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< Abstract >

A comparison of Boolean ranks and their preservers

Boolean rank, column rank, and maximal column rank over Boolean ma-
trices have been studied and developed so far. And their preservers also have
been characterized over Boolean matrices.

In this thesis, we compare Boolean rank and maximal column rank by the
way of a function, 3 and we obtain the values of this function on the matri-
ces over binary Boolean algebra, nonnegative integers, nonnegative reals, and
general Boolean algebra, respectively. Finally we also characterize the linear

operators that preserve maximal column rank over general Boolean matrices.
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I. Introduction

There is much literature on the study of matrices over a finite Boolean
algebra. But many results in Boolean matrix theory are stated only for
binary Boolean matrices. This is due in part to a semiring isomorphism
between the matrices over the Boolean algebra of subsets of a k element
set and the k tuples of binary Boolean matrices. This isomorphism allows
many questions concerning matrices over an arbitrary finite Boolean algebra
to be answered using the binary Boolean case. However there are interesting
results about the general (i.e. nonbinary)Boolean matrices that have not
been mentioned and they differ somewhat from the binary case.

In many instances, the extension of results to the general case is not imme-
diately obvious and an explicit version of the above mentioned isomorphism
was not well known. In [5], Kirland and Pullman gave a way to derive results
in the general Boolean algebra case by means of a canonical form derived
from the isomorphism. In [7], Hwang, Kim and Song characterized the linear
operators that preserve maximal column rank of Boolean matrices.

In [3], Beasley and Pullman compared semiring rank and column rank of
the matrices over several semirings. The difference between semiring rank
and column rank motivated Beasley and Song to investigate the column
rank preservers of matrices over nonnegative integers [4] and over the binary
Boolean algebra [6]. In [7], Hwang, Kim and Song compared column ranks

with maximal column ranks over certain semirings.
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In this paper, first we will show the extent of the difference between semir-
ing rank and maximal column rank of matrices over a general Boolean al-
gebra. Second, there are some unproved ones on semiring rank, column
rank, and maximal column rank through the previous theses, and so we will
give the solutions of them. Finally, we also obtain the characterizations of
the linear operators that preserve maximal column ranks of general Boolean
matrices.

In Chapter II, we present some definitions, and some properties which
come from these definitions. In Chapter III, we introduce various ranks over
Boolean matrices and compare them to see how much different they are in
B,,Z* F* and B. In detail, in section 3.1, a new function, 3, between Boolean
rank and Boolean maximal column rank over Boolean matrices is defined,
and so some results are obtained. In section 3.2, we get the others of results
in this Chapter. In Chapter IV, we characterize the linear operators that

preserve the Boolean maximal column rank of general Boolean matrices.

|
(9]
I



I1. Preliminaries
In this section, we give some known results and obtain basic results.

Let B be the Boolean algebra of the subsets of a k element set Sy and
01,02, - ,0k denote the singleton subsets of Sx. We write + for union and
denote intersection by juxtaposition;0 denotes the null set and 1 the set Sk.
Under these two operations, B is a commutative, antinegative semiring(that
is, only 0 has an additive inverse); all of its elements, except 0 and 1, are
zero-divisors. Let M, ,(B) denote the set of all m x n matrices with entries
in B. The usual definitions for adding and multiplying matrices apply to

Boolean matrices as well.

Definition [5] [ the p-th constituent of A ]. Let A be an m x n matrix

over B. The p-th constituent of A, A, is

(ay) { 1 if o, Cag,
a =
P/t 0 otherwise.

Note that via the constituents, A can be written uniquely as Y 0,4, ,

which is called the canonical form of A.

Example 2.1. Let B = P(S2) = {0, {1},{2},{1,2}} and A =
0 {1} {1,2} /(0 11 /0 0 1
<{2} {1,2) 0 ).ThenAl_(O 1 0) andAg—(l 1 O)’

_3_



Thus

A=014 +024,
~- (5 1 o)+ (77 0)
=<3 ) {é})+({2} ) {5}>
:<@ {1} {1,2}>‘
(2} {12} 0 | -

This definition is one of the ways of transforming nonbinary Boolean al-

gebra into binary Boolean algebra.

Remark 2.2. Let B be a Boolean algebra. Then we have
(1) the singletons are mutually orthogonal idempotent, for o, - 0, = 0p
and o, - 04 = 0 whenever p # q.
(2) from the fact that the decomposition is unique and (1), for all m x n
matrices A , all n x r matrices B and C, and all « € B,
(i) (AB)p = ApBy,
(ii) (B+C)p = Bp + (Y,

(i1) (aA)p = apAp forall 1 <p < k.

Proof. (2) Forlet A = Y 0,Ap, B =3 0pBp, ,and C = } 0,Cp. Then

A-B=(30,A5) (3 0,Bp) = Y. opApBy, and so
(AB), = ApB,.

_4_



But (B+C)=(>.0,By)+ (>0,Cp) =5 0p(Bp+ Cp), and so
(B+C)p =By + (.
Finally, A = a(}_ 0,4,) = > aopAp = apA,, and hence

(ad)p = apAp.



III. Comparisons of various ranks over Boolean matrices

3.1 Boolean rank versus Boolean maximal column rank

Definition 3.1 [2] [the Boolean rank , b(A)]. Let A(# 0) € M, »(B).
The Boolean rank, b(A) is the least index r such that A = Brmxr - Crxn.

Note that b(0) = 0.

In the case that B = B, = {0, 1}, we consider b(4) as the binary Boolean
rank, and denote it by b;(A).

For a binary Boolean matrix A , we have b(A) = b;(A) by the definition.

The following Lemma can be easily taken from the definition.

Lemma 3.1 [1]. For any m X n , zero-one matrix A :
(1) bi(A) = by (AT),
(2) b1(AB) < min(b;(A), bi(B)) for all n x k, zero-one matrices B, and

(3) b1(A) < min(m,n).

Proof. (1) : Put b;(A) = k. Then there exist Bmxk, Ckxn such that A =
BC. Since AT = (BC)T = €T, - BE, .., b:1(A) = k > b (AT) ——(J).
Similarly, if 8(AT) = k, then there exist Bnxk, Ckxm such that AT = BC.
A=ANT =T |, -BF  andso bi(AT) =k > b (A) ——(ii). From (i)
and (ii), by (A4) = by (AT).
(2) : If by (A) = h, then there exist A}, ,,, A%, such that A = A'A%
So, AB = (A'A2)B = Al _, - (A?B)nxk.

_6w



Thus b;(AB) < h = by(A). Similarly, we can get b;(AB) < b;(B). Hence
(3) : Note that Amxn = Amxn - Inxn, a0d Amxn = Imxm * Amxa-

So we can immedately obtain b;(A) < min(m,n). O
Now we can generalize this Lemma as the following;:

Lemma 3.2. For any m X n matrix A :
(1) b(A) = b(AT),
(2) b(AB) < min(b(A),b(B)) for all n x k matrices B, and
(3) b(A) < min(m,n).

Proof. Similarly we prove this Lemma as the above. a

Examples 3.1.

(A) by(Ip) = b([(l) (1)]) _o,

)-

For we can easily obtain b;([3) # 0,1 and through checking case by case,
oo (ﬂl B m)

o = O
— O O

1
0

also notice that it is impossible that I3 = | a3 a4 B, Bs B
Ps Ps  De

Qs G
In fact , it is well-known that generally by ([I,]) = n. O

Let V be nonempty subset of M ;(B) such that it is closed under 4 and

- by scalars. Then V is called a vector space over B.

,7_



We define "subspace” and ”generating sets” as the things to coincide with
familar definitions when B is a field. We think of < F' > as the subspace
generated by the subset F' of V.

As with fields, a basis for a vector space V is a generating subset of the

least cardinality. That cardinality is the dimension, dim(V) of V.

Definition 3.2 [2] [the Boolean column rank]. The Boolean column
rank, ¢(A) of A € My, xn(B) is the dimension of the space < A > generated

by the columns of A.
In the binary Boolean algebra, we denote it by ¢;(A4) for A € My xn (B ).

Definition 3.3 [7]. A set G of vectors over B is linearly dependent if for

some g € G,g €< G\{g} >. Otherwise, G is linearly independent.

Definition 3.4 [7] [the maximal column rank]. The mazimal column
rank , mc(A) of an m x n matrix A over B is the maximal number of the

columns of A which are linearly independent over B.

When B = B, , we denote it by mc;

~~~

A) for A € My, »(B;).

0110
Example 3.2. Let A= |1 0 0 1 ). Then b;(4) <3 by Lemma 3.1.
0 0 1 1
Clearly b;(A) # 0.
I
If b(A)=1,then A= | 22 | (y1 Y2 Y3 Ya)
T3

From the first column and row of A, y; =1 and z; = 1.

This is a contradiction of the fact that z, - y; = 0.

_8_



Thus b1(A) # 1.
If b(A) = 2, then
I )
A=|1z3 24 (yl Y2 Y3 y4>

Is g Ys Ye Y1 Y8

Ti1y1r + T2ys ZTi1yYz +ToYs ZT1Y3 + ToYr T1Ys + Toys
= | z3y1 + T4Ys T3y2 + T4Ys T3Ys + Tayr T3Y4 + Tays
Tsyr + TeYs Tsy2 +TeYe TsYs + TeYr TsYs + TeYs

So, suppose z; = 0 or x; = 1. Then we can lead z5 = 0 and z¢ = 0
(;contradiction!!). Therefore b1(A) # 2. Hence b;(A) = 3.

Futhermore, since less than or equal to 3 columns of A cannot generate
A, the four columns of A constitute a basis for the column space of A over
B;.

So c;(A) = 4.

And since all columns of A are linearly independent,

mecy(A) = 4. Therefore we get

c1(A) =me(A) = 4.

We can immediately get the following :
0 < B(A) < c(A) < me(4) < n

for all m x n matrices A over B.



(3.1) For all m x n matrices A over B,
0 <b(A) <mc(A) <n.([3])

Proof. Obviously, 0 < b(A4) and mc(4) < n. We only show that b(A) <
mc(A). If me(A) = k , then 3 k linearly independent columns of A, say,
A1, Ay, -+, Ax. So, we obtain Agy; = E;?:l ag«i) - A;, where 1=1,2,--- n-k.

Let’s rearrange the columns of A. Then we can write down A as (A, A2,

Ak,Ak+1,' . ,An). Thus

A= (‘417A2,”' 7AkaAk+la'” ’An)

WORRRCO RS
= (A1, A2, A)mxk I S

R
Therefore b(A) < k. O

(3.2) For any p x ¢ matrix A over B, the Boolean rank of [f)l 8] is b(A)

and its Boolean maximal column rank is mc(A).

Proof.

From the definition, it is easily taken that mc ([g 8}) = mc(A).

To show : b([é 8}):1@).

(<) ; If b(A) = k , then we obtain A = MpxkNikx, for some M,N.

_10_



Note that
A 0|l _|MN O
0 0| 0 0

18] o o

([0 8]) =+

A 0 I
(>) ; Note that Apxg = [I, 0]pxm [0 O]mxn |:(;Ij|"xq'
By Lemma 3.2(2),

Thus

(3.3) The Boolean rank of a matrix is the maximum of the binary Boolean
ranks of its constituents ([5]).

We will prove this later(Lemma 3.5 and Lemma 3.6).
Lemma 3.3. For any binary Boolean matrix A, we have mc(A) = me;(A).

Proof. Assume mc(A) = k. Then 3 k columns X;,X,,--- , X which are
linearly independent over B;,. Consider (X1),,(X2)p, - ,(Xk)p. If (Xi)p =
Z#i(xj)pa then

Xi=(Xi)p =D (X)), = >_X,.

i A

This contradicts to the assumption.

_11_



Thus me,(A) > k.
Conversely, suppose mc;(A) = k. Then 3 k columns, Yq,Ys, -, Yi
which are linearly independent over By. If Y; = 3° _.(«;)Y; where o; € By,

then

Y; = (Yi)p = Z(ai)p(yj)p
i
= Z(a,—)ij.

J#1

This is a contradiction. Therefore

mc(A) > k.

Definition 3.5 [3][u(B,m,n)]. p(B,m,n) is the largest integer r such that
for all A € My, n(B), b(A) = c(A) if )(A) <r.

Definition 3.6 [7][a(B,m,n)]. a(B,m,n) is the largest integer r such that
for all A € My, »(B), ¢(A) = me(A) if ¢(A) <.

Referring to the above, we may similarly define the following ;
Definition 3.7 [3(B,m,n)]. B(B,m,n) is the largest integer r such that for

all A € My, »(B), b(A) = mc(A) if b(A) <.

In general,



(3.4) Over any Boolean algebra B, if mc(A) > b(A) for some p x ¢ matrix
A, then for all m > pand n > g, B(B,m,n) < b(A).

Proof. Since mc(A) > b(A) for some px ¢ matrix A, we have (B, p,q) < b(A)

A

from the definition. Let B = ( 0 0

) be an m X n matrix containing A as

a submatrix. Then
b(B) = b(A) < mc(A) = me(B).
So, b(B) < mc(B). Hence
A(B,m,n) < b(B),
for allm > pand n > gq. a

Lemma 3.4. In By, b;(A) =1 if and only if me,(A) = 1.

Proof. (<) ; It is obvious.
(=) ; Suppose b;(A) = 1. Then A can be split into two matrices, that

1s ,

(™
ma
A= : (nl nz - n")lxn
\mm mx1
(mlnl e min; e minn
many  ccc Man; - MaNg
\mmnl e mmn; - MmNn

If 3n;,n, #0 (1 #3), then n; =nj =1 (. ns,n; € By = {0,1}) So ith and

jth columns of A are linearly dependent. Thus we get mc;(A4) = 1. O

_13_



Generally speaking, it is false that b(A) = 1 if and only if mc(4) = 1.

Now, we suggest a counter-example.

gy 02 O3

Counter-example 3.3. Let A= | 0, o0, 03 | where 0y,02,03 are mu-
oy 02 O3

tually distinct.

1
ThensinceA-——(l)(Ul oy 03),
1

b(A) = 1.

But it is easily obtained that mc(A) = 3. O

Theorem 3.1.

if min{m,n} =1,

B(By,m,n)=1¢ 3 if m>3 and n =3,

otherwise.
Proof. By Lemma 3.4 , we have
ﬂ(Blam,n) = 1)
0110
whenever min{m,n}=1. Let A={1 0 0 1 |. Then from Example 3.2,
0 01 1

mcl(A) =4 and b] (A) = 3.

By (3.4),
ﬂ(Bl y 170, n) S 2a

for all m > 3 and n > 4.

_14_



Suppose m > 2 and n > 2. Then

h(A)=2 ff mag(d)=2-—-—-—-—-——— (%).

For if mc;(A)=2 ,then b (A)= 1 or 2.
So, b;(A)=2 by Lemma 3.4.
Conversely, suppose b;(A)=2. Then 3 Fy, 2, G2 n such that A = F'G. For

some permutation P,

GP = 1 0 z3 x4 -+ Tn or
0 1 fy3 y4 N yn
1 1 z3 x4 -+ xp
GP: bl
(0 1 ys ya - yn) o
1 0 z3 x4 . T :
GP = , - with z,y; € By.
Luwll  yaiu sgpgione Uni Y

If not, then b (G)=1 and hence b(A)=1. This is a contradiction. Hence
certain two columns of F' are maximal linearly independent columns of A.

That is to say, mc;(A)=2. Therefore we get

ﬂ(]Bl,m,n) > 2

i bl

for all min{m,n} > 2.

Finally we only show the case of m > 3 and n=3. Note that
bi(A) =3 if mci(A4) =3,

whenever A € My, 3(B:)(m > 3).
For if mc;(A)=3 ,then b;(A)= 1 or 2 or 3.

_15_



But 5,(A) # 1 and 2 by Lemma 3.4 and (*). Therefore
bi(A) = 3.
Conversely , if b (A)=3 ,then mc;(A4) > 3 but mc;(A) < 3. Therefore
mei(A) = 3.
Hence
1 if min{m,n} =1,

B(By,m,n)=< 3 if m>3 and n =3,

2 otherwise.

Lemma 3.5. Ifb(A) = r and Y 0, A, is the canonical form of A € M, »(B),

then max{b;(Ap) |1 <p<k}<r.

Proof. Suppose b(A) = r. Then there exist Mpm, », Ny n such that A = MN.

Therefore
Ap =(MN)p = My - Np.
Hence
bi(A,) <r (1 <p<k),
because M,, N, are m X 7,7 X n matrices respectively. a

Lemma 3.6. If max{b;(A,;)|1<p<k}=rand) 0,4, is the canonical

form of A € My, »(B), then b(A) < 7.

Proof. Suppose max{b;(4,) | 1 < p < k} = r. Put b4, = r, for some p
(1<p<k)

To show : b(A) > bi1(A4,).

_16_



If 5(A) < b1(Ap) = r, then there exist a positive integer k such that k < r
and A = B, xk - Ckxn for some B,C. Since A, = (BC), = B,Cp and B,, C,

are m X k, k X n matrices respectively,
bi(A,) < k.
This is a contradiction of the fact that b,(A,) = r. Therefore

b(A) = max{b(4,) |1 < p < k}. O

From Lemma 3.4 and Lemma 3.5, we prove (3.3).

o1 o 1
Example 3.4. Let A = [ 0 1 1].

Then if b(A) = 1, then there exist F;;,G1 3 such that A = F - G. Put
F = <i1> and G=(y1 y2 y3). Then
2

_ (a1 g2 1 _ I .
A—[O 1 1]—[“] [yl Y2 ys]

_ | Ty T1iy2 T1ys
TayY1 TaY2 Toyz |

Thus z1y3 = z2y2 = z2y3 = 1 and so 1 = 22 = y2 = y3 = 1. Hence we have

op o 1\  (y1 1 1 .
( 0 1 1) = (yl 1 1), but it could not be happened. Therefore

b(A) must be 2. But

[1 0 1]
U]A)——bl(o 1 1 >=2,
001 1]
UZA—'bl(O 1 1)21,
FO 0 1:

_17_



Lemma 3.7. If mc(A) = r and ) 0,4, is the canonical form of A €

M, »(B), then max{mec;(Ap) |1 <p <k} <r.

Proof. Suppose mc(A) = r. If mei(A,) > r for some p , then there ex-
ist r+1 columns (A1),,(A2)p, - ,(Art1)p which are linearly independent
over B. Consider A;, A,, - ,Ar4; of A. Since mc(A) = r, these are lin-
early dependent over B. So A; = Z:;]l a;A; , (a; € B). Thus (4;), =
(Zf;]l a,—Ai)p = Z:;]l (ai)p(A;)p which leads to a contradiction. Therefore

me1(Ap) < v =me(A), Vp.

We observe that we may say that the inequality in Lemma 3.7 would be
strict for » > 1 as shown in the following Example.

That is to say, from Lemma 3.5 and Lemma 3.6 we can find out the
Boolean rank from its p-th constituents but we can not exactly obtain the
Boolean maximal column rank from its p-th constituents. We only know
that max{mec1(A4, | 1 < p <k} < me(4).

oy 01

Example 3.5. Let A = [ 0 1

i] , where o, 1s a singleton subset of Sk.

Then mc(A) = 3. For if o, is a singleton subset of Sk, then first « [01 } +

0
ﬁ[gll] = [am ;ﬂm} = [” So B = 1 and hence ag; + 80, = aoy +0; =
o1 = 1 (It is impossible !!). Second, a [%1] + B [1] — [0101;- 5} _ [011]_

So, 8 =1 and hence ao1 + 8 = ac;+1 = 1 = o, (It is impossible !!). Finally,

_18_



« [0(’)1] +'8|:1} - [agl_:-ﬁﬁ] = [?]- So, a+ 3 =0 and hence a = 3 = 0.
Thus aoy + 8 =0 = o, (It is impossible !!).

But mc;(Ay) = mey ([(1) } 1]) = 2 and we also have
mey(A,) = mey ({8 (1) ”) — 92 forall p=2,3,--- k. 0

Lemma 3.8. If B is a nonbinary Boolean algebra and n > 2,

B(B,m,n) =0.

Proof. Let A = (01 02)1x2 , where o1 and o3 are distinct. Then 5(A) = 1

,but mc(A) = 2. So by (3.4), we have
ﬁ(IB, m’ n) = 07
foralln > 2. O

Theorem 3.2. For a nonbinary Boolean algebra B,

0 if n>2,

1 otherwise.

8(8,m,m) = {

Proof. Consider the case, n=1. Then for any A € My 1, b(4) = 1 and
mc(A) = 1. Therefore

B(B,m,1) =1.
If n > 2, then by Lemma 3.8
B(B, m,n) = 0.
Hence we obtain the desired result. O

_19_.



3.2 Comparisons of rank, column rank and maximal column rank
over Boolean matrices

In this section, we shall now discuss some proofs which are related with
p,a and B8 in By ,Z* ,Ft, and B. We will make a table to help figure out them

with a look.

Theorem 3.3. Let Z* be a semiring of nonnegative integers. Then for
m > 1,

1 fn=1
Al = ’
A", m,n) {o i n> 2

Proof. It is clear when n=1. Consider A = (2 3)1x2 Then b(A4) = 1 but
mc(A) = 2. By (3.4),
B(Z*,m,n) =0,

for all n > 2. Hence the proof is completed. a

Corollary.
1 f n=1,
0 if n>2.

wZ*,m,n) = {

Proof. Similarly, consider A = (2 3);x2. Then we can obtain the desired

result from the fact that 5(4) =1 and ¢(A) = 2. a
Theorem 3.4. Let F be a subfield of the reals, and Ft be the subset of F
consisting of the nonnegative members of F. Then

1 if min{m,n} =1,
B(Ft,m,n)=< 3 if m>3 and n =3,

2 otherwise.

_20_



Proof. In F*,
r(A)=1 iff me(d)=1 ——————— ().

The sufficient condition is obvious and so we only show that the necessary
condition. Suppose 7(A) = 1. Then there exist F,x1,G1xn such that A =

FG. Put F = (21,22, ,zm)T and G = (y1,Y2,"** ,Yn) , Where z;,y; € Ft+.

Then
Aan= mlean
(o
I2
= (v y2 - yn)
8ok
/331?/1 T1Y2 -+ ZT1Yn
T2 T2Y2 - T2Yn
\xmyl ITmY2 ITmlYn
I I
) T2
Since . lyi=ily;)| . |-y, me(A) = 1. Therefore
Im Tm
B(Ft m,n) > 1.

So if min{m,n} = 1, then it is clear that S(Ft,m,n) = 1.
In F*,
r(A) =2 iff me(A) =2.

_21_



For if mc(A) = 2, then it is trivial that r(A) = 2 by (*). Conversely,
suppose r(A) = 2. Then mc(A) > 2. If mc(A) > 2, then there exist linearly
independent columns, say a;,a; and ayx of A over F*. Since the rank of A
over the subfield F of the reals 2, there exist scalars a,3 and 4, not all zero,
such that aa; + faj + yax = 0. Since all the entries in A are nonnegative,
at least one of &,/ and 7 is positive and one negative. We may assume that
two are positive(or at least nonnegative) and one negative, say vy is negative.
Then (a/ — 7)a; + (8/ — v)a; = ak. Thus a;,a; and ay are linear dependent
over FT which leads to a contradiction of the fact that they are linearly

independent. Hence mc(A) = 2. Therefore we have

for min{m,n} > 2.

If AeM,, forn>2, then me(A) = r(A) < 2. Thus (**) implies that
B(Ft,2,n) =2 for n > 2.

If m>3,n=3and A€ M, 3(F*") with mc(A) = 3. then by (x) and (*x) ,
r(A) = 3. Therefore we obtain

B(Ft m,3) =3 for m > 3.
Finally, if m > 3 and n > 4, then

B(Ft m,n) < 2.



0 a9 as 0
Forlete A=|a; 0 0 a5 | whereay,as, - ,a6 € F', then mc(A) =4
0 0 a4 ag

and b(A) < 3. Therefore from (3.4) we get,

B(Ft,m,n) < 2.
Hence from (**) we have
B(F,m,n) =2,
for m > 3 and n > 4. Hence the proof is completed. a



1 if min{m,n}=1

1if min{m,n}=1

1 if min{m,n}=1

B, 3ifm >3,n=3 3ifm>3,n=3 3ifm>3,n=3
2 otherwise 4ifm>3,n=4 2 otherwise
(3] 2 otherwise (Theorem 3.1)
[7]
1if n=1 1if n=1 1if n=1
Zt| 0ifn>2 2 if n=2 0if n>2
(Corollary 3.3) 0ifn>3 (Theorem 3.3)
[7]
1if min{m,n} =1| 1if min{m,n}=1| 1if min{m,n} =1
Fr| 3ifm>3,n=3 3ifm>3,n=3 3ifm>3,n=3
2 otherwise 4ifm>3,n=4 2 otherwise
(3] 2 otherwise (Theorem 3.4)
[7]
2if 2=n <3 lifm>1,n=1 lifn>2
B 1 otherwise 0 otherwise 0 otherwise
9] (7] (Theorem 3.2)
< Table 3.1 >
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IV. Linear operators that preserve maximal column rank

of the nonbinary Boolean matrices

In this section, we obtain the characterizations of the linear operators that

preserve Boolean maximal column rank of the nonbinary Boolean matrices.

If V is a vector space over a Boolean algebra B, a mapping T : V — V

which preserves sums and 0 is said to be a (Boolean) linear operator.

Definition 4.1. A linear operator T on M, ,(B) is said to preserve Bool-

ean maximal column rank if me(T(A)) = mc(A) for all A € My, »(B). In
particular, T preserves Boolean maximal column rank r if mc(T(A)) =

r whenever mc(A) = r.

Similarly we can define the terms, such as Boolean rank preserver and

Boolean rank r preserver.

Definition 4.2 [9][T, : p-th constituent]. Let T be a linear operator on
M, »(B). For each 1 < p < k, a map T}, is called its p-th constituent if

T,(B) = (T(B)), for every B € My, »(B;).

We notice that this definition is well-defined. For if A = B, then T(A) =
T(B) and so (T(A)), = (T(B))p. Hence Tp(A) = Tp(B).
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By the linearity of T, for any matrix A € M, »(B),

T(A) = T(Zap - Ap)
= Z op - T(Ap)
=20 (00 T(4y)
= Z op - Tp(Ap).
Since M, »(B) is a semiring, we can consider the invertible members of its
multiplicative monoid. The permutation matrices (obtained by permuting
the columns of I,, the identity matrix) are all invertible. Since 1 is the

only invertible member of the multiplicative monoid of B, the permutation

matrices are the only invertible members of M, »(B).

Lemma 4.1 [9]. If A € M,, ,(B) and U,V are invertible matrices, then

mec(A) = me(UA) = me(AV).

Proof. This follows from the fact that an invertible matrix is just a permu-

tation matrix. O

Lemma 4.2. Assume T is a linear operator on Mp, »(B). If T preserves
Boolean maximal column rank r, then each constituent T, preserves Boolean

maximal column rank r on My, »(By).

Proof. Suppose that A € My, »,(B;) with mc;(A) = r. By Lemma 3.3, we
have

mc(A)(= mc1(A)) =r, and mc(o,A) =,
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for each p=1,2,--- k. since T preserves Boolean maximal column rank r,

me(T(opA)) = r. But

r =mc(T(0pA)) = me(o,T(A))
= mc(op Z 0. Ti(A)))
=mc(opTp(Ap))

= me(o,Ty(4)).

Therefore me(o,Tp(A)) = r for each p=1,2,- - - k, and hence me,(Tp(A)) = r.
O

Lemma 4.3 [9]. Suppose T is a linear operator on My, »(B). If each con-
stituent T, preserves binary Boolean rank r, then T preserves Boolean rank

r.

Proof. Let b(A) = r for A € M, »(B). Then there exists some p such
that b;(4,) = r and by(A4,) < r for 1 < ¢ < k by property (3.3). Thus
bi(Tp(Ap)) = r and b (Ty(A4y)) < r for 1 < ¢ < k. Since H(T(A)) =
maz{b(Tp(Ap)) | 1 < p < k} by property (3.3), T preserves Boolean rank
r. (]

Suppose T is a linear operator on M, ,(B). Say that T is a
(i) Congruence operator if there exist invertible matrices m x m and
n x n Boolean matrices U,V such that T(A) = UAV for any A
in Mp, »(B).



Let o* denote the complement of o for each o in B.

ii) the p-th rotation operator, R(P), on M, . (B) if
4 s ; .
RP)(A) = 0,AL + 0% A, for 1<p<k,

where A7 is the transpose matrix of 4,.
We see that R(P) has the effect of transposing A, while leaving the remain-
ing constituents unchanged. Each rotation operator is linear on the n x n

matrices over B and their product is the transposition operator, R: A — A'.

0 0 O
Example 4.1. Let A= 07 o7 1 | be amatrix over B. Then mc(A) =
0 1 1

3 by Example 3.5 and property (3.2). But

RM(A) =0, A + 07 A

0 0 O 0 0 O
= 0 1 1 1 + O’r o, o 1
0 1 1 0 1 1
01 0 0 0 O
=0 |0 1 1)4+0f|0o1 o 1
0 1 1 0 1 1
0 o O 0 0 O
= 0 01 g1 —+ 0 0 0';
0 o1 o 0 of of
0 01 0
= 0 (o4 1
0 1 1
= Al
and so R((A) = A!, the transpose matrix of A, has Boolean maximal

column rank 2. Consider B = A @ 0,_3 ,—3 for n > 3. By property (3.2),
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the rotation operator does not preserve Boolean maximal column rank 3 on

M, »(B). a

Lemma 4.4 [5]. IfT is a linear operator on the m x n matrices (m,n > 1)
over a general Boolean algebra B, then the followings are equivalent.

(1) T preserves Boolean ranks 1 and 2.

(2) T is in the group of operators generated by the congruence (if

m=n , also the rotation) operators.

Theorem 4.1. Suppose T is a linear operator on M,,, ,(B) for m > 2 and
n > 1. Then the following are equivalent.

(1) T preserves Boolean maximal column rank.

(2) T preserves Boolean maximal column ranks 1,2 and 3.

(3) T is a congruence operator.

Proof. Clearly (1) implies (2). Now we show that (2) implies (3). Assume T
preserves Boolean maximal column rank 1,2 and 3. Then by Lemma 4.2, each
constituent T, preserves binary Boolean maximal column ranks 1,2 and 3.
For A € M, »(B), Theorem 3.1 implies b1 (A) = mc;(A) for b;(A) < 2. Thus
T, preserves binary Boolean ranks 1 and 2, and hence T preserves Boolean
ranks 1 and 2 by Lemma 4.3. So T is in the group of operators generated by
the congruence( if m=n, also the rotation ) operators by Lemma 4.4. But
the rotation operator does not preserve Boolean maximal column ranks 3 by
Example 4.1. Hence T is a congruence operator since T preserves Boolean

maximal column rank 3. That is (2) implies (3). Finally, assume that T is a
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congruence operator of the form T(A) = UAV, where U and V are invertible
m x m and n x n Boolean matrices respectively. Then T preserves Boolean

maximal column rank by Lemma 4.1. Hence (3) implies (1). O

If m < 2, then the linear operators that preserve maximal column rank
on M, ,(B) are the same as the Boolean rank-preservers, which were char-
acterized in [5].

Thus we have characterizations of the linear operators that preserve the

Boolean maximal column rank of general Boolean matrices.
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