碩士學位請求論文

A NOTE OF THE LIE DERIVATIVE

指導教授 玄 進 五

濟州大學校 教育大學院

數學教育專攻

金容寬

1991年度

A NOTE OF THE LIE DERIVATIVE

이 論文을 敎育學 碩士學位 論文으로 提出함

提出者金 容 寬

指導教授 玄 進 五

1991年 7月 日

金容寬의 碩士學位 論文을 認准함

副審	印
----	---

副審_____印

濟州大學校 教育大學院

CONTENTS

ABSTRACT (Korean))	1
1. INTRODUCTION		2
2. DERIVATION ON C	C∞-MAP	4
	S OF THE LIE DERIVATIVE OF Y … 1 주대학교 중앙도서관	1

REFERENCES 16

- i -

리微分에 關한 小考

金容寬

清州大學校 教育大學院 數學教育專攻

指導教授 玄 進 五

본 論文에서는, 첫째로, 實數에서의 derivation을 定義하고, C[∞](a)에서 R로 가는 寫像을 모아 놓은 集合을 $\mathcal{D}(a$)라 했을 때, $\mathcal{D}(a$)의 몇 가지 性質을 調査하고 $\mathcal{D}(a)$ 가 벡터공간(Vector Space)이 됨을 보였으며, 접공간(Tangent Space)에 대한 性質들을 調査하였다. 둘째로, X에 대한 Y의 리微分(Lie derivative) L_X Y가 Bracket (X,Y)와 같음을 보이고 L_X Y는 $L_{F_*(X)}F_*(Y)$ 에 F-related 됨을 보였다.

-1-

I. INTRODUCTION.

The theory of the derivative have been treated as an important problems in differential geometry.

In particular, it is a matter of interested to the study of the properties of the Lie derivative on C^{∞} -manifold.

The purpose of the present paper, we introduce some properties of the most basic tools used in the study of Lie derivative on C^{∞} -manifold and the bracket of C^{∞} -vector fields **X** and **Y**.

In chapter II, making use of the definition of derivation $\mathcal{D}(a)$ on $C^{\infty}(a)$ in R, if D is a derivation of $\mathcal{D}(a)$, then γD is also derivation of $\mathcal{D}(a)$. Furthermore, D_1 and D_2 are derivation of $\mathcal{D}(a)$ on $C^{\infty}(a)$ into R, then $D_1 + D_2$ is a derivation of $\mathcal{D}(a)$. Thus $\mathcal{D}(a)$ is a vector space.

Let M and N be a C^{∞} -manifold. If a function F is a C^{∞} -mapping of M into N and if $F^{\bullet} : C^{\infty}(F(p)) \to C^{\infty}(p)$ defined by $F^{\bullet}(f) = f \circ F$ and $F_{\bullet} : \mathbf{T}_{p}(M) \to \mathbf{T}_{F(p)}(N)$ defined by $F_{\bullet}(\mathbf{X}_{p})f = \mathbf{X}_{p}(F^{\bullet}f)$, then the differential of F, F_{\bullet} is homomorphism.

In chapter III, let $\theta : R \times M \to M$ be a C^{∞} -mapping satisfies any two conditions, then θ is C^{∞} -action (or one parameter group) of M.

For C^{∞} -vector field **X**, there is infinitesimal generator of θ such that

-2-

$$\mathbf{X}_{p}f = \lim_{\Delta t \to o} \frac{1}{\Delta t} [f(\theta_{\Delta t}(p) - f(p))]$$

Thus the map θ_{t_*} is a mapping of $\mathbf{T}(M)$ into $\mathbf{T}(M)$ defined by $\theta_{t_*}(\mathbf{X}_p) = \mathbf{X}_{\theta_t(p)^{(n)}}$

Finally, we have proved Lie derivative of **Y** with respect to **X** such that $(L_{\mathbf{X}}\mathbf{Y})_{p} = \lim_{t \to 0} \frac{1}{t} [\theta_{-t_{*}}(\mathbf{Y}_{\theta(t,p)}) - \mathbf{Y}_{p}]$ is equal to bracket $[\mathbf{X}, \mathbf{Y}] = \mathbf{X}\mathbf{Y} - \mathbf{Y}\mathbf{X}$ and so Lie derivative $L_{\mathbf{X}}\mathbf{Y}$ is *F*-related to $L_{F_{*}(\mathbf{X})}F_{*}(\mathbf{Y})$.

Throughout the present paper, by the manifolds and vector fields we mean C^{∞} -manifold and C^{∞} vector fields, respectively. The dimension of manifold M is n unless explicitly stated otherwise.

-3-

II. DERIVATION ON C^{∞} -MAP

Let $\mathbf{a} = (a^1, a^2, \cdots, a^n)$ be any point of \mathbf{R}^n .

We define $\mathbf{T}_a(\mathbf{R}^n)$, the tangent space attached to **a**, as follows. It consist of all pairs of $(a, x) = \mathbf{a} \mathbf{x}$ and if such a pair denote by \mathbf{X}_a , there exists the mapping $\varphi_a : \mathbf{T}_a(\mathbf{R}^n) \to V^n$ is defined by $\varphi_a(\mathbf{X}_a) = (x^1 - a^1, x^2 - a^2, \cdots, x^n - a^n)$ also have the following properties:

(1)
$$\mathbf{X}_{a} + \mathbf{Y}_{a} = \varphi_{a}^{-1}(\varphi_{a}(\mathbf{X}_{a}) + \varphi_{a}(\mathbf{Y}_{a}))$$

(2) $\alpha \mathbf{X}_{a} = \varphi_{a}^{-1}(\alpha \varphi_{a}(\mathbf{X}_{a}))$

for $\mathbf{X}_a, \mathbf{Y}_a \in \mathbf{T}_a(\mathbf{R}^n)$ and $\alpha \in \mathbf{R}$, 학교 중앙도서관

If e^1, e^2, \dots, e^n be the natural basis of V^n and $E_{1a}, E_{2a}, \dots, E_{na}$ be the natural basis of $\mathbf{T}_a(\mathbf{R}^n)$, then $E_{1a} = \varphi_a^{-1}(e^1), E_{2a} = \varphi_a^{-1}(e^2), \dots, E_{na} = \varphi_a^{-1}(e^n)$

Definition 2.1. Let $\mathbf{X}_{a} = \sum_{i=1}^{n} \alpha^{i} E_{ia}$ be the expression for a vector of $\mathbf{T}_{a}(\mathbf{R}^{n})$. For the differential map f defined on open subset of \mathbf{R}^{n} , the

 $\mathbf{I}_a(\mathbf{I}\mathbf{C})$. For the undefinitial map f defined on open subset of \mathbf{I} the directional derivative Δf of f at a in the "direction of \mathbf{X}_a " defined by

-4-

$$\Delta f = \sum_{i=1}^n \alpha^i \frac{\partial f}{\partial x^i}.$$

Since Δf depend on f, **a** and \mathbf{X}_a , we shall write it as $\mathbf{X}_a^{\bullet} f$. Thus $\mathbf{X}_a^{\bullet} f = \sum_{i=1}^n \alpha^i (\frac{\partial f}{\partial x^i})_a$. We may take any C^{∞} -function defined in a neighborhood of **a**. Then for each $f \in C^{\infty}(a)$, we have $\mathbf{X}_a^{\bullet} : C^{\infty}(a) \to \mathbf{R}$ is defined by $\mathbf{X}_a^{\bullet} = \sum_{i=1}^n \alpha^i (\frac{\partial}{\partial x^i})$.

Property 2.2. If $\alpha, \beta \in \mathbb{R}$ and $f, g \in C^{\infty}(a)$, then we have two fundamental properties of derivatives followings;

(1)
$$\mathbf{X}_{a}^{\bullet}(\alpha f + \beta g) = \alpha(\mathbf{X}_{a}^{\bullet} f) + \beta(\mathbf{X}_{a}^{\bullet} g) - (\text{linearity})$$

(2) $\mathbf{X}_{a}^{\bullet}(fg) = (\mathbf{X}_{a}^{\bullet} f)g(a) + f(a)(\mathbf{X}_{a}^{\bullet} g) - (\text{Leibniz rule})$

Let $\mathcal{D}(a)$ denote all mappings of $C^{\infty}(a)$ to **R** with linearity and Leibniz rule.

Then the elements of $\mathcal{D}(a)$ is called *derivations* on $C^{\infty}(a)$ into **R**.

Lemma 2.3. If D is a derivation of $\mathcal{D}(a)$, then γD is also derivation of $\mathcal{D}(a)$

Proof. Let $D \in \mathcal{D}(a)$, $\alpha, \beta, \gamma \in \mathbf{R}$ and $f, g \in C^{\infty}(a)$. To show the map $\gamma D : C^{\infty}(a) \to \mathbf{R}$ is linear. Using (1) of property 2.2

-5-

$$\begin{split} (\gamma D)(\alpha f + \beta g) &= \gamma [D(\alpha f + \beta g)] \\ &= \gamma [(\alpha (Df) + \beta (Dg)] \\ &= \gamma \alpha (Df) + \gamma \beta (Dg) \\ &= \alpha (\gamma D)f + \beta (\gamma D)g \end{split}$$

By means of the property 2.2

$$(\gamma D)(fg) = \gamma [D(fg)]$$

= $\gamma [(Df)g(a) + f(a)(Dg)]$
= $\gamma (Df)g(a) + f(a)\gamma (Dg)$
= $((\gamma D)f)g(a) + f(a)((\gamma D)g)$

Lemma 2.4. If D_1, D_2 are derivation of $\mathcal{D}(a)$, then $D_1 + D_2$ is a derivation of $\mathcal{D}(a)$. RECHARCE SYSTEM **Proof.** Let α, β be a real numbers and let f, g be a C^{∞} -function.

Then

$$(D_1 + D_2)(\alpha f + \beta g) = D_1(\alpha f + \beta g) + D_2(\alpha f + \beta g)$$

= $[\alpha(D_1 f) + \beta(D_1 g)] + [\alpha(D_2 f) + \beta(D_2 g)]$
= $\alpha[(D_1 f) + (D_2 f)] + \beta[(D_1 g) + (D_2 g)]$
= $\alpha(D_1 + D_2)f + \beta(D_1 + D_2)g$

It follows that the map $D_1 + D_2 : C^{\infty}(a) \to \mathbf{R}$ is linear

•

$$(D_1 + D_2)(fg) = D_1(fg) + D_2(fg)$$

= $[(D_1f)g(a) + f(a)(D_1g)] + [(D_2f)g(a) + f(a)(D_2g)]$
= $[(D_1f)g(a) + (D_2f)g(a)] + [f(a)(D_1g) + f(a)(D_2g)]$
= $[(D_1f) + (D_2f)]g(a) + f(a)[(D_1g) + (D_2g)]$
= $[(D_1 + D_2)f]g(a) + f(a)[(D_1 + D_2)g]$

thus $D_1 + D_2$ satisfies the Leibniz rule for differentiation of products.

Theorem 2.5. $\mathcal{D}(\mathbf{a})$ is a vector space.

Proof. By Lemma 2.3, 2.4, we have the result.

Let U is an open set of manifold M. Then for any $p \in U$, $\varphi: U \to \mathbb{R}^n$ defined by $\varphi(p) = (x^1, x^2, \dots, x^n)$ is a homeomorphism on U and the pair (U, φ) is called a *coordinate neighborhood*

Definition 2.6. Let f be a real-valued function on an open set U of a n-dimensional manifold M. Then $f: U \to \mathbb{R}$ is a C^{∞} -function if each $p \in U$ lies in a coordinate neighborhood (U, φ) such that $f \circ \varphi(x^1, x^2, \dots, x^n)$ is a C^{∞} on $\varphi(U)$.

Definition 2.7. Let M and N be a C^{∞} -manifolds. A function F is a C^{∞} -mapping of M into N, if for every $p \in M$, there exist (U, φ) of p and

-7-

 (V, Ψ) of F(p) with $F(U) \subset V$ such that

$$\Psi \circ F \circ \varphi^{-1}(U) : \varphi(U) \to \Psi(V)$$

is the C^{∞} -function in Euclidean Sense.

Furthermore, we call F homeomorphism if $\Psi \circ F \circ \varphi^{-1}$ is homeomorphism. A C^{∞} -mapping $F : M \to N$ between C^{∞} -manifolds is called a diffeomorphism if it is a homeomorphism and F and F^{-1} are C^{∞} -mappings.

Definition 2.8. We define the tangent space $\mathbf{T}_p(M)$ to M at p to be the set of all mapping $\mathbf{X}_p : C^{\infty}(p) \to \mathbf{R}$ satisfying for all $\alpha, \beta \in \mathbf{R}$ and $f, g \in C^{\infty}(p)$ the two conditions;

(1)
$$\mathbf{X}_{p}(\alpha f + \beta g) = \alpha(\mathbf{X}_{p}f) + \beta(\mathbf{X}_{p}g)$$

(2) $\mathbf{X}_{p}(fg) = (\mathbf{X}_{p}f)g(p) + f(p)(\mathbf{X}_{p}g)$

with the vector space operations in $\mathbf{T}_{p}(M)$ defined by

$$(\mathbf{X}_p + \mathbf{Y}_p)f = \mathbf{X}_p f + \mathbf{Y}_p f, \quad (\alpha \mathbf{X}_p)f = \alpha(\mathbf{X}_p f)$$

Any $\mathbf{X}_p \in \mathbf{T}_p(M)$ is called a tangent vector to M at p.

Let $F: M \to N$ be a C^{∞} -map of manifolds. Then for $p \in M$, the map

 $F^{\bullet}: C^{\infty}(F(p)) \to C^{\infty}(p)$ defined by $F^{\bullet}(f) = f \circ F$ and $F_{\bullet}: \mathbf{T}_{p}(M) \to \mathbf{T}_{F(p)}(N)$ defined by $F_{\bullet}(\mathbf{X}_{p})f = \mathbf{X}_{p}(F^{\bullet}f)$ which gives $F_{\bullet}(\mathbf{X}_{p})$ as a map of $C^{\infty}(F(p))$ to \mathbf{R} .

We have

Theorem 2.9. F_{\bullet} is a homomorphism.

Proof. Let $\mathbf{X}_p \in \mathbf{T}_p(M)$ and $f, g \in C^{\infty}(F(p))$. We must prove that the map $F_{\bullet}(\mathbf{X}_p) : C^{\infty}(F(p)) \to \mathbf{R}$ is a vector at F(p), that is, a linear map

satisfying the Leibniz rule, we have

$$F_{\bullet}(\mathbf{X}_{\mathbf{p}})(fg) = \mathbf{X}_{\mathbf{p}}F^{\bullet}(fg)$$

$$= \mathbf{X}_{\mathbf{p}}[(f \circ F)(g \circ F)]$$

$$= \mathbf{X}_{\mathbf{p}}(f \circ F)g(F(p)) + f(F(p))\mathbf{X}_{\mathbf{p}}(g \circ F)$$

$$= \mathbf{X}_{\mathbf{p}}(F^{\bullet}(f))g(F(p)) + f(F(p))\mathbf{X}_{\mathbf{p}}(F^{\bullet}(g))$$

$$= (F_{\bullet}(\mathbf{X}_{\mathbf{p}})f)g(F(p)) + f(F(p))(F_{\bullet}(\mathbf{X}_{\mathbf{p}})g)$$

Thus $F_{\bullet} : \mathbf{T}_{\mathbf{p}}(M) \to \mathbf{T}_{F(\mathbf{p})}(M)$.

Further F_{\bullet} is a homomorphism.

$$F_{\bullet}(\alpha \mathbf{X}_{p} + \beta \mathbf{Y}_{p})f = (\alpha \mathbf{X}_{p} + \beta \mathbf{Y}_{p})(F \circ f)$$
$$= \alpha \mathbf{X}_{p}(F \circ f) + \beta \mathbf{Y}_{p}(F \circ f)$$

$$= \alpha F_{\bullet}(\mathbf{X}_{p})f + \beta F_{\bullet}(\mathbf{Y}_{p})f$$
$$= [\alpha F_{\bullet}(\mathbf{X}_{p}) + \beta F_{\bullet}(\mathbf{Y}_{p})]f$$

Remark. The homomorphism $F_*: \mathbf{T}_p(M) \to \mathbf{T}_{F(p)}(N)$ is called the *differential* of F.

-10-

III. SOME PROPERTIES OF THE LIE DERIVATIVE OF Y

Definition 3.1. Let M be a C^{∞} -manifold and let $\theta : R \times M \to M$ be a C^{∞} -mapping which satisfies the two conditions;

- (1) $\theta(0, p) = p$ for every $p \in M$
- (2) $\theta_t \circ \theta_s(p) = \theta_{t+s}(p) = \theta_s \circ \theta_t(p)$ for every $s, t \in R$
- and $p \in M$ where $\theta_t(p) = \theta(t, p)$

. Then θ is called a C^{∞} -action or one parameter group of M.

For each one parameter group $\theta : R \times M \to M$, there exists a unique C^{∞} -vector field **X**, which is called the *infinitesimal generaotr* of θ such that

$$\mathbf{X}_{p}f = \lim_{\Delta t \to 0} \frac{1}{\Delta t} [f(\theta_{\Delta t}(p)) - f(p)]$$

Theorem 3.2. Let θ_{t_*} is a map $\mathbf{T}(M)$ to $\mathbf{T}(M)$. If $\theta : R \times M \to M$ is a C^{∞} -action of R. Then $\theta_{t_*}(\mathbf{X}_p) = \mathbf{X}_{\theta_t(p)}$.

Proof. Let $f \in C^{\infty}(\theta_t(p))$ for some $(t, p) \in R \times M$.

$$\theta_{t} \cdot (\mathbf{X}_{p}) f = \mathbf{X}_{p} (f \circ \theta_{t})$$
$$= \lim_{\Delta t \to 0} \frac{1}{\Delta t} [(f \circ \theta_{t})(\theta_{\Delta t}(p)) - f \circ \theta_{t}(p)]$$

Since $\theta_t \circ \theta_{\Delta t} = \theta_{t+\Delta t} = \theta_{\Delta t} \circ \theta_t$,

$$\theta_{t_{\star}}(\mathbf{X}_{p})f = \lim_{\Delta t \to 0} \frac{1}{\Delta t} [(f \circ \theta_{\Delta t})(\theta_{t}(p)) - f(\theta_{t}(p))]$$
$$= \mathbf{X}_{\theta_{t}(p)}f$$

Remark. For all $t \in R$, $\theta_t : M \to M$ and θ_t , is a map of $\mathbf{T}(M)$ to $\mathbf{T}(M)$, then we have the following diagram which commutes

Definition 3.3. If X and Y are C^{∞} -vector fields, then the product of X and Y defined by [X, Y] = XY - YX is called the bracket of X and Y, where XY is an operator on C^{∞} -function on M.

Definition 3.4. The vector field $\mathbf{L}_{\mathbf{X}} \mathbf{Y}$, called the Lie derivative of \mathbf{Y} with respect to \mathbf{X} is defined at each $p \in M$ by either of the following limits.

-12-

$$(\mathbf{L}_{\mathbf{X}} \mathbf{Y})_{p} = \lim_{t \to 0} \frac{1}{t} [\theta_{-t} \cdot (\mathbf{Y}_{\theta(t,p)}) - \mathbf{Y}_{p}]$$
$$= \lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{p} - \theta_{t} \cdot \mathbf{Y}_{\theta(-t,p)}]$$

where

$$\theta_{-t_*}: \mathbf{T}_{\theta(t,p)}(M) \to \mathbf{T}_p(M)$$

Remark. Let f be a C^{∞} -function on any open set U containing p on M, and let V be a neighborhood of p in U. Then we can take a function g(q, t) defined on a $V \times I_{\delta}$ such that

$$f(\theta_t(q)) = f(q) + tg(q, t) \text{ and}$$
$$\mathbf{X}_q f = g(q, 0) \text{ for } q \in V$$

Theorem 3.5. If X and Y are C^{∞} -vector fields on M. Then $L_X Y = [X, Y]$.

Proof. By definition of Lie derivative,

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = (\lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{p} - \theta_{t_{*}}(\mathbf{Y}_{\theta_{-t}(p)})])f$$

This differential quotient and that of the following expression, whose limit

-13-

is the derivative of a C^{∞} -function of t, are equal for all $t \to 0$;

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = \lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{p}f - \mathbf{Y}_{\boldsymbol{\theta}_{-t}(p)}(f \circ \theta_{t})]$$

Make use of the function $f(\theta_t(p)) = f(p) + tg(p,t)$ and g(p,t) by g_t ,

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = \lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{p}f - \mathbf{Y}_{\theta_{-t}(p)}(f + tg_{t})]$$

Replace t by -t

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = \lim_{t \to 0} -\frac{1}{t} [\mathbf{Y}_{p}f - \mathbf{Y}_{\theta_{t}(p)}(f - tg_{t})]$$

$$= \lim_{t \to 0} \frac{1}{t} [\mathbf{Y}_{\theta_{t}(p)}f - \mathbf{Y}_{p}f] - \lim_{t \to 0} \mathbf{Y}_{\theta_{t}(p)}g(t)$$

$$= \lim_{t \to 0} \frac{1}{t} [(\mathbf{Y}f)(\theta_{t}(p)) - (\mathbf{Y}f)(p)] - \lim_{t \to 0} \mathbf{Y}_{\theta_{t}(p)}g(t)$$

Using the formula $g_0 = g(p, 0) = \mathbf{X}f(p)$ and the definition of the infinitesimal generator of θ

$$(L_{\mathbf{X}}\mathbf{Y})_{p}f = \mathbf{X}_{p}(\mathbf{Y}f) - \mathbf{Y}_{p}(\mathbf{X}f)$$

= $[\mathbf{X}, \mathbf{Y}]_{p}f$

Corollary 3.6. If X and Y are C^{∞} -vector fields, then $L_X Y = -L_Y X$, $L_X X = 0$.

-14-

Proof. Since $L_{\mathbf{X}}\mathbf{Y} = [\mathbf{X}, \mathbf{Y}]$ and $[\mathbf{X}, \mathbf{Y}] = -[\mathbf{Y}, \mathbf{X}]$.

$$L_{\mathbf{X}}\mathbf{Y} = [\mathbf{X}, \mathbf{Y}] = -[\mathbf{Y}, \mathbf{X}] = -L_{\mathbf{Y}}\mathbf{X}$$

therefore
$$L_{\mathbf{X}}\mathbf{Y} = -L_{\mathbf{Y}}\mathbf{X}$$

Since [X, X] = -[X, X], [X, X] = 0

therefore
$$L_{\mathbf{X}}\mathbf{X} = [\mathbf{X}, \mathbf{X}] = 0.$$

Let $F: M \to N$ be a C^{∞} -mapping and suppose that $\mathbf{X}_1, \mathbf{X}_2$ and $\mathbf{Y}_1, \mathbf{Y}_2$ are vector fields on M, N, respectively. If for i = 1, 2 $F_{\bullet}(\mathbf{X}_i) = \mathbf{Y}_i$, then $[\mathbf{X}_1, \mathbf{X}_2]$ and $[\mathbf{Y}_1, \mathbf{Y}_2]$ is called F-related.

Theorem 3.7. If $[X_1, X_2]$ and $[Y_1, Y_2]$ is *F*-related, then $L_X Y$ is *F*-related to $L_{F_*(X)}F_*(Y)$.

Proof. Using the properties of *F*-related, that is, $F_{\bullet}[\mathbf{X}_1, \mathbf{X}_2] = [F_{\bullet}(\mathbf{X}_1), F_{\bullet}(\mathbf{X}_2)]$. By the theorem 3.5,

$$F_{\bullet}(L_{\mathbf{X}}\mathbf{Y}) = F_{\bullet}[\mathbf{X}, \mathbf{Y}]$$
$$= [F_{\bullet}(\mathbf{X}), F_{\bullet}(\mathbf{Y})]$$
$$= L_{F_{\bullet}(\mathbf{X})}F_{\bullet}(\mathbf{Y})$$

REFERENCE

- D.R. Boo: Some vector fields on a C[∞]-manifold, Master Thesis in Mathematic Education, Cheju National University, Cheju city (1990).
- F.W. Warner ; Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company (1971).
- J.O.Hyun; Remarks on the components of the Riemannian Metric, Bull. Honam Math. Soc. Vol.2. (1985).

- 4. R.L. Bishop & R.J. Crittenden; Geometry of Manifolds, Academic Press, Inc (1964).
- 5. W.Klingenberg; Riemannian Geometry, walter de Gruyter. (1982)
- 6. W.M.Boothby; An introduction to differentiable Manifolds and Riemannian Geometry, Academic Press, New York (1975).

-16-

感謝의글

本 論文이 完成될 수 있도록 바쁘신 가운데도 많은 시간을 割愛하여 細心한 指導 와 鞭撻을 아끼지 않으신 玄進五 指導敎授님께 衷心으로 感謝드리며 그동안 깊은 關 心을 갖고 忠告와 激励를 아끼지 않았던 數學敎育科, 數學科 여러 敎授님께 眞心으 로 고마운 말씀을 드립니다.

아울러 學校 授業進行의 어려움 속에서도 大學院 課程을 마칠 수 있도록 配慮해 주신 大靜中學校 校長先生님을 비롯한 여러 先生님께 感謝드리며, 긴 歲月동안 언제 나 자식 잘되기를 바라시며 한 平生을 無限한 사랑과 犧牲으로 보살펴 주신 부모님, 많은 어려움을 참으며 도와준 아내와 하루하루 건강하고 씩씩하게 자라는 玉修, 주 위에서 聲援하여 주신 모든 분들과도 이 조그마한 成就의 기쁨을 함께 나누고자 합 니다.

1991年 7月

-17-