referred to a real coordinate system X^v .

There is a unique reciprocal set of n lineary independent covariant vectors $e_{i}^{i}(i=1,2, \dots, n)$ satisfying

(1,1) $e_{1}^{v} e_{2}^{i} = \delta_{2}^{v}, e_{1}^{i} e_{2}^{i} = \delta_{1}^{i} (**)$

Within the vectors e_i^v and e_{λ}^v , a nonholonomic frame of v_n defined in the following way.

Definition 1.1. If $T_{v,\ldots}^{\lambda,\ldots}$ are holonomic components of a tensor, then its nonholonomic components are defined by

(1.2) $T_j^* \cdots \stackrel{\text{def}}{=} T_{\lambda}^* \cdots e_{\nu}^i e_{j}^i$

In this paper, for our further discussion, results obtained in our previous paper will be introduced without proof.

Theorem 1.2. We have

(1.3) a $T^{v} = e_{i}^{v} {}^{*}T^{i}$ (1.3) b $T^{v\lambda} = e_{i}^{v} {}^{*}T^{ij} e_{j}^{\lambda}$

-1-

^(**)

Throughout the present paper, indices take values $1, 2, \dots, n$ unless explicitly stated otherwise and follow the summation convention, while Roman indices with symbol * are used for the nonholonomic components of a vector or tensor and also follow the summation convension

Theorem 1.3. We have the covariant derivative of the nonholonomic contravariant vector *aⁱ, as follows

1.4)
$$\bigtriangledown_{\mathbf{k}}(\mathbf{a}^{i}) = \bigtriangledown_{\mathbf{\mu}}(\mathbf{a}^{v}) \mathbf{e}^{i}_{\mathbf{v}} \mathbf{e}^{u}_{\mathbf{k}}$$
$$= \frac{\mathbf{d}^{*}\mathbf{a}^{i}}{\mathbf{d}^{*}\mathbf{v}^{k}} + \mathbf{a}^{j} \mathbf{e}^{i}_{\mathbf{j}^{k}}$$

(

, where $*\left\{ {{_{jk}^i}} \right\}$ is the second kind Christoffel symbol in the nonholonomic frame.

Theorem 1.4. The covariant derivative of the nonholonomic covariant vector $*a_j$ is equivalent to

$$(1.5) \quad \bigtriangledown_{\mathbf{k}}(*\mathbf{a}_{j}) = \bigtriangledown_{\boldsymbol{\mu}}(\mathbf{a}_{\lambda}) \ \mathbf{e}_{j}^{\lambda} \ \mathbf{e}_{k}^{\mu}$$

$$= \left[\frac{\mathrm{d}\,a_{\lambda}}{\mathrm{d}x^{\mu}} - a_{v}\left\{\begin{smallmatrix}x\\ \lambda\\\mu\end{smallmatrix}\right\}\right] e_{k}^{\mu} e_{j}^{i}$$
$$= \frac{\mathrm{d}\,^{*}a_{j}}{\mathrm{d}y^{k}} - *a_{i}\,^{*}\left\{\begin{smallmatrix}x\\ j\\k\end{smallmatrix}\right\}$$

지주대학교 중앙도서관 []. PARALLEL DISPLACEMENT OF A NONHOLONOMIC CONTRAVARIANT VECTORS OF CONSTANT MAGNITUDE

In this section, we will study some of the properties that a nonholonomic vector *a of constant magnitude is parallel with respect to v_n along the curve C.

Since the coordinates of points on the curve may be expressed in terms of the arc-length S, the condition for parallelism of a along C in the holonomic frame is

- 2 -

$$(2.1) \quad \frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} \bigtriangledown_{\mu}(\mathbf{a}^{\nu}) = 0$$

Definition 2.1. The vectors a satisfying the condition(2.1) is said to undergo a parallel displacement along the curve.

Theorem 2.2. The condition for parallelism of nonholonomic voctor *a along C is

$$(2,2) \quad \frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} \, \bigtriangledown_{\mathbf{k}}(\mathbf{*}\mathbf{a}^{\mathrm{i}}) = 0$$

proof. Using the first class of the right hand (1,4) and (2,1)

(2.3)
$$\frac{d\mathbf{x}^{\mu}}{ds} \left(\nabla_{\mu} (\mathbf{a}^{\nu}) \mathbf{e}^{j}_{\mathbf{v}} \mathbf{e}^{\mu}_{\mathbf{v}} \right) = \left[\frac{d\mathbf{x}^{\mu}}{ds} \nabla_{\mu} (\mathbf{a}^{\nu}) \right] \mathbf{e}^{j}_{\mathbf{v}} \mathbf{e}^{\mu}_{\mathbf{v}}$$
$$= 0$$

These equations are equivalent to (2.2)

Theorem 2.3. We have

(2.4)
$$\frac{d^{*}a^{i}}{ds} + {}^{*}a^{i} + {}^{*}\{{}^{i}_{jk}\} \frac{dy^{k}}{ds} = 0$$

proof. The condition of parallelism in the holonomic frames is

(2.5)
$$\frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} (\nabla_{\mu} \mathbf{a}^{\nu}) = \frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} \left(\frac{\mathrm{d}\mathbf{a}^{\nu}}{\mathrm{d}\mathbf{x}^{\mu}} + \mathbf{a}^{\lambda} \left\{ \mathbf{x}^{\nu}_{\mu} \right\} \right) = 0$$

That is,

$$(2.6) \quad \frac{\mathrm{da}^{\mathbf{v}}}{\mathrm{dx}^{\mu}} + \mathrm{a}^{\lambda} \{ \mathbf{x}^{\mathbf{v}}_{\mu} \} = 0$$

By means of the second class of the right hand of (1.4) and (2.5)

(2.7)
$$\frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} \nabla_{\mathbf{k}}(\mathbf{*}\mathbf{a}^{i}) = \frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} \left[\frac{\mathrm{d}^{*}\mathbf{a}^{i}}{\mathrm{d}\mathbf{y}^{\mathbf{k}}} + \mathbf{*}\mathbf{a}^{j} \mathbf{*} \left\{ \frac{\mathrm{i}}{j\mathbf{k}} \right\} \right]$$

- 3 -

$$= \frac{d^*a^i}{ds} \mathbf{e}_k^{\mathbf{k}} + \mathbf{e}_a^{\mathbf{j}} \mathbf{e}_{\mathbf{j}\mathbf{k}}^{\mathbf{k}} \frac{d\mathbf{y}^{\mathbf{k}}}{ds} \mathbf{e}_{\mathbf{k}}^{\mathbf{k}}$$

Since $e_k^{\#} \neq 0$, We have the result.

We know this concept of parallelism in the holonomic frame is due to Levi -Civita.

Corollary 2.3. The arc-rate of change of the holonomic and nonholonomic contravariant components a^{v} and $*a^{i}$ is given by

(2.8) a $da^{v} = -a^{\lambda} \{ j_{\mu}^{v} \} dx^{\mu}$ (2.8) b $d^{*}a^{i} = -^{*}a^{j} * \{ j_{\mu}^{i} \} dy^{k}$

proof. From (2.4) and (2.6), we obtain direct the result.

Let **a**, **b** be two unit vectors.

Then the cosine of their mutual inclination has the value $g_{\nu\lambda} a^{\nu} b^{\lambda}$, the derivative of this along the carve is egual to

$$(2.9) \quad \frac{\mathrm{d}\mathbf{x}^{\mu}}{\mathrm{d}\mathbf{s}} \bigtriangledown_{\mu} (\mathbf{g}_{\mathbf{v}, \lambda} \mathbf{a}^{\mathbf{v}} \mathbf{b}^{\lambda}) = \mathbf{g}_{\mathbf{v}, \lambda} \mathbf{g}_{\mathbf{v}, \lambda}$$

by virtue of (2,1),

$$\frac{\mathrm{d}x}{\mathrm{d}s}^{\mu} \nabla_{\mu}(a^{\nu}) = 0 = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}s} \nabla_{\mu}(b^{\lambda})$$

Hence the eguation (2.9) are vanish.

Theorem 2.4. If any two nonholonomic contravariant vectors of constant magnitudes, undergo parallel displacements along a given curve, they are inclined at a constant angle in nonholonomic frame.

-4-

proof Making use of (1.2), (1.3)a and (1.3)b, the cosine of two vectors a,*b mutual inclination has the value $*g_{ij} *a^i *b^j$

Hence
$$\frac{dx^{\mu}}{ds} \bigtriangledown_{k} (*g_{ij} *a^{i} *b^{j})$$

= $\frac{dx^{\mu}}{ds} [\bigtriangledown_{k} (*g_{ij}) *a^{i} *b^{j} + *g_{ij} (\bigtriangledown_{k} *a^{i}) *b^{j} + *g_{ij} *a^{i} \bigtriangledown_{k} (*b^{i})]$

by means of (2.2)

 $\frac{dx^{\mu}}{ds}\bigtriangledown_{k}(\ ^{*}g_{i\,j}\ ^{*}a^{i}\ ^{*}b^{j}\)=0$

■. PARALLEL DISPLACEMENT OF A NONHOLONOMIC COVARIANT VECTORS OF CONSTANT MAGNITUDE

The condition of parallel displacement alog a curve may be equally well expressed in terms of the covariant components of *a along the curve C.

Theorem 3.1. We have

(3.1) $\frac{dx^{\mu}}{ds} \nabla_{k} (a_{\lambda}) = 0$ $\frac{dx}{ds} \frac{\partial \nabla_{k}}{\partial t} (a_{\lambda}) = 0$

proof. In order to prove (3.1), multiplying both side of (2.1) by $g_{\nu\lambda}$ and summing for λ ,

$$\frac{\mathrm{d}x^{\mu}}{\mathrm{d}s} g_{\nu\lambda} \bigtriangledown_{\mu} (a^{\nu}) = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}s} \bigtriangledown_{\mu} (g_{\nu\lambda} a^{\nu})$$

We have (3.1)

Theorem 3.2. Any two nonholonomic covariant vectors, of constant magnitudes, undergo parallel displacements along a given curve, they are inclined at a constant angle in nonholonomic frame.

- 5 -

proof. By means of (1,5) and (3,1),

$$(3.2) \quad \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} \bigtriangledown_{k} (*a_{i}) = \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} (\bigtriangledown_{\mu} (a_{\lambda}) e_{k}^{\mu} e_{i}^{\lambda})$$
$$= \frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} (\bigtriangledown_{\mu} (a_{\lambda}) e_{k}^{\mu} e_{i}^{\lambda})$$
$$= 0$$

Theorem 3.3. Any nonholonomic vectors which undergoes a parallel dispacement along a geodesic is inclined at a constant angle to the curve.

proof. The condition of parallelism in holonomic frame is

$$\frac{\mathrm{d}x^{\mu}}{\mathrm{d}s} \nabla_{\mu}(\mathbf{a}_{\mathbf{v}}) = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}s} \left[\frac{\mathrm{d}\mathbf{a}_{\mathbf{v}}}{\mathrm{d}x^{\mu}} - \mathbf{a}_{\lambda} \left\{ \begin{smallmatrix} \lambda \\ \mathbf{v}_{\mu} \end{smallmatrix} \right\} \right]$$
$$= 0$$

That is, $\frac{da_v}{dx^{\mu}} - a_{\lambda} \{ \begin{smallmatrix} \lambda \\ v \\ \mu \end{smallmatrix} \} = 0$

By virtue of (1.5),

$$\frac{dx^{\mu}}{ds} \bigtriangledown_{k} (*a_{i}) = \frac{dx^{\mu}}{ds} \left(\frac{d^{*}a_{i}}{dy^{k}} - *a_{j} *\{_{i}^{j}_{k}\} \right)$$

$$= \frac{d^{*}a_{i}}{ds} e_{k}^{\mu} - *a_{j} *\{_{i}^{j}_{k}\} \frac{dy^{k}}{ds} e_{k}^{\mu}$$

$$= \left(\frac{d^{*}a_{i}}{ds} - *a_{j} *\{_{i}^{j}_{k}\} \frac{dy^{k}}{ds} \right) e_{k}^{\mu}$$

$$= 0$$

Thus

(3.3)
$$\frac{d^{*}a_{i}}{ds} = *a_{i} * \{ {}_{i}{}^{j}_{k} \} \frac{dy^{k}}{ds}$$

Corollary 3.4. Eguation (3.3) is equivalent to

 $(3, 4) \quad d^*a_i = {}^*a_j \; {}^*\{ {}^j_i \} \; dy^k$

proof. We obtain the result from (3,3)

- 6 -

Theorem 3.5. Any nonholonomic vector *a, which satisfies the conditions of (2,2) and (3,2) has constant magnitude along the curve.

proof.

$$(3.5) \quad \frac{d * a^{2}}{ds} = \frac{d}{ds} (*a^{i} * a_{i}) = \bigtriangledown_{\mu} (*a^{i} * a_{i}) \frac{dx^{\mu}}{ds}$$
$$= (\bigtriangledown_{\mu} (*a^{i}) \frac{dx^{\mu}}{ds}) * a_{i} + (\bigtriangledown_{\mu} (*a_{i}) \frac{dx^{\mu}}{ds}) * a^{i}$$

The results can be obtained by making use of (2,2) and (3,2).

- 7 -

REFERENCES

1. C. E. Weatherburn. 1957.

An Introduction to Riemannian Geometry and the Tensor calculus. Cambridge University Press.

- Chung, K. T. and Hyun, J. O. 1976.
 On the nonholonomic frames. The Mathematical Education Vol XV. No. 1.
- Hyun, J. O. and Bang, E. S. 1981.
 On the nonholonomic components of the Christoffel symbols in Vn (1).
 Che Ju University Journal Vol. 15.
- 4. Hyun. J. O. 1984.

On the Covariant Derivative of the Nonholonomic Vectors in Vn.

Che Ju University Journal Vol. 19.

5. Hyun. J. O. 1984. MACHEL SOLARY On the Covariant Differentiation of the Nonholonomic Tensors in Vn. Che Ju University Journal Vol. 19.

- 8 -

(國文抄錄)

Riemann 空間 Vn에서 Nonholonomic 構造의 평행조건에 관한 소고

玄 桂 龍

濟州大學校 教育大學院 數學教育轉攻

(指導教授 玄 進 五)

이 논문의 중요한 목적은 Riemann 공간 Vn에서 Nonholonomic구조를 갖는 크기가 일정한 Vector들의 평 행조건에 대한 몇가지 성질들을 찾아내고 새로운 방법 으로 증명해 보는데 있다.

