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Space Analysis of Hopfield Neural Network

Min-Je Kang*

Summary

The Hopfield network has been used in solving the optimizalion problems required of much

calcutations. Because the Hopfield network computes rapidly this kind of problem using ifs parallel

processing property. In this paper, the energy function has been analyzed to help undersianding the

properties of this network. It has been proved here that the energy function of the Hopfield network has

one stationary point which is a saddle point in the unconstrained space, therefore, this energy function

has the constrained minima on the boundary of the constrained space.

Introduction

Artificial neural systems are densely inter-
connected systems which have been developed
with the hope of simulating performance that can
evenlually match that of the human brain. They
are inspired by biological systems which perform
the task of pattern recognition much more quickly
than computers by using components much
slower than those found in computers. In 1982,
Hopfield proposed a simplified electrical model of
the fully connected neural network and showed
Since

the network's computational properties.

then, many researchers have begun further study
to exploit the algorithms and applications of the
Hopfield model. The network computes a solulion
by following a path that decreases the Liapunov-
iike energy, just as a rain drop moves downhill to
minimize its gravitational potential energy. If the
energy function of the Hopfield network contains
more than one minimum, the network will con-
verge to the minimum nearest the initial point.
This means that the network converges to a local
minimum rather than the global minimum.

A new mathematical analysis has been
developed for the energy function of the Hopfield

network. This method provides a detailed insight
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into the transient behavior and stability conditions

of the network.

The Neural Network Formulation

The Hopfield network is a simple neural circuit
which consists of synaptic connections and
neurons. In the actual network, the non-linear
input-output relation of neuron is determined by a

sigmoid function

V7i= 7__1
1+e™ (1)

The neurons are coupled together by a set of

non-linear differential equations,

W S WV 1uG, fori, -

idt _J'=l A Yt on=1,n (2)
where n is the number of neurons, V, is the
neural output, u; is the neural input, w, is the

ij
synaptic connection, G, is the total conductance
to input node, and C; is the input capacitance,
Hopfield showed that provided W,;=W; and W;=
0 for all i and j, ihe stale of the network v,
converges to a local minimum of a Lyapunov

energy function

It is claimed that dE/dt{0 for all i, therefore, it
shows that the Lyapunov energy function wili

always be minimized (Hopfield, 1984).

Existence of Minima of the
Energy Function with the Infinite
Sigmoid Gain

Proposition : If the sigmoid gain 2 is infinite, the

connection conductance matrix LV is ymmetric, and the diqgonal
elements are zeros, (i e wy=0}, then the following statement
is true :

The energy function always has a saddle point in the
unconstrained space.

Proof :

postulated energy function E(v) in equation (3)

Finding the equilibrium point of the

takes the following form

or, briefly
VE(v) =0 4)
W v-i+G u=0 )
where
-1 v
u=- In{ e ) )

Since the sigmoid gain 2 is infinite, the last term

of equation (5) will disappear, so
W v-i=0 @

It is well-known that if matrix A is symmetric,
then A is nonsingular so that its inverse matrix
1986) .
nonsingular, since W is designed to be symmetric
for this

exists (Friedberg, Therefore, W s

type of network. Because of
nonsingularity of W, only the single stationary
point exists and is given as follows

vE=-W | 8

The Ilessian matrix of E(v) can be used to
determine if the stationary point is a minimum, a

maximum, or a saddle point. Its value is

VE (v) =-W O

Since the diagonal elements of the Hessian
matrix (9) are all zero (because w;=0 for all i)
and the Hessian matrix is symmetric, the Hessian
matrix is always indefinite. Thus, the stationary

point obtained from equation (8) must be a
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saddle point. This will be explained below.

Since the sum of all eigenvalues of a matrix
equals its trace (Friedberg, 1986) and the trace
of the Hessian matrix is zero (I, w;=0) for the
Hopfield networks, the sum of all eigenvalues of
the Hessian matrix is zero. This means that all
eigenvalues are zero, or that some eigenvalues
are negative and the others are positive for the
summation to be zero. Besides, all eigenvalues
of the Hessian matrix cannot be zero and this will
be explained.

It is a known result that if A is a symmetric
matrix, then a diagonal maltrix can be found
which is similar to A, and similar matrices have
(Friedberg, 1986) and

eigenvalues (Friedberg, 1986). Since the Hessian

the same traces

matrix is symmetric (because the connection
matrix W is designed to be symmetric}, the
Hessian matrix is similar to a diagonal matrix.
This diagonal matrix does not have zero elements
on its diagonal because similar matrices have the
same rank. Furthermore, all elements of this
diagonal matrix are eigenvalues of both matrices
(Ortega, 1972). Thus, the Hessian matrix does
not have zero eigenvalues. Therefore, since the
summation of all eigenvalues yields zero, it is
obvious that some eigenvalues are negative and
the others are positive which proves that the
Hessian matrix is indefinite.

This proves completely that the energy function
always has a distinct stationary point and that
this stationary point is a saddle point. The
following case study illustrates that the energy
function always has a saddle point in the

unconstrained space.

Case Study

The 3-bit A/D converter (Tank and Hopfield,
1986) is selected as a case study to evaluate the
existence of stationary points. This case study is

used to verify that the ideal energy function al-

ways has a stationary point and this point is a
saddle point,

The energy function with an infinite sigmoid
gain 2 can be expressed by substituting the
weights and the bias current for the 3-bit A/D

converter as follows

0 -2 4 v
E=-g mviv) |2 0 8w,
-4 -8 0JLvs
x—+
~(vi v, V3| 2x-2 (10
4x-8

To find a stationary point of E(v), the gradient

of the energy function can be used

0 -2 -4|[v, X4
VEW=-|-2 0 -8|lv.|-|2x2|{=0 (D
-4 -8 0_|vs 4x-8

It is also instructive to see that the H:ssian

matrix H of the energy function becomes

-
|

VEW= | 2 (12)

o O© o
(=R I

The eigenvalues of H in (12} are obtained as -
8.2788, -1.5689 and 9.8487. Since the signs of all
eigenvalues differ (two eigenvalues are negative
and one is positive), H is indefinite. Fur-
thermore, sum of these eigenvalues is zero as we
expected. This is, as we explained before,
because H is symmetric and all diagonal elements
of H are zero.

Thus, whatever solution v* of (8) is identified

such that
VE(vk) =0 (13)

it will be a saddle point of the energy function,

The solution for a saddle point of the energy
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function can be obtained by using equation (8).

Since W is symmetric, its inverse matrix exists as

follows
1 1 1
2 4 8
e 11 1
wi= 4 8 16 (14)
1.1 1
8 16 32

Therefore, the distinct saddle point exists as

follows
: 1 1 _1 L
Y1 2 4 8|l ¥2
= - 2L 1 _ 1 .
Ve = § 8 16 || 2 o
. ) S U _
Y3 8 16 32 || 8
Expanding equation (15) results in
" X _ 8
Vi 2 %
c | = x _3
Vaol= 1 773 (16)
r* X 1
Vs T

The saddle point can be cobtained for selected x
because equation (16) is a function of analog
input x in this case. To obtain the locus of the
saddle points, two independent equations can be

obtained by removing x from equation (16) as

follows
=1 1
=g ity (17
v,=% V2+%

Since each equation has only two variables in a

three dimensional space, these are plane

equations. Therefore, the intersection of these
two planes is the locus of the saddle point. The
surface in Fig. 1. is drawn from the first equation
in (17), and the line on the surface is the

intersection of the above two equations.
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Fig. 1. Loocus of Saddle Points for the 3-bit
A/D Converter

Conclusion

In this paper, we have given a complete anal-
ysis of the energy function of Hopfield network
with infinite sigmoid gain. The energy function of
Hopfield network with two state neurons has only
one stationary point which is saddle point in
unconstrained space. Therefore, the hopfield
network has the constrained minimum on the
boundary of the constrained space. This paper
has proven that this proposilion agrees with
many experimental results that the Hopfiled net-
work with two state neurons converges to the

boundary of the hypercube,
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