A Note on the Condition of the Parallelism
of the Nonholonomic Frame in Vn
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[. INTRODUCTION

Let ej(i=1,2, - \n)be a set of n lineary independent vectors in n—dimensi—
onal Riemannian space V, referred to a real coordinate system X',

There is a unigue reciprocal set of n lineary independent covariant vectors
ei(i=1,2, -~ n) satisfying

(1.1) e! ey=28}y,e? }:5}(**)

Within the vectors ef and e%, a nonholonomic frame of v, defined in the

following way .

Definition 1.1, If T/ are holonomic components of a tensor, then
its nonholonomic components are defined by

(12) *1i0 ek oyl o

In this paper, for our further discussion, results obtained in our previous

paper will be introduced without proof,

Theorem 1.2, We have
(1.3) a T =€l

(1.3) b Tvi=e! * Tii e;

(%)

Throughout the present paper  indices take values 1,2,-++, n unless explic-
itly stated otherwise and follow the summation convention , while Roman indices
with symbol « are used for the nonholonomic components of a vector or tenmsor

and also follow the summation convension
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Theorem 1.3, We have the covariant derivative of the nonholonomic con

travariant vector *a', as follows

(1.4) (fa') =V,(a") el et

d* 1 . X
d_yar‘*'*a’ *{i}

i

, where *{;i} is the second kind Christoffel symbol in the nonholoromic

frame,

Theorem 1.4  The covariant derivative of the nonholonomic covariant

vectar *a; is equivalent to

(1,8) Vi(*a;) =V,(a;) e? et

= % - av{;",,}:l et ef
*,. .
= %—yi’ = *a; *{;4)

. PARALLEL DISPLACEMENT OF A NONHOLONOMIC
CONTRAVARIANT VECTORS OF CONSTANT MAGNITUDE

In this section, we will study some of the properties that a nonholonomic

vector *a of constant magnitude is parallel with respect to v,along the curve

C.

Since the coordinates of points on the curve may be expressed in terms of

the arc-length S, the condition for parallelism of a along C n the holonomic

frame is



Tt =0

2.1 3

Definition 2 1. The wectors a satisfying the condition(2.1) is said to

undergo a parallel displacement along the curve,
*a

Theorem 2.2 The condition for parallelism of nonholonomic voctor

along C is

H .
2.2) 9 Gt =0
proof Using the first class of the right hand (1.4) and (2.1)

(2.3) %ﬂ (V,,(a“) el eﬁ) :[%}Sﬂ V,‘(a“)]eé el
=0

These equations are equivalent to (2.2)

Theorem 2.3, We have
d *,. 1 : ; d k
(24) T: + *a' *{jk} ESL =2 (}

proof The condition of parallelism in the holonomic frames is

# " v
T a)= 0 )=

(2.5 45
That is,
. da¥
(2.6) 4o + @) =0

By means of the second class of the right hand of (1.4) and (2.5)

u . n *, i X
21 P = EE + e 4))
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_d*ai *o0 Kk i _(!Lk
=g ekt a’ L ds

- ef

Since ef# 0, We have the result,

We know this concept of parallelism in the holonomic frame is due to Levi

-Civita,

Corollary 2 3. The arc-rate of change of the holonomic and nonholonomic
contravariant components a’ and *a' is given by
(2.8)a da*= —a*{;,} dx*

(2.8)b  d *a'= —*al *{;i}dy"

proof . From (2.4) and (2.6), we obtain direct the result.

Let a,b be two unit vectors,
the

Then the cosine of their mutual inclination has the value g,;a"b?*,

derivative of this along the carve is egual to
dx*
(2.9) ‘a’;—vp(gvza"b‘)

#
Dy (Vu(gwn) 2" b +gu ¥V, (a*) b +gu a* V.(b*) ]
ds

by virtue of (2.1),
P u
2 G =0= I g, b)

ds

Hence the eguation (2.9) are vanish,

If any two nonholonomic contravariant vectors of constant

Theorem 2 4,
they are

magnitudes, undergo parallel displacements along a given curve,

inclined at a constant angle in nonholonomic frame,
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proof Making use of (1.2), (1.3)a and (1.3)b, the cosine of two vectors
*a,*b mutual inclination has the value *g;; *a' *b’

Hence g—:—” Vi (*gi; *a' b))
» i i
:Si— (V7 (*gi) "' b+ *gi; (7 *a') '+ *gij *a' % (*b') )

by means of (2.2)

dx* __
d_s- vk

(*gi; *a' *b’') =0
. PARALLEL DISPLACEMENT OF A NONHOLONOMIC
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The condition of parallel displacement alog a curve may be egually well

expressed in terms of the covariant components of *a along the curve C

Theorem 3 .1. We have

3.1 % (a1 =0
S

proof . In order to prove (3.1), multiplying both side of(2,1) by g.; and
summing for 4,

3 d M
—j% gu,(a¥) = E%— V. (gva a*)

We have (3.1)

Theorem 3 .2, Any two nonholonomic covariant vectors, of constant mag-
itudes, undergo parallel displacements along a given curve, theyare inclined

at a constant angle in nonholonomic frame,

—5—



proof By means of (1 5) and (3.1),

3.2 L= BT of )

i

u
= % (Vi(a,) ef el

=0

Theorem 3.3, Any nonholonomic vectors which undergoes a parallel disp-

acement along a geodesic is inclined at a constant angle to the curve,
proof  The condition of parallelism in holonomic frame is
dx” dx* - da,
d—S-‘V”(aV): E[d—x“ -al{vlﬂ}]
=0

. day
That is, dxt au{iAl=0

By virtue of (1,5),

X" ok
dS vk( al) dS

I
o

Thus

(3.3) ds = aj *

Corollary 3.4, Eguation (3.3) is eguivalent to

(3.4) d*ai=*aj *{ijk}dyk

proof We obtain the result from (3, 3)



Theorem 3 5. Any nonholonomic vector *a which satisfies the conditions

of (2.2) and (3.2) has

constant magnitude along the curve,

proof .

d*az__d *_ i * _ ki * dx*
(3.5) A ds(a a;) =V, ( *a' *a;) s

= (V,(*ai) g%f) *a; + (V. (*a;) gfj ) *a'

The results can be obtained by making use of (2.2) and (3.2).
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