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I. Introduction

This paper considers stochastic linear programming when the coefficients of the left
hand side of a constraint function are estimated from the sample data using multiple linear
regression. Considerations of model stability for stochastic programming in this case are
virtually unexplored in the literature despite the wide spread use of regression to determine
components of linear systems and despite the intensive attention focused on chance
constrained programming. The probabilistic model with an estimated constraint is
converted to an equivalent deterministic model using approximate confidence intervals.
Consequently, the stochastic constraint admits some violations in a manner analogous to

~hance constrained programming.

* ZAA 8 yRAden(Dept. of Tourism Management, Cheju Univ., Cheju-do, 690-756.
Korea)
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II. Background

Many of the earlier applications of operations research ‘involved fairly straightforward
use of linear programming coupled with technical parameters based on regression
analysis.” (See Cook 1964). In other words, estimates were considered to be true
coefficients, and probabilistic constraints were treated as if deterministic. Caveats were
issued, but generally ignored, regarding this practice. Beer and Ackoff (1969) advised™ -
more and more use is being made of models based on large regression analyses--
regression ought to be used only as a filter for the selection of variables whose effect on
system performance the researcher should seek to understand. Computers have obscured
this fact.”

The pioneering work in stochastic programming began with works by Dantzig (1955),
Beale (1955), Tintner (1955) and Charnes and Cooper (1959) among others. According to
Hansotia (1980), in the twenty year period from 1955 to 1975 more than 700 articles related
to stochastic programming were published. Since 1975, that number has increased many
times over.

Sensitivity analysis, chance-constrained programming, the distribution probiem of sto-
chastic programming under uncertainty, and stochastic programming with recourse all
consider related issues. These techniques most often treat changes in individual
parameters or random variation of the right hand side of the system (Vajda 1972, Bawa
et. al. 1979, Whittle 1982, Jagannathan 1985). However, this parer considers the effect
on LP solution of constraint parameters and error bounds simultaneousiy obtained from
regression equations. This application assumes that there are “true” operative, but
unobservable, parameters for the constraints but that estimates of these must be used in
the absence of perfect information. Because the computed optimum will differ from the
“true” optimum, bounds will be placed on the constraining function. Statistic linear
programming under risk as defined by Dempster (1968) provides the general class of
problems in which this case is embedded.

The situation herein discussed is introduced by whiteside (1986). Charnes, et. al (1986)
introduce a similar situation independently. The primary assumption of the LP model is
that the inequality constraint deals with the estimated expected value of a function, h,

which has an unobservable unknown terms, 8, i=0,1,2 and ¢
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h=8+3x,+3,X,+e
The true constraint function is
E (h) = ,30 + ﬁlxl + BzXzZ C.

A further assumption is that the coefficients of the above constraint are obtained from the
sample data in which collinearity among decision variables might exist. This parer
considers the simultaneous effect on the left hand side coefficients, and hence LP
solutions, of collinearity and sampling error in the data used to estimate the coefficients.

Charnes, et. al (1986) introduced a similar problem in which the natural gas
consumption model is expressed as a linear stochastic model. The natural gas model and
the model introduced in this paper are the same in terms of estimating the coefficients in
the constraint using multiple regression. However, the mode! of Charnes, et. al. focuses
on the decision regimes of the stochastic process rather than optimization of the LP
model. Whereas, the model introduced in this paper focuses on the optimization of the
linear system under several scenarios.

The study of linear programming and the effects of collinearity is motivated by the
Estuarine Linear Program for the Texas Department of Water Resouces. The solutions of
this program are recommended fresh water releases into the bays and estuaries of the
Gulf of Mexico. A discussion of this particular application is presented in section four of
this paper. Section five presents the simulation results with OLS and ridge regression
equations that in turn serve as a constraint for a linear program. One thousand
replications are observed for a 3X4X2X3 design. The factors of the design are error

variance for the regression, degree of collinearity in the data, regression criteria, and

sample size.

. Linear Systems

Suppose the following linear system. Minimize X,+X;+ -+X to:

1,<X,<m,

1,<X,<m,
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15X, <m,
by + b, X+ 0, Xy D X Zheeeee (1
Co+b|X|+C2X2+"~+CkaZs ............... (2)

where the left hand side of (1) and (2) are sample least square regression equations use
in lieu of the unknown true functional form.

It is well known that collinearity among the variables X,, X,, -, X, yields unstable sample
estimates of the regression coefficients. Thus the apparent solution either does not in fact

satisfy the true constraints or is not optimal.

X, X X,
Ay A /
7,
X, - BX, BX, BYX,
Figure 1-1 Figure 1-2 Figure 1-3 Figure 1-4
: true feasible region _ : estimated feasible region
A --- B : true constaint function = . estimated optimum

Fig.1. The effects of multicollinearity on the feasible region of the LP.

A geometric interpretation will clarify these ideas. Consider the case where k=2 and
one constraint of type (1) above appears. The first inequalities restrict solutions to the
rectangular set indicated in Figure 1-1. The true functional form of constraint (1) cuts
across this rectangle as shown forming the true set of feasible solutions shaded in the
figure. Thus the optimal solution is where the line segment A B of constraint (1)
intersects the rectangle. However, (1) must be estimated from sample data. If there is a
collinear relationship between X, and X, value observed in this sample, then the variance
of the estimated regression coefficients will be inflated and the likelihood that the
computed optimal soultion is not the true optimal nor truly feasible is increased.

Figures 1-2 and 1-3 illustrate two sample estimates of constraint (1). For Figure 1-2,
the computed LP solution (marked by %) is not truly feasible. For Figure 1-3, although
feasible, the computed LP solution is not the true optimal. The disparity between the true

and estimated constraint results from sampling error and may be exacerbated by
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collinearity.

Collinearity between X, and X, introduces another consideration. One effect of this
collinearity in a linear programming application is that the solution that apparently
optimizes the objective criterion is likely to represent an extrapolation beyond the
multivariate range of the X observations. If X, and X, are functionally related, such that
levels of both cannot be controlled completely; then the true feasible solution space is
reduced to the intersection of A B and the sample multivariate range indicated by shading

in Fig.1-4. The application discussed in the following section illustrates this later case.

IV. The Estuarine Linear Program

When dams are built on rivers that empty into the Gulf of Mexico, the fresh water
inflows into the the gulf are decreased. This is particularly worrisome in years of low
rainfall since the estuaries serve as hatcheries and nurseries for numerous fish and
shellfish. Shrimp and other shellfish which are native to the gulf and important to the
economy of Texas require levels of low salinity for the juveniles of the species. Hence, a
concern for the ecology of the bays and estuaries has motivated legislative provision for
fresh water releases from reservoirs built near the gulf to insure appropriate salinity levels
in the estuaries and abundance of fish and shellfish populations. However, agricultural
and industrial segments of the economy also compete for the fresh water resources. It is
therefore desirable to release no more water than necessary to maintain the viability of the
wildlife. The Texas Department of Water Resources has used the Estuarine Linear Pro-
gram to determine recommended monthly releases form each of several lakes and
reservoirs into the gulf in order to assure healthful salinity levels and continuing harvests
of fish and shelifish near the historic monthly means. For purposes of illustration, one
particular alternative wildlife management program for Lake Texana will be discussed.

( Lavaca-Tres Palacios Estuary, 1980)

The objective of this program is to minimize combined inflow to the estuary while
providing freshwater inflows sufficient to generate predicted annual commercial harvest of
red drum, seatrout, shrimp, blue crab, and bay oyster at level no less than their mean
1962 through 1976 historical values, satisfying marsh inundation needs, and meeting
bounds for salinity. The commercial harvest constraints are represented by five inequalities

determined by multiple regression equations on the left hand side and historic mean har-
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vest values on the right hand side. The data for developing the multiple regression
equation is given in Tables 1 and 2, For each regression, the response is the commercial
harvest and the predictors are appropriately lagged values of seasonal rainfall. For each
species, the best equation is determined by significant equations generated by a BMDP
stepwise regression procedure. To illustrate the problem of collinearity, consider the

following equation used as a constraint to assure adequate shellfish harvest :

H=3107. 9-11. 3Q, +7. 7Q,~24. 2Qs,

Table 1. Commercial fi;hories harvests in the Lavaca-Tres Palacios estuary/1
1962~1976, (thousands of pounds)

White  Br %‘:n’ll‘ & Blue Bay - Spotted Red
Year Shellfish ~ Shrimp Shrimp Crab Oyster Finfish  Seatrout Drum
1962 3.843.7 1,405.1 277.3  2,006.8 154.5 232.0 105.6 60.3
1963 2.635.1 1,601.5 169.3 728.4 135.9 174.0 76.2 41.8
1964 3.001.0 24356 199.0 225.9 140.5 116. 4 43.5 22.6
1965 2.889.6 1.290.3 1,074. 4 401.3 123.6 209.5 80.0 50.7
1966 2,928.9  1.643.0 318.4 477.2 489.3 554.9 214.7 106.8
1967 1,930.0  1,056.0 210.8 360.8 302. 4 322.7 138. 4 69.0
1968 3.668.5 2.364.5 82.1 933.3 288.6 533.1 267.9 121.2

1969 2.536.2 1,319.1 108.7 891.0 217. 4 410.3 168. 6 109.0
1970 3,259.0 1.823.0 174.5 782.0 479.5 446.9 173.8 128.7

1971 1,976.1 1,070.0 217.2 394.0 294.6 280.8 140.5 65.5
1972 2,629.3  1,294.3 238.1 882.0 214.9 298.8 123.0 76.9
1973 5.013.3 1,934.2 875.8 1,129.6 73.7 284.4 133.4 70.5
1974 3.044.9 1,418.7 469.8 959.3 197.1 226.9 130.1 52.5
1975 2,978.5 920.5 785.6 897.7 374.7 236. 4 9.8 72.1
1976 3.180.5 1,313.5 934.0 651.7 281.2 172.2 65.3 47.9
Mean 3.034.4 1,592.6 409.1 781. 4 251.2 300.0 134. 4 73.0

195.1 147.6 86. 4 111. 4 32.3 34.0 17.2 7.9

Note : 1. Estuary yanks second in shellfish and fifth in finfish commercial harvests of eight
Texas estuarine areas
2. Includes blue crab, bay oyster, and white, brown, and pink shrimp
3. Includes croaker, black drum, red drum, flounder, sea catfish, spotted seatrout, and
sheepshead
4. Standard error of the mean: two standard errors provide an approximately 95%
confiden confidence limits about the mean
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Table 2. Seasonal volumes of combined freshwater inflow contributed to Lavaca-Tres Palacios
estuary (thousands of acre-feet), 1959~1976

Winter Spring Summer Autunm Late Fall
Year (Jan-March) (April-June) {July-August) (Sept-Oct. } (Nov. -Dec.)
1959 300. 9 378.0 52.0 179.0 119.0
1960 116. 1 501.9 202.0 470.0 342.0
1961 474.9 321.0 145.0 519.0.a 160.0
1962 30.9 135.9 22.0 30.0 15.0
1963 59.1 11. 1 29.0 5.0.b 21.0
1964 53.3 66. 0 16.0 70.0 5.0
1965 188.1 351.9 19.0 30.0 192.0
1966 141.9 360.9 51.0 18.0 3.0
1967 6.9 21.9 33.0 552.0./¢c 12.0
1968 297.0 848.1 66.0 45.0 53.0
1969 351.0 534.0 14.0 44.0 61.0
1970 185. 1 378.0 26.0./d 261.0 8.0
1971 9.9 17.1 89.0 371.0/e 107.0
1972 174.9 584.1 48.0 24.0 14.0
1973 233.1 1,.476.9 89.0 479.0°f 57.0
1974 237.9 303.9 41.0 368.0 207.0
1975 62.1 540.0 90.0 37.0 55.0
1976 15.0 237.0 56.0 111.0 423.0
Mean 163.3 392.7 60. 4 200.7 103.0
Standard error.’g 31.5 83.0 11.5 47.8 28.6

Note : a. Hurricane Carla, Sept. 8~14: near Port Lavaca

b. Hurricane Cindy, Sept. 16~20: near Port Arthur

c. Hurricane Beulah, Sept. 18~23. near Brownsville

d. Hurricane Celia, Aug. 3~5. near Port Aransas

e. Hurricane Fern, Sept. 9~13. near Port Aransas

f. Hurricane Delia, Sept. 4~7:. near Galvestone

g. Standard error of the mean: two standard errors provide approximately 95%
confidence limits about the mean
Source : Lavaca-Tres Palacios Estuary, 1980, pp.VII-3 and VIII-5.

where H represent shellfish harvest in thousands of pounds and Q,:Q; represent mean
seasonal freshwater inflow in thousands of acre-feet for winter (January-March), spring
(April-June), and summer (July-August) respectively.

A simple interpretation of the above equation would suggest that shellfish harvest would
be most enhanced if all freshwater inflow at all in winter or summer. If there is no fresh
water inflow at all, the model estimates a harvest greater than the historic means (3107.9

vs. 3034. 4 thousands pounds). This is clearly ludicrous. It is true that shellfish are most
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dependent on spring inflow and that extremes of salinity and temperature experienced
simultaneously can have a deleterious effect. Thus coefficients for summer and winter
would be expécted to be relatively smaller than spring, but to actually observe negative
coefficients is an indication that the functional form of the relationship is misrepresented.

The presence of negative coefficients in such constraints as the shellfish equation above
is an indication of possible collinearity among seasonal inflow levels. The simple
correlation between winter and spring inflows is 0.645. Whenever both of these variables
appear in a harvest equation, one always has a negative coefficient which is absurd in the
context of the problem. It is also reasonable to assume that more complex linear
relationships exist among all seasonal inflows since the total annual rainfall is comprised
of the sum of the seasonal values.

The effect of this collinearity on the LP solutions is dramatic. When the harvest
constraints are nor part of the linear system, the recommended inflows as a percentage
of historic mean inflow vary only from 40% in late fall (November-December) to 51% in
winter. For the management alternative discussed here, the recommended in flows vary
from 40% in late fall to as 105% in the early fall(September-October). For a third
alternative where the shellfish harvest equation actually provides the objective criterion for
the system, the range is from 40% in late fall to a whopping 127% in spring. The
unusually high inflows for spring reflect the collinearity in the harvest equation presented
above.

The difficulties described could occur anytime regression equations provide constraints
or provide the optimizing criterion for linear prograrris. Estimated constraint coefficients
can introduce misleading results that are even more serious in the presence of collinearity.

The simulation study that follows explores the ramifications of this phenomena.

V. Simulation and Results

The linear model for the simulation is as follows. Minimize X,+X, subject to :
1<X,<5

1<X,<5
h=by+ b, X, + b, X250 vrveenes (1a)
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where b,, b,, and b, are sample regression coefficients. The true functional form of (la)

is

E () =80+ 3, X, + 3.X>5.
Let ﬁ=bn+b|xl+bzX2
and  E@) =3+3X,+8.X.,

then the (l1-a)% confidence interval for E(f) is

A

hx+ t(l-t:t/z:n-p)s (ETH) )
If we borrow the probability concept, P@)>1-a/2 will be satisfied by the upper bound of
the (l1-a)% confidence interval for a given vector of Xs, i.e.,

it

g (1-a/2:n-p)

S(ﬁg).-~"'-----~-~-~(2a)
(For the less than or equal to constraint, the lower bound will satisfy the condition).

A chance constrained programming approach applied to the above system means tha!
the condition, P(h>5)>1-a would be satisfied, assuming 3, A, & and variance are
known. This paper uses a Modifications of Chance constrained Programming (MCCP} to
introduce a confidence interval in order to satisfy the above criterion in probability.

Since the term S* (ﬁg), which can be defined as follows :
2 _ ’ ’ -1 R TR 1
s*(h,) =MSE(X', (X'X) "X )=X, o* (D)X,
is always strictly convex, the feasible region that is constructed by Eq. 2a would be a
convex set. The simulation begins with the construction of a bivariate data set with
observed values (X, X,), of size n, where the observed sample correlation between X,
and X, is r. Then a set of n observations of h is constructed with :

h=X)+Xz+e

where e is a normal, uniform or Double exponential random variable with standard
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observations are obtained using the Statistical Analysis System (SAS) random number
generator. The regression of h on X, and X, yields b,, b, and b, of constraint(lia).

The experimetal design for the simulation is as follows :

Class Levels
Regression OLS LAV
Collinearity (r) 0 0.3 0.7 0.9
Error std. dev. (sigma) 0.25 1 2
Sample size (n) : 20 40 100

The sample sizes are intended to reflect small, moderate and fairly large samples for
obtaining regression equations. The values of r allows an orthogonal to a highly collinear
structure for X, and X, The error variance allows for very little to large fluctuation
relative to the inequalities 1<X,<5 and 1<X,<5. For each factor level combination, 1000
data sets are simulated to obtain solutions for the linear program.

Recall that the true optimal is 5. Figures 2,3 and 4 depict the mean LP solutions of 1000
replications for n=20, 40 and 100 under three different distributions: normal, uniform and
double exponential using two different types of regression. In general, given a fixed
sample size and level of collinearity, the mean of the observed optimal solutions
approaches 5 as error variance decreases. Similarly, the standard deciation of the
observed optimal solution decreases. An analogous results holds for decreases in
collinearity, given a fixed sample size and a fixed error variance. As sample size
increases, the mean of the observed optimal solutions also approaches 5, holding either
variable constant. The variability of solutions is also reduced with larger samples. Error
variance in this study is a more important factor than is either collinearity or sample size.
These factors cause the observed optimal solution to differ from the true optimal solution.
The solutions are much more likely to be in the truly feasible set.

Considering the regression criterion factor, the observed mean LP solution for ordinary
least squares (OLS) regression is slightly closer to the true value than is the least abso-
lute value (LAV) mean under normal and uniform error distributions. However, LAV re-
gression provides more accurate LP solutions than OLS under double exponential error
distribution, as expected.

It is well known that least absolute value estimators are maximum likelihood and
recommended over ordinary least squares if error distribution is double exponential (Rice

and White). The simulated LP solution supports the above theoretical property. (For more
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Fig.2. Mean LP solution for MCCP with normal error
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Fig. 4. Mean LP solution for MCCP with double exponential error
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detailed analysis, see Choi, 1991).

VI. Implications

The variability of the sample regression constraint in the LP model introduces a bias for
the optimal solution. The case considered here shows a downward bias. The program is
structured with a “greater than” constraint and a minimizing objective criterion. This bias
is directly related to regression error variance and collinearity among the constraining
variables. More importantly, because each of these solutions occur on the boundary of the
feasible set, the coordinates of the apparently optimal solution do not reflect the collinear
relationship between the variables which may be important for the practical application of
the solution.

It is suggested that the data set be examined for outliers and/or kurtosis. In the pres-
ence of either of these conditions, least absolute value regression might be a preferable
regression criterion. Most importantly, satisfaction of the constraint can be achieved with

the desired probability.
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